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Let D= {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let A2(D) be the
space of analytic functions on D square integrable with respect to the measure dA(z) =
(1/π)dx dy. Given a ∈D and f any measurable function on D, we define the function
Ca f by Ca f (z) = f (ϕa(z)), where ϕa ∈ Aut(D). The map Ca is a composition operator
on L2(D,dA) and A2(D) for all a ∈D. Let �(A2(D)) be the space of all bounded linear
operators from A2(D) into itself. In this article, we have shown that CaSCa = S for all
a ∈D if and only if

∫
DS̃(ϕa(z))dA(a) = S̃(z), where S ∈�(A2(D)) and S̃ is the Berezin

symbol of S.

Copyright © 2007 Namita Das et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let D= {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let dA(z) be the
area measure on D normalized so that the area of the disk D is 1. In rectangular and
polar coordinates, dA(z)= (1/π)dxdy = (1/π)rd rdθ. Let L2(D,dA) be the Hilbert space
of Lebesgue measurable functions f on D with

‖ f ‖2 =
[∫

D

∣
∣ f (z)

∣
∣2
dA(z)

]1/2

< +∞. (1.1)

The inner product is defined as

〈 f ,g〉 =
∫

D
f (z)g(z)dA(z) (1.2)
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for f ,g ∈ L2(D,dA). The space L∞(D,dA) will denote the Banach space of Lebesgue mea-
surable functions f onD with

‖ f ‖∞ = esssup
{∣∣ f (z)

∣
∣ : z ∈D} <∞. (1.3)

The Bergman space A2(D) is defined to be the subspace of L2(D,dA) consisting of ana-
lytic functions. It is not so difficult to verify that (see [1]) A2(D) is a closed subspace of
L2(D,dA). Since point evaluation at z ∈D is a bounded linear functional on the Hilbert
space A2(D), the Riesz representation theorem [2] implies that there exists a unique func-
tion Kz in A2(D) such that

f (w)=
∫

D
f (z)Kz(w)dA(w) (1.4)

for all f in A2(D). Let K(z,w) be the function onD×D defined by K(z,ω)= Kz(w). The
function K(z,w) is called the Bergman kernel of D and it can be verified that (see [3])

K(z,ω)= 1
(1− zw)2

. (1.5)

Let ka(z)= K(z,a)/
√
K(a,a)= (1−|a|2)/(1− az)2. The function ka is called the normal-

ized reproducing kernel for A2(D). It is clear that ‖ka‖2 = 1. Let Aut(D) be the Lie group
of all automorphisms(biholomorphic mappings) of D. We can define for each a∈D an
automorphism ϕa in Aut(D) such that

(i) (ϕa ◦ϕa)(z)≡ z,
(ii) ϕa(0)= a, ϕa(a)= 0,

(iii) ϕa has a unique fixed point inD.
In fact, ϕa(z)= (a− z)/(1− az) for all a and z in D. An easy calculation shows that

the derivative of ϕa at z is equal to −ka(z). It follows that the real Jacobian determi-
nant of ϕa at z is Jϕa(z) = |ka(z)|2 = (1−|a|2)2/|1− az|4. Given λ∈D and f any measur-
able function on D, we define a function Uλ f on D by Uλ f (z) = kλ(z) f (ϕλ(z)). Notice
that Uλ is a bounded linear operator on L2(D,dA) and A2(D) for all λ ∈ D. Further,
it can be checked that U2

λ = I , the identity operator, U∗
λ = Uλ,Uλ(A2(D)) ⊂ (A2(D)),

and Uλ((A2(D))⊥) ⊂ (A2(D))⊥ for all λ ∈D. Thus UλP = PUλ for all λ ∈D, where P is
the orthogonal projection from L2(D,dA) onto A2(D). Let φ : D→ D be analytic. De-
fine the composition operator Cφ from A2(D) into itself as Cφ f = f ◦ φ. Then Cφ is
a bounded linear operator on A2(D) and ‖Cφ‖ ≤ (1 + |φ(0)|)/(1− |φ(0)|) (see [3] for
a proof). Given a ∈ D and f any measurable function on D, we define the function
Ca f by Ca f (z) = f (ϕa(z)), where ϕa ∈ Aut(D). The map Ca is a composition opera-
tor on A2(D). Let �(A2(D)) be the space of all bounded linear operator from A2(D)
into itself. For T ∈ �(A2(D)), define the map T̃ on D as T̃(z) = 〈Tkz,kz〉. The map
B : �(A2(D)) → L∞(D) defined by B(T) = T̃ is called the Berezin transform and T̃ is
called the Berezin symbol of T.

The Berezin transform associates operators on Hilbert spaces of holomorphic func-
tions to smooth functions [4]. It is very effective in several contexts in the sense that
B(T) contains a lot of information about the operator T . Successful applications of the
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Berezin transform are so far mainly in the study of Toeplitz and Hankel operators on the
Bergman space. Regardless of the original motivation of Berezin for introducing it, the
Berezin transform essentially provides a kind of “symbol” for certain natural operators
on Hilbert spaces of analytic functions. Thus it is natural to ask the general question of
how much information about the operator does its Berezin symbol carry. The problem
is subtle and no general answer is known. In this work, we have shown that the Berezin
symbol of a bounded linear operator S from the Bergman space into itself satisfies cer-
tain averaging condition if and only if the operator S satisfy the intertwining relation
CaSCa = S for all a ∈ D. Recently, the spectra of composition operators have attracted
much attention (see [5–7]) from operator theorists. To this purpose, it is important to
know what are the essential commutants of the invertible operators Ca,a ∈ D, and to
characterize those S∈�(A2(D)) such that CaS− SCa = (CaSCa− S)Ca is compact for all
a∈D. In this work, we present a necessary and sufficient condition for CaSCa− S= 0 to
happen for all a∈D in terms of the Berezin symbol of S. Related work in this area can be
found in [5–8].

2. The unitary operator Ua and the Berezin transform

In this section, we will prove certain elementary properties of the unitary operator Ua

and the Berezin transform.

Lemma 2.1. For z,ω ∈D, Uzkω = αkϕz(ω) for some complex constant α such that |α| = 1.

Proof. Suppose z,ω ∈D. If f ∈A2(D), then

〈
f ,UzKω

〉= 〈Uz f ,Kω
〉= (Uz f

)
(ω)=−( f ◦ϕz

)
(ω)ϕ′z(ω)= 〈 f ,

(−ϕ′z(ω)
)
Kϕz(ω)

〉
.

(2.1)

Thus UzKω = −ϕ′z(ω)Kϕz(ω). Rewriting this in terms of the normalized reproducing
kernels, we have

Uzkω = αkϕz(ω) (2.2)

for some complex constant α. Since Uz is unitary and ‖kω‖2 = ‖kϕz(ω)‖2 = 1, we obtain
that |α| = 1. �

Lemma 2.2. For all a∈D, Uaka = 1.

Proof. If a∈D, then first observe that ϕ′a(z)=−ka(z). Since (ϕa ◦ϕa)(z)= z for all z ∈D,
taking derivatives with respect to z in both sides, we obtain

(
Uaka

)
(z)= ka

(
ϕa(z)

)
ka(z)= 1. (2.3)

�

Notice that for all a∈D, since Uaka = 1, hence ka ◦ϕa = 1/ka and k−1
a ∈H∞, the space

of bounded analytic functions on D.

Lemma 2.3. If S,T ∈�(A2(D)) and for all z ∈D, S̃(z)= T̃(z), then S = T.
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Proof. If S̃(z)= T̃(z) for all z ∈D, then

〈
(S−T)kz,kz

〉= 0 (2.4)

for all z ∈D. This implies

〈
(S−T)Kz,Kz

〉= K(z,z)
〈

(S−T)kz,kz
〉= K(z,z) · 0= 0. (2.5)

Let L= S−T and define

F(x, y)= 〈LKx,Ky
〉
. (2.6)

The function F is holomorphic in x and y and F(x, y) = 0 if x = y. It can now be veri-
fied that such functions must vanish identically. Let x = u+ iv, y = u− iv. Let G(u,v) =
F(x, y). The function G is holomorphic and vanishes if u and v are real. Hence F(x, y)=
G(u,v)≡ 0. Thus even 〈LKx,Ky〉 = 0 for any x, y. Since linear combinations of Kx, x ∈D,
are dense in A2(D), it follows that L= 0. That is, S= T . �

3. Main result and its applications

In this section, we will prove that a bounded linear operator S from A2(D) into itself
commutes with all the composition operators Ca, a∈D, if and only if S̃ satisfies certain
averaging condition. We will also present some applications of this result.

Theorem 3.1. A bounded linear operator S∈�(A2(D)) commutes with all the composition
operators Ca,a∈D, if and only if

S̃(z)=
∫

D
S̃
(
ϕa(z)

)
dA(a) (3.1)

for all z ∈D.

Proof. Suppose S̃(z)= ∫D S̃(ϕa(z))dA(a) for all z ∈D.
Then by Lemma 2.1, there exists a constant α such that |α| = 1 for all z ∈D,

〈
Skz,kz

〉=
∫

D

〈
Skϕa(z),kϕa(z)

〉
dA(a)=

∫

D

〈
αSUakz,αUakz

〉
dA(a)

=
∫

D

〈
UaSUakz,kz

〉
dA(a)=

〈(∫

D
UaSUadA(a)

)
kz,kz

�
= 〈Ŝkz,kz

〉
,

(3.2)

where Ŝ= ∫DUaSUadA(a).
Thus by Lemma 2.3, S= Ŝ. Hence for all f ,g ∈ A2(D), 〈S f ,g〉 = 〈Ŝ f ,g〉.
That is,

∫

D

〈
SUa f ,Uag

〉
dA(a)=

∫

D
S f (z)g(z)dA(z). (3.3)



Namita Das et al. 5

The boundedness of S and the antianalyticity of K(z,a) in a imply that for each z ∈D,
the function

S
(

f

K(·,a)

)
(z)K(z,a) (3.4)

is antianalytic in a. Therefore, by the mean value property of harmonic functions, we
have

∫

D
S
(

f

K(·,a)

)
(z)K(z,a)dA(a)= S

(
f

K(·,0)

)
(z)K(z,0)= S f (z). (3.5)

Thus, from (3.5), it follows that

〈S f ,g〉 =
∫

D
g(z)

∫

D
S
(

f

K(·,a)

)
(z)K(z,a)dA(a)dA(z). (3.6)

Using Fubini’s theorem, we obtain

〈S f ,g〉 =
∫

D

∫

D
S
(

f

K(·,a)

)
(z)g(z)K(z,a)dA(z)dA(a). (3.7)

Now since ka(z)= K(z,a)/
√
K(a,a) and (ka ◦ϕa)(z)ka(z)= 1 for all z,a∈D, the right-

hand side of (3.7) is equal to

∫

D

∫

D
S
(
f

ka

)
(z)g(z)ka(z)dA(z)dA(a)

=
∫

D

∫

D
S
(
f

ka

)
(z)g(z) ka

(
ϕa(z)

)∣∣ka(z)
∣
∣2
dA(z)dA(a).

(3.8)

Finally, as (ϕa ◦ϕa)(z)≡ z and Jϕa(z) = |ka(z)|2, we obtain

〈S f ,g〉 =
∫

D

∫

D
S
(
f

ka

)(
ϕa(z)

)
ka(z) g

(
ϕa(z)

)
dA(z)dA(a). (3.9)

By hypothesis, 〈S f ,g〉 = ∫D〈SUa f ,Uag〉dA(a) and by using Lemma 2.2,

〈
SUa f ,Uag

〉=
〈
S
(
f ◦ϕa

ka ◦ϕa

)
,
(
g ◦ϕa

)
ka

�
=
〈
S
(
f

ka
◦ϕa

)
,
(
g ◦ϕa

)
ka

�

=
∫

D
S
(
f

ka
◦ϕa

)
(z)g

(
ϕa(z)

)
ka(z)dA(z).

(3.10)

Thus we obtain for all f ,g ∈ A2(D),

∫

D
S
(
f

ka
◦ϕa

)
(z)g

(
ϕa(z)

)
ka(z)dA(z)=

∫

D
S
(
f

ka

)
(
ϕa(z)

)
ka(z) g

(
ϕa(z)

)
dA(z).

(3.11)
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Hence for all f ,g ∈A2(D), a∈D,

〈
S
(
f

ka
◦ϕa

)
,Uag

�
=
〈
S
(
f

ka

)
◦ϕa,Uag

�
. (3.12)

Since Ua is unitary, Ua ∈�(A2(D)), we get

S
(
f

ka
◦ϕa

)
= S
(
f

ka

)
◦ϕa (3.13)

for all f ∈ A2(D), a∈D.
That is, for all f ∈ A2(D), a∈D,

SCa

(
f

ka

)
= CaS

(
f

ka

)
. (3.14)

Since k−1
a ∈H∞, hence SCa = CaS for all a∈D. Thus CaSCa = S for all a∈D as C2

a = I ,
the identity operator in �(A2(D)).

Now we will prove the converse. Suppose CaSCa = S for all a∈D. Then CaS f = SCa f
for all a∈D, f ∈ A2(D). That is, for all f ∈A2(D), a∈D,

(S f )◦ϕa = S
(
f ◦ϕa

)
. (3.15)

By Lemma 2.2, (ka ◦ϕa)ka = 1 for all a∈D. Hence

SUa f = S
(
ka
(
f ◦ϕa

))= S
(
f ◦ϕa

ka ◦ϕa

)
= S
((

f

ka

)
◦ϕa

)
=
(
S
f

ka

)
◦ϕa. (3.16)

Thus for f ,g ∈ A2(D), since ka(ϕa(z)) ka(z)= 1, Jϕa(z) = |ka(z)|2, and ka(z)= K(z,a)/√
K(a,a) for all z,a∈D, we obtain

〈
SUa f ,Uag

〉=
∫

D

(
S
f

ka

)
(
ϕa(z)

)(
g ◦ϕa

)
(z) ka(z)dA(z)

=
∫

D
S
(
f

ka

)
(z)g(z)

(
ka ◦ϕa

)
(z)
∣
∣ka(z)

∣
∣2
dA(z)

=
∫

D
S
(
f

ka

)
(z)g(z)ka(z)dA(z)

=
∫

D
S
(

f

K(·,a)

)
(z)g(z)K(z,a)dA(z).

(3.17)

Hence by using Fubini’s theorem, we obtain

∫

D

〈
SUa f ,Uag

〉
dA(a)=

∫

D

∫

D
S
(

f

K(·,a)

)
(z)g(z)K(z,a)dA(z)dA(a)

=
∫

D
g(z)dA(z)

∫

D
S
(

f

K(·,a)

)
(z)K(z,a)dA(a).

(3.18)
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We have already checked in the first part of the proof that for all z ∈D,

∫

D
S
(

f

K(·,a)

)
(z)K(z,a)dA(a)= S

(
f

K(·,0)

)
(z)K(z,0)= S f (z). (3.19)

Thus

∫

D

〈
SUa f ,Uag

〉
dA(a)=

∫

D
S f (z)g(z)dA(z)= 〈S f ,g〉. (3.20)

When f = g = kz, z ∈D, we obtain by Lemma 2.1 that

〈
Skz,kz

〉=
∫

D

〈
SUakz,Uakz

〉
dA(a)=

∫

D

〈
Skϕa(z),kϕa(z)

〉
dA(a)=

∫

D
S̃
(
ϕa(z)

)
dA(a),

(3.21)

and this concludes the proof. �

Let P be the orthogonal projection from L2 onto A2(D). For ϕ∈ L∞(D,dA), define the
Toeplitz operator Tϕ from A2(D) into itself as Tϕ f = P(ϕ f ). For ϕ∈ L∞(D,dA), let

ϕ̂(z)=
∫

D
ϕ
(
ϕa(z)

)
dA(a),

ϕ̃(z)=
∫

D
ϕ
(
ϕz(ω)

)
dA(ω).

(3.22)

Notice that

ϕ̃(z)= 〈ϕkz,kz
〉
. (3.23)

Corollary 3.2. If ϕ∈ L∞(D,dA), then there exists a constant c of modulus 1 such that

∫

D

∫

D
ϕ
(
ϕϕa(z)(ω)

)
dA(ω)dA(a)=

∫

D

∫

D
ϕ
(
cϕϕz(a)(ω)

)
dA(a)dA(ω). (3.24)

Proof. From (3.23), it follows that

∫

D
T̃ϕ
(
ϕa(z)

)
dA(a)=

∫

D

〈
Tϕkϕa(z),kϕa(z)

〉
dA(a)=

∫

D

〈
ϕkϕa(z),kϕa(z)

〉
dA(a)

=
∫

D
ϕ̃
(
ϕa(z)

)
dA(a)=

∫

D

∫

D
ϕ
(
ϕϕa(z)(ω)

)
dA(ω)dA(a).

(3.25)
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Given f ,g ∈A2(D), by Lemma 2.2 and Fubini’s theorem, we obtain
∫

D

〈
UaTϕUa f ,g

〉
dA(a)

=
∫

D
dA(a)

∫

D
ϕ(z)

(
f ◦ϕa

)
(z)ka(z)

(
g ◦ϕa

)
(z) ka(z)dA(a)

=
∫

D
dA(a)

∫

D
ϕ
(
ϕa(ω)

)
f (ω)g(ω)

∣
∣(ka ◦ϕa

)
(ω)
∣
∣2∣∣ka(ω)

∣
∣2
dA(ω)

=
∫

D
dA(a)

∫

D
ϕ
(
ϕa(ω)

)
f (ω)g(ω)dA(ω)

=
∫

D
f (ω)g(ω)dA(ω)

∫

D
ϕ
(
ϕa(ω)

)
dA(a)

=
∫

D
ϕ̂(ω) f (ω)g(ω)dA(ω).

(3.26)

Thus
∫

D
T̃ϕ
(
ϕa(z)

)
dA(a)=

∫

D

〈
UaTϕUakz,kz

〉
dA(a)=

∫

D
ϕ̂(ω)

∣
∣kz(ω)

∣
∣2
dA(ω)

=
∫

D
ϕ̂
(
ϕz(ω)

)
dA(ω)=

∫

D

∫

D

(
ϕ◦ϕa ◦ϕz

)
(ω)dA(a)dA(ω).

(3.27)

Thus by Theorem 3.1, we obtain
∫

D

∫

D
ϕ
(
ϕϕa(z)(ω)

)
dA(ω)dA(a)=

∫

D

∫

D
ϕ
(
ϕa ◦ϕz

)
(ω)dA(a)dA(ω). (3.28)

Let

U= ϕa ◦ϕz ◦ϕϕz(a). (3.29)

Then U∈ Aut(D) and U(0)= ϕa ◦ϕz(ϕz(a))= ϕa(a)= 0 and Uϕϕz(a) = ϕa ◦ϕz.
We know that (see [9]) if ϕ∈ Aut(D), then

ϕ(z)= eiθ
z− b

1− bz
(3.30)

for some θ real and b ∈D. Furthermore, ϕ(0) = 0 if and only if ϕ(z) = eiθz. Thus Uz =
eiθz. Hence

ϕa ◦ϕz =Uϕϕz(a) = eiθϕϕz(a) = cϕϕz(a), (3.31)

where c = eiθ , θ ∈R. Thus it follows that
∫

D

∫

D
ϕ
(
ϕϕa(z)(ω)

)
dA(ω)dA(a)=

∫

D

∫

D
ϕ
(
cϕϕz(a)(ω)

)
dA(a)dA(ω). (3.32)

�
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Notice that we can define Ua on L2(D,dA) also. Suppose ϕ∈ L∞(D,dA), f ,g ∈ L2(D,
dA). Then by using Fubini’s theorem and making a change of variable, we obtain

∫

D

〈
ϕUa f ,Uag

〉
dA(a)=

∫

D
dA(a)

∫

D
ϕ(z)

(
f ◦ϕa

)
(z)ka(z)

(
g ◦ϕa

)
(z) ka(z)dA(z)

=
∫

D
dA(a)

∫

D
ϕ
(
ϕa(ω)

)
f (ω)g(ω)dA(ω)

=
∫

D
f (ω)g(ω)dA(ω)

∫

D
ϕ
(
ϕa(ω)

)
dA(a)

=
∫

D
ϕ̂(ω) f (ω)g(ω)dA(ω)= 〈ϕ̂ f ,g〉.

(3.33)

Define J : L2 → L2 as J f (z) = f (z). The map J is a unitary operator and J∗ = J . Let
A2(D)= { f : f ∈A2(D)}. Define hϕ : A2(D)→ A2(D) such that hϕ f = P(ϕ f ), where P is
the orthogonal projection from L2 onto A2(D). The operator hϕ is called the little Hankel
operator on A2(D). The following holds.

Corollary 3.3. If ϕ∈ L∞(D), f ∈ A2(D), g ∈ A2(D), then

∫

D

〈
UahϕUa f ,g

〉
dA(a)= 〈hϕ̂ f ,g

〉
. (3.34)

Proof. From the above discussion it follows that for f ∈A2(D), g ∈ A2(D),

∫

D

〈
ϕUa f ,Uag

〉
dA(a)= 〈ϕ̂ f ,g〉. (3.35)

That is,

∫

D

〈
ϕUaP f ,UaPg

〉
dA(a)= 〈ϕ̂P f ,Pg〉. (3.36)

Notice that P = JPJ . Therefore,

∫

D

〈
ϕUaP f ,UaJPJg

〉
dA(a)= 〈ϕ̂P f , JPJg〉. (3.37)

Since UaP = PUa, we obtain

∫

D

〈
UaJPJϕPUa f ,g

〉
dA(a)=

∫

D

〈
ϕUaP f , JPJUag

〉
dA(a)= 〈JPJϕ̂P f ,g〉. (3.38)

Thus
∫

D

〈
UahϕUa f ,g

〉
dA(a)= 〈hϕ̂ f ,g

〉
. (3.39)

�
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Corollary 3.4. If ϕ∈ L∞(D,dA), then there exists a constant C such that

1
3C

∥
∥hϕ̂

∥
∥≤ Supz∈D

∣
∣
∣
∣

∫

D

〈
UahϕUakz,kz

〉
dA(a)

∣
∣
∣
∣≤

C

3

∥
∥hϕ̂

∥
∥. (3.40)

Proof. From a result in [3], it follows that there exists a constant C such that

1
3C

∥
∥hϕ̂

∥
∥≤ Supz∈D

∣
∣〈hϕ̂kz,kz

〉∣∣≤ C

3

∥
∥hϕ̂

∥
∥. (3.41)

By Corollary 3.3,

Supz∈D
∣
∣〈hϕ̂kz,kz

〉∣∣= Supz∈D

∣
∣
∣
∣

∫

D

〈
UahϕUakz,kz

〉
dA(a)

∣
∣
∣
∣, (3.42)

and the result follows. �

Let h∞(D) be the space of bounded harmonic functions on D. Then h∞(D)⊂ L∞(D).
It is well known (see [9]) that every harmonic function on D is the sum of an analytic
function and the conjugate of another analytic function. Hence if f ∈ h∞(D), then f (z)=
∑∞

n=0 anz
n +
∑∞

n=0 bnz
n. It is not so difficult to verify (see [3]) that in this case f̂ (z) =

a0− (a1/2) z− (b1/2) z. Thus if f ∈ h∞(D), then f̂ = f if and only if f is a constant.

Corollary 3.5. If f ∈ h∞(D), then CaT f = Tf Ca for all a∈D if and only if f̂ = f . That
is, if and only if f is a constant.

Proof. If f ∈ h∞(D), then Tf is bounded linear operator on A2(D). Further, for z ∈D,

T̃ f (z)= 〈Tf kz,kz
〉= 〈 f kz,kz

〉= f̃ (z)= f (z). (3.43)

This is so because by the invariant mean value property [3], f ∈ h∞(D) implies f̃ = f .
Hence

T̃ f
(
ϕa(z)

)= f
(
ϕa(z)

)
(3.44)

for all a,z ∈D. By Theorem 3.1, CaT f = Tf Ca for all a∈D if and only if for all z ∈D,

∫

D
T̃ f
(
ϕa(z)

)
dA(a)= T̃ f (z). (3.45)

That is, if and only if for all z ∈D,

∫

D
f
(
ϕa(z)

)
dA(a)= f (z). (3.46)

HenceCaT f = Tf Ca for all a∈D if and only if f̂ = f . That is, if and only if f is a constant.
�
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