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An element a in a ring R is called left morphic if there exists b ∈ R such that 1R(a)= Rb
and 1R(b)= Ra. R is called left morphic if every element ofR is left morphic. An element a
in a ring R is called left π-morphic (resp., left G-morphic) if there exists a positive integer
n such that an (resp., an with an �= 0) is left morphic. R is called left π-morphic (resp., left
G-morphic) if every element of R is left π-morphic (resp., left G-morphic). In this paper,
the G-morphic problem and π-morphic problem of group rings are studied.
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1. Introduction

An element a in a ring R is said to be left morphic if R/Ra∼= lR(a), which is equivalent to
that there exists b ∈ R such that lR(a) = Rb and lR(b) = Ra, where lR(a) denotes the left
annihilator of a in R. R is called left morphic if every element of R is left morphic. Right
morphic elements and rings are defined analogously. Nicholson and Sánchez Campos
introduced and investigated left morphic rings in [1] (see also [2–4] for more detailed
discussion).

Left morphic rings are generalized to left π-morphic rings and left G-morphic rings by
Huang and Chen [5]. An element a ∈ R is called left π-morphic (resp., left G-morphic)
if there exists a positive integer n such that an (resp., an with an �= 0) is left morphic. R
is called left π-morphic (resp., left G-morphic) if every element of R is left π-morphic
(resp., left G-morphic). R is called π-morphic (resp., G-morphic) if it is left and right π-
morphic (resp., left and right G-morphic). Moreover, they find examples which show that
left π-morphic rings are proper generalizations of left morphic rings, and left G-morphic
elements need not be left morphic.

Example 1.1 [5, Example 2.13]. Let R = F[x,σ]/(x2) = {a+ xb | a,b ∈ F}, where F is a
field with an isomorphism σ from F to a subfield F �= F and cx = xσ(c) for all c ∈ F.
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S = R⊕R, then λ = (1,xb) ∈ S (where b ∈ F, but b �∈ F) is left G-morphic, but not left
morphic.

The question of when a group ring is morphic was studied by Chen et al. [6]. In this
paper, we investigate when a group ring is π-morphic (resp., G-morphic). In Section 2,
several general results about π-morphic and G-morphic group rings are obtained. In
Section 3, necessary and sufficient conditions for RG to be left G-morphic are also given,
where R = Zn, G is a finite Abelian group. In particular, we prove that if G is a finite
Abelian group or a finite p-group, r � 1, then ZprG is π-morphic.

All rings in this paper are associative rings with identity. Let R be a ring and let G be
a group. We denote by RG the group ring of G over R. The following concepts in group
rings play very important roles in our discussion and will be used frequently later. For any
element u = Σaigi ∈ RG, where ai ∈ R, gi ∈ G, the augmentation of u, denoted by ε(u),
is defined by ε(u)= Σai. The augmentation ideal of RG, denoted by Δ(G), is defined by
Δ(G)= {u∈ RG | ε(u)= 0}. If G is a cyclic group generated by g, then Δ(G)= RG(1− g).
For any finite subgroup H of G, ̂H is defined to be ̂H =∑∀h∈H h. When H is a normal
subgroup, ̂H is a central element in RG. For any group element g ∈ G of finite order,
define ĝ by ĝ = 1 + g + ···+ go(g)−1, where o(g) is the order of g. It is not hard to verify
that if o(g) <∞, then lRG(1− g)= RGĝ, and if |G| <∞, then lRG( ̂G)= Δ(G). So if G is a
finite cyclic group, then ̂G is always left morphic in RG. For more background knowledge
about group rings, we refer readers to [7, 8].

2. General results

In this section, several general results about π-morphic and G-morphic group rings are
given.

Theorem 2.1. Let R be a ring and let G be a locally finite group. If RG is left π-morphic
(resp., left G-morphic), then R is left π-morphic (resp., left G-morphic).

Proof. For any a∈ R, since a is left π-morphic (resp., left G-morphic) in RG, there exist a
positive integer n (resp., an �= 0) and u∈ RG such that lRG(an)= RGu and lRG(u)= RGan.
Let u=∑n

i=1 aigi and H = 〈g1, . . . ,gn〉. Since G is a locally finite group, H is a finite group.
Since anu= uan = 0, we have anε(u)= ε(anu)= 0 and ε(u)an = ε(uan)= 0, where ε(u) is
the augmentation of u. Thus Rb⊆ lR(an) and Ran ⊆ lR(b), where b = ε(u). Next we show
that in fact, Rb = lR(an) and Ran = lR(b). So a is left π-morphic (resp., left G-morphic)
in R, and thus R is left π-morphic (resp., left G-morphic).

Let x ∈ lR(an). Then x ∈ lRG(an)= RGu, so x = vu, v ∈ RG. Taking the augmentation
on both sides, we obtain x = ε(x)= ε(vu)= ε(v)ε(u)= ε(v)b ∈ Rb. Therefore, lR(an)⊆
Rb, and thus lR(an) = Rb. Next, let y ∈ lR(b). Then yb = 0. Let ̂H =∑h∈H h. Since u ∈
RH , we have ̂Hu= ε(u) ̂H = b ̂H . Thus y ̂Hu= yb ̂H = 0, so y ̂H ∈ lRG(u)= RGan. Hence
y ̂H = Σaggan. Comparing the coefficients of the identity on both sides, we obtain that
y = aean ∈ Ran, and so lR(b) ⊆ Ran. This implies that lR(b) = Ran. Therefore, a is left
π-morphic (resp., left G-morphic) and so is R. �

Corollary 2.2. If G=H ×K is a locally finite group and RG is left π-morphic (resp., left
G-morphic), then RH and RK are both left π-morphic (resp., left G-morphic).
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Proof. Note that RG= R(H ×K)∼= (RH)K . By Theorem 2.1, RH is left π-morphic (resp.,
left G-morphic). Similarly RK is left π-morphic (resp., left G-morphic). �

Theorem 2.3. Let G be a locally finite group. If RH is left π-morphic (resp., left G-morphic)
for every finite subgroup H of G, then RG is left π-morphic (resp., left G-morphic).

Proof. Let u=∑n
i=1 aigi. Now we show that u is left π-morphic (resp., left G-morphic) in

RG. Denote H = 〈g1, . . . ,gn〉. Since G is locally finite, H is a finite group. By the assump-
tion, RH is left π-morphic (resp., left G-morphic). Since u ∈ RH , there exist a positive
integer n (resp., un �= 0) and c ∈ RH such that lRH(un)= RHc and lRH(c)= RHun. Since
unc = cun = 0, we have RGc ⊆ lRG(un) and RGun ⊆ lRG(c). We next show that the other
inclusions also hold.

Let v ∈ lRG(un) and let {1,g′1,g′2, . . .} be a left coset representative of H in G. That is,
G = H ∪ g′1H ∪ g′2H ∪ ··· . Now v can be written as v =∑g′i bi, where bi ∈ RH . Since
0= vun =∑g′i (biun) and biun ∈ RH , we obtain that biun = 0 for all i. So bi ∈ lRH(un)=
RHc, and thus bi = cic for some ci ∈ RH . It follows that v =∑g′i bi =

∑

(g′i ci)c ∈ RGc,
so lRG(un) ⊆ RGc, and thus lRG(un) = RGc. Similarly, we can prove that lRG(c) = RGun.
This shows that u is left π-morphic (resp., left G-morphic) in RG, and therefore RG is left
π-morphic (resp., left G-morphic). �

Recall that a group G is called a semidirect product of H by K , denoted by G=H �K ,
if H , K are subgroups of G such that (1) H �G; (2) HK =G; (3) H ∩K = 1.

Theorem 2.4. Let G = H �K , |H| <∞. If RG is left π-morphic (resp., left G-morphic),
then RK is also left π-morphic (resp., left G-morphic).

Proof. We show that for any a ∈ RK , a is left π-morphic (resp., left G-morphic) in RK .
Since a is left π-morphic (resp., left G-morphic) in RG, there exist a positive integer n
(resp., an �= 0) and u ∈ RG such that lRG(an) = RGu and lRG(u) = RGan. Let u =∑uiki,
where ui ∈ RH , ki ∈ K (since G=H �K , the expression of u is unique) and an =∑ajkj
where aj ∈ R. Denote b =∑ε(ui)ki, so b ∈ RK . We will show that lRK (an) = RKb and
lRK (b)= RKan. So a is left π-morphic (resp., left G-morphic) in RK , and thus RK is left
π-morphic (resp., left G-morphic).

Let ω : G→ G/H be the natural group homomorphism. We extend ω to a ring ho-
momorphism (still denote it by ω). That is, ω : RG→ R(G/H) defined by ω(

∑

aigi) =
∑

aiω(gi). Clearly, ker(ω)∩RK = {0} and ω(v)= ε(v) for all v ∈ RH . Since 0= anu, we
have 0 = ω(an)ω(u) = ω(an)ω(

∑

uiki) = ω(an)
∑

ε(ui)ω(ki) = ω(an
∑

ε(ui)ki) = ω(anb).
Since anb ∈ RK , we conclude that anb = 0. Similarly, ban = 0. This shows that RKb ⊆
lRK (an) and RKan ⊆ lRK (b). We next show that the other inclusions also hold.

Let x ∈ lRK (an). Then x ∈ lRG(an)= RGu. So x = vu. Let v =∑vjkj and c =∑ε(vj)kj ,
where vj ∈ RH , kj ∈ K . Then ω(x) = ω(v)ω(u) = ∑ε(vj)ω(kj)

∑

ε(ui)ω(ki) = ω(cb).
Thus x − cb ∈ kerω ∩ RK = {0}. Therefore x = cb ∈ RKb. This shows that lRK (an) ⊆
RKb, and thus lRK (an)= RKb.

Let y ∈ lRK (b). Then yb = 0. Since H �G, ̂H =∑h∈H h is central in RG. Now we
have y ̂Hu= y ̂H

∑

uiki = y
∑

̂Hε(ui)ki = y ̂Hb = yb ̂H = 0. So y ̂H ∈ lRG(u)= RGan. Thus
̂Hy = y ̂H =wan, where w =∑hjuj , hj ∈H , uj ∈ RK . Hence
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∑

hj y = ̂Hy =wan =
∑

hj
(

uja
n
)

. (2.1)

Since H ∩K = {1}, the expression of wan is unique. Comparing the coefficients of the
identity h0 = e in (2.1), we obtain y = u0an ∈ RKan. Thus lRK (b)⊆ RKan, and therefore
lRK (b)= RKan. �

From now on, we always assume that G is a finite group.

Proposition 2.5. Assume that p is a prime number and r > 1. If ZprG is left G-morphic,
then p does not divide |G|.
Proof. Assume that p| |G|. Then there exists g ∈ G such that o(g) = p. Let u = pr−1

̂G,
where ̂G=∑g∈G g. Since u is left G-morphic in ZprG, there exists a positive integer n such
that un is left morphic in ZprG. Since u2 = 0, u is left morphic in ZprG. By Chen et al. [6,
Theorem 2.7], this is impossible. So p � |G|. �

Theorem 2.6. Assume that p is a prime number and G is a finite p-group. ZprG is left
G-morphic if and only if G is a cyclic group and r = 1.

Proof. “⇒” It follows from Proposition 2.5 that r = 1. Since R = Zp is a field and G is a
finite p-group, RG is a local ring by Nicholson theorem [9]. Because RG is left Artinian,
the Jacobson radical J(RG) is nilpotent. Since RG is left G-morphic, RG is left special by
Huang and Chen [5, Theorem 2.8]. So it is left morphic. According to Chen et al. [6,
Theorem 2.9], G is a cyclic group.

“⇐” If G= 〈g〉, clearly ZpG is a special ring. Therefore it is left G-morphic. �

Theorem 2.7. Assume that p is a prime number and G is a finite p-group, r � 1, then ZprG
is π-morphic.

Proof. Since R = Zpr is local and G is a finite p-group, RG is a local ring by Nicholson’S
theorem [9]. Because R is Artinian and G is a finite group, RG is Artinian by Connell
[10, Theorem 1], and so the Jacobson radical J(RG) is nilpotent. According to Huang and
Chen [5, Lemma 2.10], every element of RG is either nilpotent or invertible. So RG is
π-morphic. �

Remark 2.8. By Theorem 2.6, when r > 1 and G is a finite p-group, ZprG is not left G-
morphic, but by the above theorem, it is π-morphic.

3. Abelian group rings

In this section, we discuss when an Abelian group ring RG is left π-morphic (resp., left
G-morphic).

Lemma 3.1 [6, Lemma 3.1]. (R1⊕R2⊕···⊕Rs)G∼=⊕s
i=1RiG.

Lemma 3.2. If R = R1 ⊕R2 ⊕···⊕Rs is left π-morphic (resp., left G-morphic), then each
Ri is left π-morphic (resp., left G-morphic).

Proof. For any ri ∈ Ri, r = (0, . . . ,0,ri,0, . . . ,0) ∈ R. Since R is left π-morphic (resp., left
G-morphic), there exist u = (u1, . . . ,ui−1,ui, . . . ,us) ∈ R, where uk ∈ Rk, k = 1, . . . ,s, and
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a positive integer n (resp., rn �= 0) such that lR(u) = Rrn and lR(rn) = Ru, so we have
lRi(ui) = Rir

n
i and lRi(r

n
i ) = Riui. Then ri is left π-morphic (resp., left G-morphic) in Ri,

and thus Ri is left π-morphic (resp., left G-morphic). �

Lemma 3.3. Let D be a division ring and s� 2. The the following statements are equivalent:
(1) D(Cm1 ×···×Cms) is left G-morphic;
(2) D(Cmi ×Cmj ) is left G-morphic for any 1 � i �= j � s;
(3) at most one of m1,m2, . . . ,ms is not invertible in D.

Proof. We will prove (3)⇒(1)⇒(2)⇒(3).
“(3)⇒(1)” We may assume that m1, . . . ,ms−1 are invertible in D. So |Cm1 ×···×Cms−1|

= m1 × ··· ×ms−1 is invertible in D. By Maschke’s theorem, D(Cm1 × ··· × Cms−1 ) is
semisimple. It follows from [6, Lemma 3.5] that D(Cm1 × ···×Cms−1 ×Cms) is strongly
morphic, so it is G-morphic and (2.1) holds.

“(1)⇒(2)” Note that D(Cm1 ×···×Cms)∼= D(Cmi ×Cmj )(
∏

k �=i, j Cmk ) for any 1 � i �=
j � s. It follows from Theorem 2.1 that D(Cmi ×Cmj ) is left G-morphic.

“(2)⇒(3)” We prove it by contradiction. We may assume that m1, m2 are not invertible
in D. Let char(D) = p > 0. By assumption, p divides both m1 and m2. So we have mi =
pri ti, where (ti, p)= 1, ri � 1, i= 1,2.

Note that Cm1 ×Cm2
∼= (Cpr1 ×Cpr2 )× (Ct1 ×Ct2 ), so D(Cm1 ×Cm2 )∼=D(Cpr1 ×Cpr2 )×

(Ct1 ×Ct2 ). Since D(Cm1 ×Cm2 ) is left G-morphic, D(Cpr1 ×Cpr2 ) is left G-morphic by
Theorem 2.1. Because Cpr1 ×Cpr2 is a finite p-group, D(Cpr1 ×Cpr2 ) is a local Artinian
ring, so the Jacobson radical of this group ring is nilpotent. This ring is a left special ring,
and then it is left morphic by Huang and chen [5, Theorem 2.8]. Thus Cpr1 ×Cpr2 must
be cyclic, a contradiction. �

Proposition 3.4. Let G be a finite Abelian group and r > 1. Then ZprG is G-morphic if and
only if (p,|G|)= 1.

Proof. “⇐” By Chen et al. [6, Corollary 3.13], if (p,|G|) = 1, ZprG is morphic, so it is
G-morphic.

“⇒” By Proposition 2.5, if r >1 and ZprG isG-morphic, then p � |G|, that is, (p,|G|)= 1.
�

Theorem 3.5. Let G be a finite Abelian group. ZnG is G-morphic if and only if for each
prime number p if p | (n,|G|), then p2

� n and the Sylow p-subgroup Gp of G is cyclic.

Proof. Let G = Cq
t1
1
× ··· ×Cqtmm , ti � 1 be a finite Abelian group and let α = q1 ···qm.

Suppose that ZnG is G-morphic. Let (n,|G|)= pr1
1 ··· prss . If ri > 1 for some i (i.e., p2

i | n),
then n = psii n1, where si � ri > 1 and (n1, pi) = 1. Thus ZnG ∼= Zp

si
i
G⊕ Zn1G. Since ZnG

is G-morphic, Zp
si
i
G is also G-morphic by Lemma 3.2. By Proposition 3.4, (pi,|G|) = 1.

However, pi | (n,|G|). This leads to a contradiction. Thus ri � 1 for all i. Next we show
that p2

i � α. Otherwise, assume that p2
i | α. There exists k �= l such that qk = ql = pi. Hence

G∼= C
q
tk
k
×C

q
tl
l
×H . Since pi | n and p2

i � n, we have n= pin1 with (pi,n1)= 1. So ZnG∼=
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ZpiG⊕Zn1G. By Lemma 3.2, ZpiG is G-morphic. Since ZpiG∼= Zpi(Cq
tk
k
×C

q
tl
l
)H , we con-

clude that Zpi(Cq
tk
k
×C

q
tl
l
) = Zpi(Cp

tk
i
×C

p
tl
i
) is G-morphic. This contradicts the result of

Theorem 2.6. Therefore, p2
i � α, and thus Gpi is cyclic. �

Remark 3.6. According to Proposition 3.4 and Theorem 3.5, the following group rings
are not G-morphic:

Z4C2, Z4C4, Z4(C2×C2), Z2
(

C2×C2
)

, Z2
(

C2×C4
)

. (3.1)

But by Theorem 2.7, the above group rings are all π-morphic.

Lemma 3.7. Let R be a ring and let G be a group. If a∈ R is left morphic in R, then a is left
morphic in RG.

Proof. If a ∈ R is left morphic, there exists b ∈ R such that lR(a) = Rb and lR(b) = Ra.
Since ba= ab = 0, we have RGb ⊆ lRG(a) and RGa⊆ lRG(b). We next show that the other
inclusions also hold.

Let x ∈ lRG(a), x =∑r jg j , where r j ∈ R, gj ∈ G. Then
∑

r jg ja= 0 or
∑

(r ja)gj = 0, so
all r ja= 0. Thus r j ∈ Rb and r j = r′jb, r′j ∈ R. Therefore, x =∑(r′jb)gj =

∑

r′j g jb ∈ RGb.
This shows that lRG(a)⊆ RGb, and thus lRG(a)= RGb.

Using a similar proof, we can show that lRG(b)⊆ RGa, and thus lRG(b)= RGa. So a is
left morphic in RG. �

Recall that if n= pun1, (n1, p)= 1, we denote that pu‖n.

Lemma 3.8. Let p be a prime number, r � 1, pr‖m, and 1 � n�m.
(1) If (p,n)= 1, then pr | Cn

m.
(2) If pt‖n, r � t, then pr−t | Cn

m.

Proof. Let m=m1pr , (m1, p)= 1. Then

Cn
m =

m(m− 1)···(m− (n− 1)
)

1···(n− 1)n
= m

n
Cn−1
m−1 =

m1pr

n
Cn−1
m−1. (3.2)

(1) If (p,n)= 1, then (pr ,n)= 1, so pr | Cn
m.

(2) If pt‖n, t � r, then n= n1pt, where (p,n1)= 1, so

Cn
m =

m1pr

n
Cn−1
m−1 =

m1pr

n1pt
Cn−1
m−1 =

m1pr−t

n1
Cn−1
m−1. (3.3)

We have pr−t | Cn
mn1. Since (p,n1)= 1, (pr−t,n1)= 1, so pr−t | Cn

m. �

Proposition 3.9. Let p be a prime number and let G be a finite Abelian group. If for some
r, t � 1, x ∈ Zpr (Cpt ×G)= Zpr (〈g〉×G), then xp

r ∈ Zpr (Cpt−1 ×G)= Zpr (〈g p〉×G).
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Proof. For x ∈ Zpr (Cpt × G) = (ZprG)Cpt = (ZprG)〈g〉, x = r0 + r1g + ··· + rpt−1g p
t−1,

where ri ∈ ZprG. Since

(

x1 + x2 + ···+ xs
)k

=
k
∑

k1=0

k1
∑

k2=0

···
ks−2
∑

ks−1=0

Ck1
k C

k2
k1
···Cks−1

ks−2
xk−k1

1 xk1−k2
2 ···xks−2−ks−1

s−1 xks−1
s ,

xp
r = (r0 + r1g + ···+ rpt−1g

pt−1)p
r

=
pr
∑

n1=0

n1
∑

n2=0

···
npt−2
∑

npt−1=0

Cn1
pr C

n2
n1
···Cnpt−1

npt−2 r
pr−n1

0

(

r1g
)n1−n2 ···(rpt−1g

pt−1)npt−1 .

(3.4)

�

Claim 3.10. Let ni be the first number in n1, . . . ,npt−1 such that ni is not divisible by p.
Then pr | Cn1

pr Cn2
n1
···Cni

ni−1 .

Proof. If i= 1, then (n1, p)= 1, and by Lemma 3.8, pr | Cn1
pr .

Now we set i > 1. Let nk = n′k p
uk , 1 � k � i− 1, where (n′k, p)= 1. SinceCnk

nk−1=Cnk−1−nk
nk−1 ,

we can assume that uk � uk−1. By Lemma 3.8, we have puk−1−uk | Cnk
nk−1 , 1 � k � i− 1, and

pui−1 | Cni
ni−1 because (p,ni)= 1. So

p(r−u1)+(u1−u2)+···+(ui−2−ui−1)+ui−1 | Cn1
pr C

n2
n1
···Cni

ni−1
. (3.5)

Hence, pr | Cn1
pr Cn2

n1
···Cni

ni−1 .
By the above claim, if there exists ni such that p � ni, then Cn1

pr Cn2
n1
···Cni

ni−1 = 0 in Zpr .
So assume that p | nj , j = 1, . . . , pt − 1, and then we have

xp
r =

∑

p|n1,0�n1�pr

∑

p|n2,0�n2�n1

···
∑

p|npt−1,0�npt−1�npt−2

×Cn1
pr C

n2
n1
···Cnpt−1

npt−2 r
pr−n1

0

(

r1g
)n1−n2 ···(rpt−1g

pt−1)npt−1

=
∑

ci
(

g p
)i ∈ (ZprG

)〈

g p
〉= (ZprG

)

Cpt−1 .

(3.6)

�

Theorem 3.11. If p is a prime number, r � 1, and G is a finite Abelian group, then ZprG is
π-morphic.

Proof
Case 1. If (p,|G|)= 1, then (pr ,|G|)= 1. By Chen et al. [6, Corollary 3.13], ZprG is mor-
phic, so ZprG is π-morphic.
Case 2. If p | |G|, then G= Cpt1 ×···×Cpts ×H , where (p,|H|)= 1. Now if x ∈ ZprG=
Zpr (Cpt2 ×···×Cpts ×H)Cpt1 , then xp

r ∈ Zpr (Cpt2 ×···×Cpts ×H)Cpt1−1 by Proposition
3.9. So we have xk1 ∈ Zpr (Cpt2 ×···×Cpts ×H) for some k1. Continuing the process, we
get xn ∈ ZprH for some n. By Chen et al. [6, Corollary 3.13], ZprH is morphic. So xn is
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morphic in ZprH . Thus xn is morphic in ZprG by Lemma 3.7. Hence x is π-morphic in
ZprG. �
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