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Two conditional expectations in unbounded operator algebras (O∗-algebras) are dis-
cussed. One is a vector conditional expectation defined by a linear map of an O∗-algebra
into the Hilbert space on which the O∗-algebra acts. This has the usual properties of
conditional expectations. This was defined by Gudder and Hudson. Another is an un-
bounded conditional expectation which is a positive linear map � of an O∗-algebra �
onto a given O∗-subalgebra � of �. Here the domain D(�) of � does not equal to � in
general, and so such a conditional expectation is called unbounded.
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1. Introduction

In probability theory, conditional expectations play a fundamental role. A noncommuta-
tive analogue of conditional expectations in von Neumann algebras has been studied in
[2–4]. A typical feature of probability in von Neumann algebras is that the observables
permitted are usually bounded and some finiteness is imposed. But, unbounded observ-
ables occur naturally in quantum mechanics and quantum probability theory [1, 5–8]
and so it is natural to consider conditional expectations in algebras of unbounded ob-
servables (O∗-algebras). The first study of conditional expectations in O∗-algebras was
done by Gudder and Hudson [1]. Let � be an O∗-algebra on a dense subspace � in a
Hilbert space � with a strongly cyclic and separating vector ξ0 and � an O∗-subalgebra
of �. These notions are defined in Section 2. Gudder and Hudson have defined a condi-
tional expectation given by (�,ξ0) by the map A �→ P�Aξ0 of � into the closed subspace
�� ≡�ξ0 of �, which has the usual properties of a conditional expectation, where P�

is the projection of � onto ��. We call this the vector conditional expectation given by
(�,ξ0). On the other hand, it is natural to consider when a conditional expectation of
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the O∗-algebra � onto the O∗-subalgebra � exists. Such a conditional expectation does
not necessarily exist even for von Neumann algebras. In fact, Takesaki [2] has shown that
there exists a conditional expectation of the von Neumann algebra � onto the von Neu-
mann subalgebra � if and only if Δit

ξ0
�Δ−itξ0

=� for all t ∈ R, where Δξ0 is the modular
operator of the left Hilbert algebra �ξ0. Here we consider a map �(· |�) : A→ P�A��ξ0

of � into the partial O∗-algebra �†(�ξ0,��). We will show that �(· |�) has proper-
ties similar to those of conditional expectations, so it will be called a weak conditional-
expectation of � with respect to (�,ξ0). Unfortunately, the range �(���) of the weak
conditional-expectation �(· |�) is not necessarily contained in �, and so we define an
unbounded conditional-expectation � of � onto � with respect to ξ0 as follows: � is a
map of � onto � satisfying

(i) the domain D(�) of � is a †-invariant subspace of � containing � such that
�D(�)⊂D(�);

(ii) �(A)† =�(A†), for all A∈D(�) and �(X)= X , for all X ∈�;
(iii) �(AX)=�(A)X and �(XA)= X�(A), for all A∈D(�), for all X ∈�;
(iv) ωξ0 (�(A))= ωξ0 (A), for all A∈D(�),

where ωξ0 is a positive linear functional on � defined by ωξ0 (A)= (Aξ0 | ξ0), A∈�.
By restriction of the weak conditional-expectation �(· |�), we will show that there

exists a maximal unbounded conditional expectation �� of � onto � with respect to
ξ0. Furthermore, we will investigate unbounded conditional-expectations in case that �
and � are generalized von Neumann algebras which are unbounded generalization of von
Neumann algebras and that the von Neumann algebra (�′

w)′ (the usual commutant of the
weak commutant �′

w of �) satisfies the Takesaki condition. As an application of vector
conditional expectations we will establish the existence of coarse graining for absolutely
continuous positive linear functionals.

2. Preliminaries

In this section we introduce the basic definitions and properties of (partial) O∗-algebras.
We refer to [6–9] for O∗-algebras and to [10] for partial O∗-algebras.

Let � be a Hilbert space with inner product (· | ·) and � a dense subspace of �. We
denote by �(�,�) the set of all linear operators X in � such that �(X) (the domain of
X) =�, and

�†(�,�)= {X ∈�(�,�); �
(
X∗
)⊃�

}
,

�†(�)= {X ∈�†(�,�); X�⊂�, X∗�⊂�
}
.

(2.1)

Then �(�,�) is a vector space with the usual operations X +Y and λX , and �†(�,�)
is equipped with the following operations and involution:

(i) the sum X +Y ;
(ii) the scalar multiplication λX ;

(iii) the involution X �→ X† ≡ X∗��, that is, (X + λY)† = X† + λY†, X†† = X ;
(iv) the weak partial multiplication X�Y = X†∗Y , defined whenever X is a left mul-

tiplier of Y , (X ∈ Lw(Y) or Y ∈ Rw(X)), that is, if and only if Y�⊂�(X†∗) and
X†�⊂�(Y∗).
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Then �†(�,�) is a partial ∗-algebra, that is, the following hold:
(i) X ∈ Lw(Y) if and only if Y† ∈ Lw(X†) and then (X�Y)† = Y†�X†;

(ii) ifX ∈ Lw(Y) andX ∈ Lw(Z), thenX ∈ Lw(λY +μZ) for all λ,μ∈ C andX�(λY +
μZ)= λ(X�Y) +μ(X�Z).

�†(�) is a ∗-algebra with the usual multiplication XY (which coincides with the weak
partial multiplication X�Y) and the involutionX �→ X†. A partial∗-subalgebra of �†(�,
�) is called a partial O∗-algebra on �, and a ∗-subalgebra of �†(�) is called an O∗-
algebra on �. Here we assume that a (partial) O∗-algebra contains the identity operator I .

In analogy with the notion of a closed symmetric (selfadjoint) operator, we define the
notion of a closed O∗-algebra (a selfadjoint O∗-algebra). Let � be an O∗-algebra on �.
We define a natural graph topology on �. This topology t� is a locally convex topology
defined by a family {‖ · ‖X ; X ∈�} of seminorms ‖ξ‖X ≡ ‖ξ‖ + ‖Xξ‖, (ξ ∈ �), and
it is called the graph (or induced) topology on �. If the locally convex space �[t�] is

complete, then � is said to be closed. We denote by �̃(�) the completion of the locally
convex space �[t�] and put

X̃ = X��̃(�), X ∈�;

�̃ = {X̃ ; X ∈�}.
(2.2)

Then �̃ is a closed O∗-algebra on �̃(�) in � which is the smallest closed extension of

�, and �̃(�)≡⋂X∈� �(X). �̃ is called the closure of �.
We next define the notion of selfadjointness of �. If �=�∗(�)≡⋂X∈� �(X∗), then

� is said to be selfadjoint. If �̃(�)=�∗(�), then � is said to be essentially selfadjoint.
It is clear that

�⊂ �̃(�)⊂�∗(�),

X ⊂ X̃ ⊂ X∗, ∀X ∈�.
(2.3)

We define commutants and bicommutants of �. The weak commutant �′
w of � is de-

fined by

�′
w =

{
C ∈�(�); (CXξ | η)= (Cξ | X†η), ∀X ∈�, ∀ξ,η ∈�

}
, (2.4)

where �(�) is a ∗-algebra of all bounded linear operators on �. Then �′
w is a weakly

closed ∗-invariant subspace of �(�) such that (�̃)′w =�′
w. If �′

w� ⊂�, then �′
w is a

von Neumann algebra; in particular, if � is selfadjoint, then �′
w�⊂�. The unbounded

commutants and unbounded bicommutants of � are defined by

�′
δ =

{
S∈�(�,�); (SXξ | η)= (Sξ | X†η), ∀X ∈�, ∀ξ,η ∈�

}
;

�′
σ =�′

δ ∩�†(�,�);

�′
c =�′

σ ∩�†(�);

�′′
wσ =

{
X ∈�†(�,�); (CXξ | η)= (Cξ | X†η), ∀C ∈�′

w, ∀ξ,η ∈�
}

;

�′′
wc =�′′

wσ ∩�†(�).

(2.5)
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Then the following hold.
(i) �′

δ is a subspace of �(�,�).
(ii) �′

σ is a †-invariant subspace of �†(�,�) and (�′
σ)b ≡ {S∈�′

σ ; S∈�(�)} =
�′

w��.
(iii) �′

c is a subalgebra of �†(�).
(iv) �′′

wσ is a †-invariant τs∗-closed subspace of �†(�,�) containing �, where the
strong∗ topology τs∗ is defined by the family {p∗ξ (·); ξ ∈�} of seminorms

p∗ξ (X)≡ ‖Xξ‖+
∥
∥X†ξ

∥
∥, X ∈�†(�,�). (2.6)

(iiv) �′′
wc is a τs∗-closed O∗-algebra on � such that � ⊂�′′

wc and (�′′
wc)′w =�′

w.
(iiiv) If �′

w�⊂�, then �′′
wσ is a partial O∗-algebra on � such that

�′′
wσ =

{
X ∈�†(�,�); X is affiliated with

(
�′

w

)′}

= (�′
w

)′��
τs∗ (

the τs∗-closure of
(
�′

w

)′�� in �†(�,�)
)
,

(2.7)

and �′′
wc is an O∗-algebra on � such that

�′′
wc =

{
X ∈�†(�); X is affiliated with

(
�′

w

)′}

= (�′
w

)′��
τs∗ ∩�†(�).

(2.8)

We introduce the notions of generalized von Neumann algebras and extended W∗-
algebras which are unbounded generalizations of von Neumann algebras. If �′

w� ⊂�
and � =�′′

wc, then � is said to be a generalized von Neumann algebra (or a GW∗-algebra)
on �. A closed O∗-algebra � on � is said to be an extended W∗-algebra (simply, an
EW∗-algebra) if (I +X†X)−1 exists in �b ≡ {A∈�; A∈�(�)} for all X ∈� and �b ≡
{A; A∈�b} is a von Neumann algebra on �.

We define the notion of strongly cyclic vectors for a closed O∗-algebra � on � in �.
We denote by 	 the closure of a subset 	 of � with respect to the Hilbert space norm

and denote by M
t� the closure of a subset M of � with respect to the graph topology

t�. Let M be an �-invariant subspace of �. Then ��M ≡ {X�M; X ∈�} is an O∗-

algebra on M and its closure �M(≡ (��M)∼) is a closed O∗-algebra on M
t� in M. If

M is essentially selfadjoint, that is, �M is selfadjoint, then the projection PM of � onto

M belongs to �′
w, PM�∗(�) =M

t� ⊂ � and �M = �PM
≡ {XPM

; X ∈ �}, where
XPM

PMξ = PMXξ for X ∈� and ξ ∈�. A vector ξ0 in � is said to be strongly cyclic if

�ξ0
t� =�, and ξ0 is said to be separating if �′

wξ0 =�.
We define the notions of (unbounded) ∗-representations of ∗-algebras. Let 
 be an

∗-algebra with identity 1. A (∗-)homomorphism π of 
 into an O∗-algebra �†(�) with
π(1) = I is said to be a (∗-)representation of 
. In this case, � and � are denoted, re-
spectively, by �(π) and �π .



Atsushi Inoue et al. 5

Let π1 and π2 be (∗-)representations of 
 on the same Hilbert space. If π1(x)⊂ π2(x)
for each x ∈
, then π2 is said to be an extension of π1 and it is denoted by π1 ⊂ π2. Let π
be a (∗-)representation of 
. We put

�̃(π)=
⋂

x∈


�
(
π(x)

)
, π̃(x)= π(x)��̃(π), x ∈ A. (2.9)

If π = π̃, then π is said to be closed; π̃ is a closed (∗-)representation of 
 which is the
smallest closed extension of π and it is called the closure of π. Let π be a ∗-representation
of 
. We put

�∗(π)=
⋂

x∈


�
(
π(x)∗

)
, π∗(x)= π

(
x∗
)∗��∗(π), x ∈
. (2.10)

Then π∗ is a closed representation of 
 such that π ⊂ π̃ ⊂ π∗ and is called the adjoint of
π. If π = π∗, then π is said to be selfadjoint. We remark that π is closed (resp., selfadjoint)
if and only if the O∗-algebra π(
) is closed (resp., selfadjoint).

3. Vector conditional expectations

Let � be a closed O∗-algebra on � in �, ξ0 ∈� a strongly cyclic and separating vector
for �, and � an O∗-subalgebra of �. Then

�ξ0 ⊂�ξ0
t� ⊂�ξ0

t� ⊂�ξ0

∩
�ξ0

t� =�

⊂�. (3.1)

If � is closed, then �ξ0 ⊂�ξ0
t� ⊂�ξ0

t� ⊂�=�ξ0
t�

. The following is easily shown.

Lemma 3.1. Put

�
(
π�
)=�ξ0,

π�(X)Yξ0 = XYξ0, ∀X ,Y ∈�,

�
(
π�

�

)=�ξ0
t�

,

π�
� (X)ξ = Xξ, ∀X ∈�, ∀ξ ∈�

(
π�

�

)
.

(3.2)

Then π� and π�
� are faithful∗-representations of � in �� ≡�ξ0 such that π� ⊂ π�

� ⊂ π̃�,
and

�
(
π�
)⊂�

(
π�

�

)⊂�
(
π̃�
)
, �∗(π�

)=�∗(π�
�

)
. (3.3)

We denote by P� the projection of � onto �� ≡ �ξ0. Then we have the following
lemma.

Lemma 3.2. P��∗(�) ⊂ �∗(π�) and π∗�(X)P�ξ = P�X†∗ξ, for all X ∈ � and for all
ξ ∈�∗(�).
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Proof. Take arbitrary X ∈� and ξ ∈�∗(�). For any Y ∈�, we have
(
X†Yξ0 | P�ξ

)= (X†Yξ0 | ξ
)= (Yξ0 | X†∗ξ

)= (Yξ0 | P�X
†∗ξ
)
, (3.4)

and so P��∗(�)⊂�∗(π�) and π∗�(X)P�ξ = P�X†∗ξ. �

First we introduce the notion of a vector conditional expectation defined by Gudder
and Hudson [1].

Definition 3.3. A map E of � into �∗(π�) is said to be a vector conditional expectation of
� given by (�,ξ0) if the following hold.

(i) E(XA)= π∗�(X)E(A), for all A∈�, for all X ∈�.
(ii) ωξ0 (A)= (E(A) | ξ0), for all A∈�.

A map E satisfying the conditions of Definition 3.3 was called a conditional expecta-
tion of � given by (�,ξ0) by Gudder and Hudson [1]. They gave the following theorem.
We prove the theorem for the sake of completeness.

Theorem 3.4. A vector conditional expectation E of � given by (�,ξ0) exists uniquely, and

E(A)= P�Aξ0, ∀A∈�. (3.5)

Denote by E(A |�) the unique vector conditional expectation of � given by (�,ξ0), that is,

E(A |�)= P�Aξ0, ∀A∈�. (3.6)

Proof. We put

E(A)= P�Aξ0, A∈�. (3.7)

By Lemma 3.2 E is a map of � into �∗(π�). It is clear that E is linear. For any A∈� and
X ∈� we have, by Lemma 3.2,

E(XA)= P�XAξ0 = π∗�(X)P�Aξ0 = π∗�(X)E(A),

ωξ0 (XA)= (Aξ0 | X†ξ0
)= (P�Aξ0 | X†ξ0

)= (π∗�(X)E(A) | ξ0
)
;

(3.8)

in particular,

ωξ0 (A)= (E(A) | ξ0
)
. (3.9)

Hence E is a vector conditional expectation of � given by (�,ξ0).
We show the uniqueness of vector conditional expectations. Let E′ be any vector con-

ditional expectation of � given by (�,ξ0). For any A∈� and X ∈� we have
(
E′(A) | Xξ0

)= (π∗�
(
X†
)
E′(A) | ξ0

)= (E′(X†A) | ξ0
)= ωξ0

(
X†A

)

= (Aξ0 | Xξ0
)= (P�Aξ0 | Xξ0

)
,

(3.10)

which implies that

E′(A)= P�Aξ0. (3.11)
�
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4. Unbounded conditional expectations for O∗-algebras

We begin with the definition of unbounded conditional expectations of O∗-algebras. In
this section let � be a closed O∗-algebra on � in � with a strongly cyclic and separating
vector ξ0 and � an O∗-subalgebra of �.

Definition 4.1. A map � of � onto � is said to be an unbounded conditional expectation
of � onto � with respect to ξ0 if

(i) the domain D(�) of � is a †-invariant subspace of � containing � such that
�D(�)⊂D(�);

(ii) � is a projection; that is, it is hermitian (�(A)† = �(A†), for all A ∈ D(�)) and
�(X)= X , for all X ∈�;

(iii) � is �-linear, that is,

�(AX)=�(A)X , �(XA)= X�(A), ∀A∈D(�), ∀X ∈�; (4.1)

(iv) ωξ0 (�(A))= ωξ0 (A), for all A∈D(�).
In particular, if D(�)=�, then � is said to be a conditional expectation of � onto �.

For unbounded conditional expectations we have the following lemma.

Lemma 4.2. Let � be an unbounded conditional expectation of � onto � with respect to ξ0.
Then the following statements hold.

(1) �(A)ξ0 = E(A |�), for all A∈D(�).
(2) � is an �-Schwarz map, that is,

�
(
A†
)
�(A)≤�

(
A†A

)
on �

(
π�

�

)
whenever A∈D(�) s.t. A†A∈D(�). (4.2)

Proof. (1) For all A∈D(�) and X ∈� we have
(
�(A)ξ0 | Xξ0

)= (X†�(A)ξ0 | ξ0
)= (�(X†A)ξ0 | ξ0

)

= ωξ0

(
X†A

)= (Aξ0 | Xξ0
)= (P�Aξ0 | Xξ0

)
,

(4.3)

which implies

�(A)ξ0 = P�Aξ0 = E(A |�). (4.4)

(2) Take an arbitrary A∈D(�) s.t. A†A∈D(�). Then we have

(
�
(
A†
)
�(A)Xξ0 | Xξ0

)= ∥∥�(A)Xξ0
∥
∥2 = ∥∥�(AX)ξ0

∥
∥2

= ∥∥P�AXξ0
∥
∥2 ≤ ∥∥AXξ0

∥
∥2 (

by (1)
)
,

(
�
(
A†A

)
Xξ0 | Xξ0

)= (�(X†A†AX)ξ0 | ξ0
)= ωξ0

(
�
(
X†A†AX

))

= ωξ0

(
X†A†AX

)= ∥∥AXξ0
∥
∥2

,

(4.5)

for each X ∈�, which by �(π�
� )=�ξ0

t�
implies that

�
(
A†A

)≤�(A)†�(A) on �
(
π�

�

)
. (4.6)

�
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Let E be the set of all unbounded conditional expectations of � onto � with respect
to ξ0. Then E is an ordered set with the following order ⊂.

�1 ⊂�2 iff D
(
�1
)⊂�

(
�2
)
, �1(A)=�2(A), ∀A∈D

(
�1
)
. (4.7)

In Theorem 4.6 we will show that there exists a maximal unbounded conditional expec-
tation of � onto � with respect to ξ0.

Definition 4.3. A map � of � into the partial O∗-algebra �†(�(π�
� ),��) is said to be a

weak conditional expectation of � with respect to (�,ξ0) if
(i) � is hermitian, that is, �(A)† =�(A†), for all A∈�;

(ii) �(�)�(π�
� )⊂�∗(π�

� ) and

π�
� (X)��(A)=�(XA), ∀X ∈�, ∀A∈�; (4.8)

(iii) ωξ0 (A)= (�(A)ξ0 | ξ0), for all A∈�.

For weak conditional expectations we have the following.

Theorem 4.4. There exists a unique weak conditional-expectation �(· |�) of � with re-
spect to (�,ξ0), and

�(A |�)= P�A��
(
π�

�

)
, ∀A∈�. (4.9)

Proof. We first show the existence: we put �(A | �) = P�A��(π�
� ), A ∈�. It follows

from Lemma 3.2 that for any A ∈�, �(A |�) is a linear map of �(π�
� ) into �∗(π�

� ),
and furthermore

(
�(A |�)ξ | η)= (P�Aξ | η

)= (Aξ | η)= (ξ |A†η)

= (ξ | P�A
†η
)= (ξ |�

(
A† |�

)
η
) (4.10)

for each ξ,η ∈�(π�
� ), which implies that �(A |�)∈�†(�(π�

� ),��) and �(A |�)† =
�(A† |�). Thus �(· |�) satisfies the condition (i) in Definition 4.3. Furthermore, we
show that it satisfies the conditions (ii) and (iii) in Definition 4.3.

(ii) Take arbitrary X ∈ � and A ∈�. Since �(A | �) ∈ �†(�(π�
� ),��) and �(A |

�)�(π�
� ) ⊂ �∗(π�

� ) as shown above, it follows that π�
� (X)��(A | �) is well defined

and
(
π�

� (X)†��(A |�)†
)
ξ = π�

� (X)∗P�A
†ξ = P�X

†A†ξ

=�
(
X†A† |�

)
ξ (by Lemma 3.2)

(4.11)

for each A∈�, X ∈�, and ξ ∈�(π�
� ).

(iii) This follows from the equality

ωξ0 (A)= (Aξ0 | ξ0
)= (P�Aξ0 | ξ0

)= (�(A |�)ξ0 | ξ0
)

(4.12)

for each A∈�.
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We next show the uniqueness: let � be any weak conditional expectation of � with
respect to (�,ξ0). By (i) and (ii) in Definition 4.3 we have

�(A)�π�
� (X)=�(AX), ∀A∈�, ∀X ∈�, (4.13)

which implies

(
�(A)Xξ0 | Yξ0

)= (π�
� (Y)∗�(AX)ξ0 | ξ0

)= (�(Y†AX)ξ0 | ξ0
)= ωξ0

(
Y†AX

)

= (AXξ0 | Yξ0
)= (P�AXξ0 | Yξ0

) (4.14)

for each A∈� and X ,Y ∈�. Hence, we have

�(A)Xξ0 = P�AXξ0, ∀A∈�, ∀X ∈�, (4.15)

which implies

�(A)= P�A��
(
π�

�

)
, ∀A∈�. (4.16)

�

The weak conditional expectation of � with respect to (�,ξ0) has the following prop-
erties.

Proposition 4.5. �(· | �) is a map of � into the partial O∗-algebra �†(�(π�
� ),��)

satisfying
(i) �(A |�)�(π�

� )⊂�∗(π�
� ), for all A∈�;

(ii) �(· |�) is linear;
(iii) �(A |�)† =�(A† |�), for all A∈� �(X |�)= X��(π�

� ), for all X ∈�;
(iv) �(A†A |�)≥ 0, for all A∈�;
(v) �(A |�)†��(A |�)≤�(A†A |�) whenever �(A |�)† ∈ Lw(�(A |�));

(vi) �(A |�)�π�
� (X) and π�

� (X)��(A |�) are well defined for each A∈� and X ∈
�, and

�(A |�)�π�
� (X)=�(AX |�), π�

� (X)��(A |�)=�(XA |�); (4.17)

(vii) ωξ0 (AX)= (�(AX |�)ξ0 | ξ0) for each A∈� and X ∈�.

Proof. The statements (i), (ii), (iii), and (vi) follow from Theorem 4.4.
(iv) This follows from the equality

(
�
(
A†A |�

)
ξ | ξ)= (P�A

†Aξ | ξ)= (A†Aξ | ξ)= ‖Aξ‖2 (4.18)

for each A∈� and ξ ∈�(π�
� ).

(v) Take an arbitrary A∈� s.t. �(A |�)† ∈ Lw(�(A |�)). Then we have

((
�(A |�)†��(A |�)

)
ξ | ξ)

= (�(A |�)∗�(A |�)ξ | ξ)= ∥∥�(A |�)ξ
∥
∥2

= ∥∥P�Aξ
∥
∥2 ≤ ‖Aξ‖2 = (�(A†A |�

)
ξ | ξ) (by (4.18))

(4.19)
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for each ξ ∈�(π�
� ), which implies that

�(A |�)†��(A |�)≤�
(
A†A |�

)
. (4.20)

(vii) This follows from

ωξ0 (AX)= (AXξ0 | ξ0
)= (P�AXξ0 | ξ0

)= (�(AX |�)ξ0 | ξ0
)

(4.21)

for each A∈� and X ∈�. �

Here we put

D
(
��
)= {A∈�; �(A |�)∈ π�

� (�)
}
. (4.22)

Since π�
� is faithful, for any A∈D(��) there exists a unique element XA of � such that

�(A |�)= π�
� (XA). Hence, the map �� from D(��) to � is defined by

��(A)= XA, A∈D
(
��
)
. (4.23)

Then we have the following.

Theorem 4.6. �� is a maximal among unbounded conditional expectations of � onto �
with respect to ξ0.

Proof. We show that D(��) is a †-invariant subspace of � containing � such that
�D(��) ⊂ D(��). In fact, it is clear that D(��) is a subspace of � containing �. By
Proposition 4.5(iii), D(��) is †-invariant, and it follows from Proposition 4.5(vi) that
�(XA |�)= π�

� (X)��(A |�)∈ π�
� (�) for each X ∈� and A∈D(��), which implies

that �D(��)⊂D(��). It is easily shown that �� is a projection. Since

π�
�

(
��(AX)

)= �(AX |�)=�(A |�)�π�
� (X)= π�

�

(
��(A)

)
�π�

� (X)

= π�
�

(
��(A)X

)
, (by Proposition 4.5(vi))

(4.24)

for each A∈D(��) and X ∈�, it follows that ��(AX)=��(A)X . Similarly, ��(XA)=
X��(A). Hence, �� is �-linear. Furthermore, it follows from Proposition 4.5(vii) that
ωξ0 (��(A))= ωξ0 (A) for each A∈D(��). Thus �� is an unbounded conditional expec-
tation of � onto � with respect to ξ0. Finally we show that �� is maximal. Let � be any
unbounded conditional expectation of � onto � with respect to ξ0. Take an arbitrary
A∈D(�). Then it follows from Lemma 4.2(1) that

P�AXξ0 = E(AX |�)=�(A)Xξ0 (4.25)

for each X ∈�, which implies that

P�Aξ =�(A)ξ, ∀ξ ∈�
(
π�

�

)
. (4.26)

Hence, we have

P�A
⌈
�
(
π�

�

)= �(A)
⌈
�
(
π�

�

)∈ π�
� (�), (4.27)

which implies A∈D(��) and ��(A)=�(A). Thus, �⊂��. �
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5. Unbounded conditional expectations for special O∗-algebras

In this section we consider conditional expectations for special O∗-algebras (EW∗-
algebras, generalized von Neumann algebras). For conditional expectations for von Neu-
mann algebras Takesaki [2] has obtained the following.

Lemma 5.1. Let � be a von Neumann algebra on a Hilbert space � with a separating and
cyclic vector ξ0 and � a von Neumann subalgebra of �. Then �� is a conditional expectation
of � onto � with respect to ξ0 if and only if Δit

ξ0
�Δ−itξ0

=� for all t ∈ R, where Δξ0 is the
modular operator of the left Hilbert algebra �ξ0.

The following is our extension of Lemma 5.1 to generalized von Neumann algebras.

Lemma 5.2. Let � be a closed O∗-algebra on � in �, ξ0 ∈� a strongly cyclic and separating
vector for � and � a closed O∗-subalgebra of �. Suppose

(i) �′
w�⊂�;

(ii) �ξ0 is essentially selfadjoint for �.
Put

�(A |�)= P�A�P��, A∈�′′
wc. (5.1)

Then �(· |�) is a linear map of the generalized von Neumann algebra �′′
wc into the O∗-

algebra �†(P��) such that
(a) �(A |�)† =�(A† |�), for all A∈�′′

wc; �(X |�)= X�P��, for all X ∈�′′
wc;

(b) �(A†A |�)≥ 0, for all A∈�′′
wc;

(c) �(A |�)†�(A |�)≤�(A†A |�), for all A∈�′′
wc;

(d) �(A | �)X = �(AX | �), X�(A | �) = �(XA | �), for all A ∈ �′′
wc, for all X ∈

�′′
wc;

(e) ωξ0 (AX)= (�(AX |�)ξ0 | ξ0), for all A∈�′′
wc, for all X ∈�′′

wc.
Furthermore, suppose

(iii) Δit
ξ0

(�′
w)′Δ−itξ0

= (�′
w)′, for all t ∈R,

where Δξ0 is the modular operator of the left Hilbert algebra (�′
w)′ξ0. Then, �(A | �) ∈

(�P� )′′wc, for all A∈�′′
wc.

Proof. By (i) we have �′
w�⊂�, and hence it follows from [6, Propositions 1.7.3, 1.7.5]

that �′′
wc is a generalized von Neumann algebra on � and �′′

wc is a generalized von Neu-
mann subalgebra of �′′

wc. Since the �-invariant subspace �ξ0 of � is essentially selfad-
joint, it follows from [7, Theorem 4.7] that

P� ∈�′
w, P��=�ξ0

t� ⊂�, (5.2)

�ξ0 =
(
�′

w

)′
ξ0. (5.3)

By (5.2), �(· | �) is a linear map of �′′
wc into �†(P��), and it is shown in a similar

way to the proof of Proposition 4.5 that �(· | �) satisfies (a)–(e). Suppose (iii) holds.
We show �(A |�) ∈ (�P� )′′wc, for all A ∈�′′

wc. By (5.3) we have P� = P(�′
w)′ , and so by

(iii) and by the Takesaki theorem [2] there exists a unique conditional expectation �′′ of
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the von Neumann algebra (�′
w)′ onto the von Neumann algebra (�′

w)′ with respect to
ξ0 such that �′′(A)P� = P�AP� for each A ∈ (�′

w)′. Take an arbitrary A ∈�′′
wc. Then

there exists a net {Aα} in (�′
w)′ which converges strongly∗ to A. From (5.2) it follows

immediately that

(
�′

w

)
P�
= (�P�

)′
w, (5.4)

and by the basic theory of von Neumann algebras [11]

((
�P�

)′
w

)′ = ((�′
w

)
P�

)′ = ((�′
w

)′)
P�
. (5.5)

Hence we have

�′′
(
Aα
)
P�
∈ ((�P�

)′
w

)′
,

�′′
(
Aα
)
P�
−−−−−→

τs∗
P�A�P��,

(5.6)

which implies that P�A�P��∈ ((�P� )′w)′
τs∗ = (�P� )′′wc. Hence we have

�(A |�)= P�A�P��∈ (�P�

)′′
wc, A∈�′′

wc. (5.7)

In a similar way to the proof of Theorem 4.4 one can show that �(· |�) is the unique
weak conditional expectation of the generalized von Neumann algebra �′′

wc with respect
to ((�P� )′′wc,ξ0). �

Now we put

D
(
��
)= {A∈�′′

wc; �(A |�)∈ (�′′
wc

)
P�

}
. (5.8)

Then, for any A ∈ D(��) there exists a unique element ��(A) of �′′
wc such that

��(A)�P��= �(A |�), and in a similar way to the proof of Theorem 4.6 we can show
the following.

Lemma 5.3. �� is an unbounded conditional expectation of the generalized von Neumann
algebra �′′

wc onto the generalized von Neumann algebra �′′
wc with respect to ξ0 which is an

extension of ��.

By Lemmas 5.2 and 5.3 we have the following.

Theorem 5.4. Let � be a generalized von Neumann algebra on � in �, ξ0 a strongly cyclic
and separating vector for � and � a generalized von Neumann subalgebra of �. Suppose

(i) �ξ0 is essentially selfadjoint for �;
(ii) Δit

ξ0
(�′

w)′Δ−itξ0
= (�′

w)′, for all t ∈R,
where Δξ0 is the modular operator of the left Hilbert algebra (�′

w)′ξ0. Then the following
statements hold.

(1) �(A |�)=�(A |�)∼ ∈ (�P� )′′wc for each A∈�.
(2) �� =��.
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Proof. (1) Since �ξ0 ⊂�(π�
� )⊂�ξ0

t� = P��, it follows that �(A |�)= �(A |�)∼ for
each A∈�, and �(A |�) is contained in (�P� )′′wc by Lemma 5.2.

(2) This follows from (1). �

It is natural to consider the following question.

Question 1. Let (�,ξ0,�) be as in Theorem 5.4. Does D(��) contain any elements of �?
For example, when is �b ⊂D(��)?

For this question we have the following.

Proposition 5.5. Let (�,ξ0,�) be as in Theorem 5.4. Suppose that � is an EW∗-algebra
on �, that is, (�′

w)′ =�b. Then ��b�⊂D(��).

Proof. By Lemma 5.1 there exists a unique conditional expectation �′′ of the von Neu-
mann algebra (�′

w)′ onto the von Neumann algebra (�′
w)′ such that

�′′(A)P� = P�AP�, ∀A∈ (�′
w

)′
. (5.9)

Take an arbitrary A∈�b. Then �′′(A)��∈�b; it follows that

P�AP� =�′′(A)P� ∈�bP�, (5.10)

which implies A∈D(��)=D(��). Thus, �b ⊂D(��), which implies ��b�⊂D(��).
�

Corollary 5.6. Let (�,ξ0,�) be as in Theorem 5.4. If one of the following conditions (i)
and (ii) holds, then ��b�⊂D(��).

(i) (�′
w)′ is commutative.

(ii) �=�∞(H′)≡⋂n∈N�(H′n), where H′ is a selfadjoint operator in � affiliated with
�′

w.

Proof. Suppose (i) holds, that is, (�′
w)′ is commutative. Then, (�′

w)′�⊂�′
w�⊂�. Sup-

pose (ii) holds. Then, (�′
w)′�⊂� clearly. Hence � is an EW∗-algebra on � in either of

the cases (i) and (ii), and so it follows from Proposition 5.5 that ��b�⊂D(��). �

6. Absolute continuity and coarse graining

In this section we define the notions of absolutely continuous positive linear functionals
and investigate them.

Let � be an O∗-algebra on � in � with a strongly cyclic vector ξ0. A linear functional
F on � is called hermitian if F(A†) = F(A) for each A ∈� and it is called positive (de-
noted by F ≥ 0) if F(A†A) ≥ 0 for each A ∈�. Since � contains the identity operator,
it follows that if F ≥ 0 then it is hermitian. The positive linear functional ωξ0 on � is
defined by

ωξ0 (A)= (Aξ0 | ξ0
)
, A∈�. (6.1)

We define the notion ofωξ0 -absolutely continuous linear functionals on � and investigate
their properties.
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Definition 6.1. Let F be a linear functional on �. If for any A∈� there exists a constant
rA > 0 such that

∣
∣F(AX)

∣
∣2 ≤ rAωξ0

(
X†X

)
, ∀X ∈�, (6.2)

then F is said to be ωξ0 -absolutely continuous and denoted by F < ωξ0 . If there exists a
constant r > 0 such that

F
(
X†X

)≤ rωξ0

(
X†X

)
, ∀X ∈�, (6.3)

then F is said to be ωξ0 -dominated and denoted by F<dωξ0 . Denote by �∗(< ωξ0 ) (resp.,
�∗

h (< ωξ0 ), �∗
+ (< ωξ0 )) the set of all ωξ0 -absolutely continuous (resp., hermitian, posi-

tive) linear functionals on �; and denote by �∗(<dωξ0 ) (reps., �∗
h (<dωξ0 ),�∗

+ (<dωξ0 ))
the set of all ωξ0 -dominated (resp., hermitian, positive) linear functionals on �.

Theorem 6.2. Let F be a linear functional on �.
(1) The following statements are equivalent.
(i) F ∈�∗(< ωξ0 ) (resp., �∗

h (< ωξ0 ), �∗
+ (< ωξ0 )).

(ii) There exists an element ξ of �∗(�) (resp., �∗(�)h, �∗(�)+) such that

F(A)= Fξ(A)≡ (Aξ0 | ξ
)
, ∀A∈�, (6.4)

where

�∗(�)h =
{
ξ ∈�∗(�); Fξ is hermitian

}
,

�∗(�)+ =
{
ξ ∈�∗(�); Fξ is positive

}
.

(6.5)

(iii) There exists an element S of the unbounded commutant (���ξ0)′δ (resp.,
((���ξ0)′σ)h, ((���ξ0)′σ)+) of the O∗-algebra ���ξ0 on �ξ0 such that

F(A)= FS(A)≡ (Aξ0 | Sξ0
)
, ∀A∈�. (6.6)

The vector ξ in (ii) and the operator S in (iii) are unique. S is called the Radon-Nikodym
derivative of F with respect to ωξ0 and denoted by dF/dωξ0 .

(2) F ∈�∗(<dωξ0 ) (resp., �∗
h (<dωξ0 ), �∗

+ (<dωξ0 )) if and only if dF/dωξ0 ∈�′
w (resp.,

(�′
w)h, (�′

w)+).

Proof. (1) (i)⇒(ii). Let F ∈�∗(< ωξ0 ). Then we have

∣
∣F(A)

∣
∣2 ≤ rI

∥
∥Aξ0

∥
∥2

, ∀A∈�. (6.7)

Since ξ0 is strongly cyclic, that is, �ξ0 is dense in �[t�], and the graph topology t� is
finer than the topology defined by the Hilbert space norm ‖ · ‖, it follows that �ξ0 is
dense in �, which implies that the map Aξ0 → F(A) can be extended to a continuous
linear functional on � and by the Riesz theorem there exists a unique element ξ of �
such that

F(A)= (Aξ0 | ξ
)
, ∀A∈�. (6.8)
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Furthermore, since F < ωξ0 , it follows that

∣
∣(X†Aξ0 | ξ

)∣∣= ∣∣F(X†A)∣∣≤ rXωξ0

(
A†A

)= rX
∥
∥Aξ0

∥
∥2

(6.9)

for all A,X ∈�, which implies ξ ∈�∗(�). In particular, it is clear that if F ∈�∗
h (< ωξ0 )

(resp., �∗
+ (< ωξ0 )) then ξ ∈�∗(�)h (resp., ξ ∈�∗(�)+).

(ii)⇒(iii). We put

SAξ0 = ξ, A∈�. (6.10)

Then since

(
Xξ0 | SAYξ0

)= F
(
(AY)†X

)= F
(
Y†
(
A†X

))= (A†Xξ0 | SYξ0
)

(6.11)

for each A,X ,Y ∈�, it follows that S∈ (���ξ0)′δ and F = FS. It is clear that S is uniquely
determined. Furthermore, it is easily shown that if F is hermitian (resp., positive) then S
is hermitian (resp., positive).

(iii)⇒(i). This is trivial.
(2) This is shown in a similar way to (1).
The equivalence of (i) and (ii) in Theorem 6.2 follows from [1, Theorem 1]. �

The following schemes may serve as a sketch of Theorem 6.2:

ξ ∈�∗(�)(
resp., �∗(�)h, �∗(�)+

)
bijection

bijection

Fξ ∈�∗( < ωξ0

)
(
resp., �∗

h

(
< ωξ0

)
, �∗

+

(
< ωξ0

))

bijection

dFξ
dωξ0

∈ (���ξ0
)′
δ

(resp.,
((

���ξ0
)′
σ

)
h,
((

���ξ0
)′
σ

)
+

)

F ∈�∗(<dωξ0

)
(
resp., �∗

h

(
<dωξ0

)
, �∗

+

(
<dωξ0

))
bijection

dF

dωξ0

∈�′
w

(resp.,
(
�′

w

)
h,
(
�′

w

)
+

)
.

(6.12)

The Radon-Nikodym theorems for O∗-algebras can be found in [1, 6, 10, 12, 13].
Next we define and investigate the notion of coarse graining.
Let � be a closed O∗-algebra on � in � with a strongly cyclic (and separating) vector

ξ0 and � an O∗-subalgebra of �.
Let f be a positive linear functional on � such that f < ωξ0��.
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Definition 6.3. A positive linear functional F on � is said to be (�,ωξ0 ) coarse graining of
f , if the following conditions hold:

(i) f ⊂ F;
(ii) F < ωξ0 ;

(iii) F(A)= F(E(A |�))≡ (E(A |�) | (dF/dωξ0 )ξ0), for all A∈�.

We put

Fc(A)=
(
E(A |�) | df

dωξ0��
ξ0

)
, A∈�. (6.13)

Then Fc is a linear functional on � satisfying the following:

Fc ⊃ f . (6.14)

In fact, (6.14) follows from

Fc(X)=
(
Xξ0 | df

dωξ0��
ξ0

)
= f (X), ∀X ∈�. (6.15)

Question 2. Is Fc a (�,ωξ0 ) coarse graining of f ? That is, does Fc satisfy the following
conditions?

Fc is positive, (6.16)

Fc < ωξ0 . (6.17)

We remark that if (6.17) holds, then

Fc(A)= Fc
(
E(A |�)

)
, ∀A∈�. (6.18)

In fact, since

(
Aξ0 | dFc

dωξ0

ξ0

)
= Fc(A)=

(
E(A |�) | df

dωξ0��
ξ0

)
=
(
Aξ0 | df

dωξ0��
ξ0

)
(6.19)

for all A∈�, it follows that (dFc/dωξ0 )ξ0 = (df /dωξ0��)ξ0, which implies that Fc(A) =
Fc(E(A |�)) for all A∈�.

Almost all the results of Theorem 6.4, Proposition 6.6, and Theorem 6.12 can be found
in [1, Theorem 3], but it seems that they contain a few gaps. So, we introduce here these
results and their proofs.

Theorem 6.4. The following statements are equivalent.
(i) f is (�,ωξ0 ) coarse grainable, that is, there exists a (�,ωξ0 ) coarse graining of f .

(ii) There exists a positive linear functional F on � such that F ⊃ f , F < ωξ0 and (dF/
dωξ0 )ξ0 ∈�ξ0.

(iii) There exists a positive operator S in (���ξ0)′σ such that Sξ0 = (df /dωξ0��)ξ0.
If this is true, then Fc is a unique (�,ωξ0 ) coarse graining of f and the F in (ii) equals Fc.
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Proof. (i)⇒(ii). Let F be a (�,ωξ0 ) coarse-graining of f . Then F is a positive linear func-
tional on � such that F ⊃ f and F < ωξ0 . Furthermore, since

(
Aξ0 | dF

dωξ0

ξ0

)
= F(A)= F

(
E(A |�)

)=
(
P�Aξ0 | dF

dωξ0

ξ0

)
(6.20)

for all A∈�, we have

dF

dωξ0

ξ0 = P�
dF

dωξ0

ξ0 ∈�ξ0. (6.21)

(ii)⇒(iii). We put S= dF/dωξ0 . Then, S∈ ((���ξ0)′σ)+ and Sξ0 ∈�ξ0. Furthermore,
we have

(
Aξ0 | Sξ0

)=
(
P�Aξ0 | dF

dωξ0

ξ0

)
= lim

n→∞

(
Xnξ0 | dF

dωξ0

ξ0

)
= lim

n→∞F
(
Xn
)

= lim
n→∞ f

(
Xn
)= lim

n→∞

(
Xnξ0 | df

dωξ0��
ξ0

)
=
(
Aξ0 | df

dωξ0��
ξ0

) (6.22)

for all A ∈ �, where {Xn} is a sequence in � such that limn→∞Xnξ0 = P�Aξ0, which
implies that Sξ0 = (df /dωξ0��)ξ0.

(iii)⇒(i). Since

Fc
(
B†A

)=
(
P�B

†Aξ0 | df

dωξ0��
ξ0

)
= (B†Aξ0 | Sξ0

)= (Aξ0 | SBξ0
)

(6.23)

for eachA,B ∈�, it follows that Fc ≥ 0 and Fc < ωξ0 . Hence Fc is a (�,ωξ0 ) coarse graining
of f .

Finally we show that Fc is the unique (�,ωξ0 ) coarse graining of f . Let F be a (�,ωξ0 )
coarse graining of f . By the proof of (ii)⇒(iii) we have

F(A)=
(
Aξ0 | dF

dωξ0

ξ0

)
=
(
Aξ0 | df

dωξ0��
ξ0

)
= Fc(A) (6.24)

for all A∈�. This completes the proof. �

Definition 6.5. � is said to be positivity preserving if for any A∈� there exists a sequence
{Xn} in � such that limn→∞X†n Xnξ0 = P�A†Aξ0.

It is clear that if � is positivity preserving then Fc is positive. In fact, this follows from

Fc
(
A†A

)=
(
E
(
A†A |�

) | df

dωξ0��
ξ0

)

= lim
n→∞

(
X†n Xnξ0 | df

dωξ0��
ξ0

)

= lim
n→∞

(
Xnξ0 | df

dωξ0��
Xnξ0

)
≥ 0, ∀A∈�.

(6.25)

Hence we have the following.
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Proposition 6.6. Suppose that � is positivity preserving. Then the following statements are
equivalent.

(i) f is (�,ωξ0 ) coarse grainable.
(ii) Fc is a (�,ωξ0 ) coarse graining of f .

(iii) Fc < ωξ0 .
(iv) (df /dωξ0��)ξ0 ∈�∗(�).

Proof. (i)⇔(ii) This follows from Theorem 6.4.
(ii)⇒(iii). This is trivial.
(iii)⇒(ii). As shown above, Fc is automatically positive, and so (iii) implies (ii).
(ii)⇒(iv). This follows from

df

dωξ0��
ξ0 = dFc

dωξ0

ξ0 ∈�∗(�). (6.26)

(iv)⇒(ii). Let ξ≡(df /dωξ0��)ξ0. Then, ξ ∈�∗(�)=�∗(���ξ0), and so by Theorem
6.2

dFξ
dωξ0

∈ ((���ξ0
)′
σ

)
+,

dFξ
dωξ0

ξ0 = df

dωξ0��
ξ0, (6.27)

which by Theorem 6.4 implies that Fc is a (�,ωξ0 ) coarse graining of f . �

Proposition 6.7. Suppose that � is positivity preserving and f <dωξ0��. Then Fc is a
(�,ωξ0 ) coarse graining of f and Fc<dωξ0 .

Proof. Since

Fc
(
A†A

)=
(
P�A

†Aξ0 | df

dωξ0��
ξ0

)
= lim

n→∞

(
X†n Xnξ0 | df

dωξ0��
ξ0

)

= lim
n→∞

(
Xnξ0 | df

dωξ0��
Xnξ0

)
≤
∥
∥
∥
∥

df

dωξ0��
∥
∥
∥
∥ lim
n→∞

∥
∥Xnξ0

∥
∥2

=
∥
∥
∥
∥

df

dωξ0��
∥
∥
∥
∥
(
P�A

†Aξ0 | ξ0
)≤

∥
∥
∥
∥

df

dωξ0��
∥
∥
∥
∥ωξ0

(
A†A

)

(6.28)

for all A ∈�, we have Fc<dωξ0 , which from Proposition 6.6 implies that Fc is a (�,ωξ0 )
coarse graining of f . �

We characterize the coarse grainability of positive linear functionals on � by elements
of �∗(�)+.

Proposition 6.8. Let f be a positive linear functional on �. The following statements are
equivalent.

(i) f is (�,ωξ0 ) coarse grainable.
(ii) There exists an element ξ of �∗(�)+ such that P�ξ = ξ and f = Fξ��.
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Proof. (i)⇒(ii). Let F be a (�,ωξ0 ) coarse graining of f . Then, F < ωξ0 implies f < ωξ0��.
By Theorem 6.4(ii) we have

ξ ≡ dF

dωξ0

ξ0 ∈�∗(�)+, P�ξ = ξ, Fξ = F. (6.29)

(ii)⇒(i). It is easily shown that Fξ is a (�,ωξ0 ) coarse graining of f . �

By Proposition 6.8 and Theorem 6.4 we have the following:

{
ξ ∈�∗(�)+;
P�ξ = ξ

}∈ ξ

bijection
{
f ;
(
�,ωξ0

)
coarse-grainable positive

linear functionals
}∈ fξ ≡ Fξ��

bijection

dFξ
dωξ0

∈ {S∈ ((���ξ0
)′
σ

)
+; Sξ0 ∈�ξ0

}

.

(6.30)

Remark 6.9. Let ξ ∈�∗(�)+. By Theorem 6.2, Fξ is a ωξ0 -absolutely continuous positive
linear functional on �, but it is not a (�,ωξ0 ) coarse graining of fξ ≡ Fξ�� in general. In
fact,

Fξ
(
E(A |�)

)= (P�Aξ0 | ξ
)= (Aξ0 | P�ξ

) �= Fξ(A) in general. (6.31)

We consider whether FP�ξ is a (�,ωξ0 ) coarse graining of fξ . FP�ξ is a linear functional on
� such that FP�ξ ⊃ fξ and FP�ξ(E(A |�))= FP�ξ(A), for all A∈�, but it is not positive
and not ωξ0 -absolutely continuous in general. Hence we consider when FP�ξ is positive
and ωξ0 -absolutely continuous.

Proposition 6.10. Suppose that � is essentially selfadjoint, � is positivity preserving,
and the �-invariant subspace �ξ0 is essentially selfadjoint. Then P��+ = {ξ ∈�+; P�ξ =
ξ} and the map P�ξ → fP�ξ = fξ is a bijection of P��+ onto { f ∈ �∗

+ ; (�,ωξ0 ) coarse
grainable}, where �+ = {ξ ∈ �; Fξ ≥ 0}. Hence, any ωξ0 -absolutely continuous positive
linear functional F on � is a (�,ωξ0 ) coarse graining of F��.

Proof. Since � is essentially selfadjoint and �ξ0 is essentially selfadjoint, we have P��
⊂�. Furthermore, since � is positivity preserving, we have P��+ ⊂�+, which implies
P��+ = {ξ ∈�+; P�ξ = ξ}. Hence it follows from Proposition 6.8 that the map P�ξ →
fξ is a bijection. Let F be any ωξ0 -absolutely continuous positive linear functional on �.
By Theorem 6.2 there exists an element ξ of �+ such that F = Fξ . By the above FP�ξ is a
(�,ωξ0 ) coarse graining of fξ = F��. �

Definition 6.11. A map Iωξ0
of �∗

+ (< ωξ0 ) into R+ is said to be an information measure
with respect to ωξ0 if

(i) Iωξ0
(F)≥ 0, for all F ∈�∗

+ (< ωξ0 ) and Iωξ0
(ωξ0 )= 1;

(ii) Iωξ0
(F1 + F2)= Iωξ0

(F1) + Iωξ0
(F2), whenever F1 and F2 are mutually singular, that

is, ((dF1/dωξ0 )ξ0 | (dF2/dωξ0 )ξ0)= 0. Iωξ0
(F) is called the information of F.
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Theorem 6.12. (1) The information measure Iωξ0
with respect to ωξ0 exists uniquely, and

Iωξ0
(F)= ‖(dF/dωξ0 )ξ0‖2 for each F ∈�∗

+ (< ωξ0 ).
(2) If f is a (�,ωξ0 ) coarse-grainable positive linear functional on �, then Fc is the ωξ0 -

absolutely continuous extension of f with minimal information with respect to ωξ0 , that is,
Iωξ0

(Fc)≤ Iωξ0
(F) for each F ∈�∗

+ (< ωξ0 ) s.t. F��= f .

Proof. (1) Let Iωξ0
be an information measure with respect to ωξ0 . By Theorem 6.2 the

map F → (dF/dωξ0 )ξ0 is a bijection of �∗
+ (< ωξ0 ) onto �∗(�)+, and so we may define a

map ϕ of �∗(�)+ into R+ by

ϕ
(

dF

dωξ0

ξ0

)
= Iωξ0

(F), F ∈�∗
+

(
< ωξ0

)
. (6.32)

Take arbitrary F1,F2 ∈�∗
+ (< ωξ0 ) s.t. ((dF1/dωξ0 )ξ0 | (dF2/dωξ0 )ξ0)= 0. Then we have

ϕ
(
dF1

dωξ0

ξ0 +
dF2

dωξ0

ξ0

)
= ϕ

(
d
(
F1 +F2

)

dωξ0

ξ0

)
= Iωξ0

(
F1 +F2

)

= Iωξ0

(
F1
)

+ Iωξ0

(
F2
)= ϕ

(
dF1

dωξ0

ξ0

)
+ϕ
(
dF2

dωξ0

ξ0

)
,

(6.33)

which by [14, Corollary 2.3] implies that

ϕ
(

dF

dωξ0

ξ0

)
= r
∥
∥
∥
∥
dF

dωξ0

ξ0

∥
∥
∥
∥

2

, ∀F ∈�∗
+

(
< ωξ0

)
(6.34)

for some r > 0. Since ϕ(ξ0)= Iωξ0
(ωξ0 )= 1, we have r = 1 and

Iωξ0
(F)=

∥
∥
∥
∥
dF

dωξ0

ξ0

∥
∥
∥
∥

2

, ∀F ∈�∗
+

(
< ωξ0

)
. (6.35)

(2) Take an arbitrary F ∈�∗
+ (< ωξ0 ) s.t. F��= f . Then, by Theorem 6.4, we have

(
Xξ0 | dFc

dωξ0

ξ0

)
=
(
Xξ0 | df

dωξ0��
ξ0

)
= f (X)=

(
Xξ0 | dF

dωξ0

ξ0

)
(6.36)

for each X ∈�, which implies that P�(dF/dωξ0 )ξ0 = (dFc/dωξ0 )ξ0. Hence we have

Iωξ0
(F)=

∥
∥
∥
∥
dF

dωξ0

ξ0

∥
∥
∥
∥

2

≥
∥
∥
∥
∥
dFc
dωξ0

ξ0

∥
∥
∥
∥

2

= Iωξ0

(
Fc
)
. (6.37)

�

Let � and �1 be O∗-subalgebras of � such that �1 ⊂� and f a ωξ0��-absolutely
continuous positive linear functional on �. Then f1 ≡ f ��1 is a ωξ0��1-absolutely con-
tinuous positive linear functional on �1. We consider the following questions.

(1) Does the (�,ωξ0 ) coarse grainabilitiy of f imply the (�1,ωξ0 ) coarse grainability
of f1? Conversely, does the (�1,ωξ0 ) coarse grainability of f1 imply the (�,ωξ0 ) coarse
grainability of f ?

(2) When f is (�,ωξ0 ) coarse-grainable and f1 is (�1,ωξ0 ) coarse-grainable, Fc = (F1)c?
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Since

Fc(A)=
(
Aξ0 | df

dωξ0��
ξ0

)
,
(
F1
)
c(A)=

(
Aξ0 | df1

dωξ0��1
ξ0

)
, A∈�, (6.38)

we have

Fc(X)= f (X)= f1(X)= (F1
)
c(X) (6.39)

for each X ∈�1, and so

df1
dωξ0��1

ξ0 = P�1

df

dωξ0��
ξ0. (6.40)

For the above question we have the following.

Proposition 6.13. The following statements are equivalent.
(i) f is (�,ωξ0 ) coarse grainable, f1 is (�1,ωξ0 ) coarse grainable and Fc = (F1)c.

(ii) f is (�,ωξ0 ) coarse grainable, f1 is (�1,ωξ0 ) coarse grainable, and Iωξ0
(Fc) =

Iωξ0
((F1)c).

(iii) f is (�,ωξ0 ) coarse grainable and (df /dωξ0��)ξ0 ∈�1ξ0.
(iv) f1 is (�1,ωξ0 ) coarse grainable and (F1)c ⊃ f .

Proof. (i)⇒(ii). This is trivial.
(ii)⇒(iii). Since ‖(dFc/dωξ0 )ξ0‖ = ‖(d(F1)c/dωξ0 )ξ0‖, it follows that (df /dωξ0��)ξ0 =

(dFc/dωξ0 )ξ0 ∈�1ξ0.
(iii)⇒(iv). By Theorem 6.4 it is shown that Fc is a unique (�1,ωξ0 ) coarse graining of

f1, and so f1 is (�1,ωξ0 ) coarse grainable and (F1)c = Fc ⊃ f .
(iv)⇒(i). By Theorem 6.2 it is shown that (F1)c is a (�,ωξ0 ) coarse graining of f , and

so f is (�,ωξ0 ) coarse grainable and Fc = (F1)c. �
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