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A bifurcation analysis is undertaken for a discrete-time Hopfield neural network with
four delays. Conditions ensuring the asymptotic stability of the null solution are obtained
with respect to two parameters of the system. Using techniques developed by Kuznetsov
to a discrete-time system, we study the Neimark-Sacker bifurcation (also called Hopf
bifurcation for maps) of the system. The direction and the stability of the Neimark-Sacker
bifurcation are investigated by applying the normal form theory and the center manifold
theorem.
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1. Introduction

The investigation of dynamic behaviors for neural networks has been the subject of much
recent activity since one of the models with electronic circuit implementation was pro-
posed by Hopfield [1]. Since continuous-time Hopfield neural networks have been first
considered in [2, 3], they have received much attention because of their applicability in
problems of optimizations, signal processing, image processing, solving nonlinear alge-
braic equations, pattern recognitions, associative memories, and so on. The stability and
the existence of periodic or quasiperiodic solutions of discrete-time Hopfield neural net-
works with or without delays have been considered in [4–8]. In [9], a bifurcation anal-
ysis has been studied for a two-dimensional discrete neural model with multidelays by
applying the Euler method to continuous-time Hopfield neural networks with no self-
connections.

In practice, due to the finite speeds of the switching and the transmission of signals in
a network, time delays unavoidably exist in a working network, therefore, they should be
incorporated into the model equations of the network. Clearly, introducing time delays
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into the model is more reasonable. In general, delay-differential equations exhibit much
more complicated dynamics than the responding ordinary differential equations since a
time delay could cause the change of stability of an equilibrium, and hence the bifurcation
occurs. It is interesting to investigate the time delay how to affect the dynamics of a system,
and it is important to determine the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions when a Hopf bifurcation occurs.

In this paper, we consider the discrete-time Hopfield neural network of two neurons
with four different delays:

x1(n+ 1)= βx1(n) + a11 f1
(
x1
(
n− τ1

))
+ a12 f2

(
x2
(
n− τ2

))
,

x2(n+ 1)= βx2(n) + a21 f3
(
x1
(
n− τ3

))
+ a22 f4

(
x2
(
n− τ4

))
,

(1.1)

where x1 and x2 denote the activities of neurons, β ∈ (0,1) is the internal decay of the neu-
rons, τi � 0 (i= 1,2,3,4) are delays, constants a11, a12, a21, and a22 denote the connection
weights, fi (i= 1,2,3,4) :R→R are continuous transfer functions, and fi(0)= 0.

Our purpose in this paper is using the techniques developed by Kuznetsov [10] to
study the stability and the Neimark-Sacker bifurcation (also called Hopf bifurcation for
maps) of the equilibrium (0,0) of system (1.1). In Section 2, the conditions for the asymp-
totical stability of the equilibrium (0,0) of (1.1) are established. Moreover, when the bi-
furcation parameter exceeds a critical value, the Neimark-Sacker bifurcation will occur. In
the last section, we discuss the direction and stability of the Neimark-Sacker bifurcation
by using the normal form theory and the center manifold theorem.

2. Stability and existence of Neimark-Scaker bifurcation

In this section, we first discuss the local stability of the equilibrium (0,0) of system (1.1).
The linearization of system (1.1) around (0,0) is

x1(n+ 1)= βx1(n) + a11 f1
′(0)

(
x1
(
n− τ1

))
+ a12 f2

′(0)
(
x2
(
n− τ2

))
,

x2(n+ 1)= βx2(n) + a21 f3
′(0)

(
x1
(
n− τ3

))
+ a22 f4

′(0)
(
x2
(
n− τ4

))
.

(2.1)

Here we need the following hypothesis.
(H1) For i= 1,2,3,4, fi ∈ C1(R) and fi(0)= 0.

The Jacobian matrix of system (2.1) at the equilibrium (0,0) leads us to the following
characteristic equation:

∣
∣
∣
∣
β+ a11 f1′(0)e−λτ1 − λ a12 f2′(0)e−λτ2

a21 f3′(0)e−λτ3 β+ a22 f4′(0)e−λτ4 − λ

∣
∣
∣
∣= 0, (2.2)

that is

λ2− 2(β+T)λ+β2 + 2βT +D = 0, (2.3)
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where

D = a11a22 f1
′(0) f4′(0)e−λ(τ1+τ4)− a12a21 f2

′(0) f3′(0)e−λ(τ2+τ3),

T = 1
2

(
a11 f1

′(0)e−λτ1 + a22 f4
′(0)e−λτ4

)
.

(2.4)

For T ∈ (−1−β,1−β), we let

Ω0 =
{

(T ,D)∈R2 : E1 < 0, E2 < 0, E3 > 0
}

, (2.5)

where

E1 = 2(1−β)T − (1−β)2−D,

E2 =−2(1 +β)T − (1 +β)2−D,

E3 =−2βT + 1−β2−D.

(2.6)

Theorem 2.1. Suppose that hypothesis (H1) is satisfied and (T ,D) ∈ Ω0. Then the zero
solution of (1.1) is asymptotically stable.

Proof. The characteristic equation for the linearization of (1.1) at (0,0) is (2.3). We con-
sider the following two cases.

Case 1 (T2 �D). In this case, the root of characteristic equation (2.3) is given by

λ1 = β+T +
√
T2−D, (2.7)

λ2 = β+T −
√
T2−D. (2.8)

Obviously, the eigenvalues λ1,2 in (2.7) are inside the unit circle if and only if

(T ,D)∈Ω1∩Ω2, (2.9)

where

Ω1 := {(T ,D)∈R2 : D > 2(1−β)T − (1−β)2, T < 1−β, T2 �D
}

,

Ω2 := {(T ,D)∈R2 : D >−2(1 +β)T − (1 +β)2, T >−1−β, T2 �D
}
.

(2.10)

Case 2 (T2 < D). In this case, the characteristic equation (2.3) has a pair of conjugate
complex roots

λ1 = β+T +
√
D−T2i,

λ2 = β+T −
√
D−T2i.

(2.11)

It is easy to verify that |λ1,2| < 1 if and only if

(T ,D)∈Ω3, (2.12)

where

Ω3 := {(T ,D)∈R2 : D <−2βT + 1−β2, T2 < D
}
. (2.13)
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Combining Cases 1 and 2, we know that Ω0 = (Ω1∩Ω2)∪Ω3. Thus, the eigenvalues
λ1,2 of characteristic equation (2.3) are inside the unit circle for (T ,D) ∈ Ω0. This im-
plies that the zero solution of (1.1) is asymptotically stable. This completes the proof of
Theorem 2.1. �

Now, we choose D as the bifurcation parameter to study the Neimark-Scaker bifurca-
tion of (0,0). For T2 < D, let

λ(D)= β+T +
√
D−T2i, (2.14)

then the eigenvalues in (2.3) are conjugate complex pair λ(D) and λ(D). The modulus of
the eigenvalue is

|λ| =
√

(β+T)2 +
(
D−T2

)=
√
β2 + 2βT +D. (2.15)

Then, |λ| = 1 if and only if

D =D∗ :=−2βT + 1−β2. (2.16)

Obviously, for T2 < D <D∗, we have

|λ| < 1. (2.17)

Since the modulus of eigenvalue |λ(D∗)| = 1, we know that D∗ is a critical value which
destroys the stability of (0,0). The following lemma is useful for the study of the bifurca-
tion of (0,0).

Lemma 2.2. Suppose that (H1) is satisfied and −β < T < 1−β, then
(i) ((d/dD)|λ(D)|)|D=D∗ > 0,

(ii) λk(D∗) �= 1 for k = 1,2,3,4,
where λ(D) and D∗ are given by (2.14) and (2.16), respectively.

Proof. From the assumption T ∈ (−β,1− β), it is easy to see that T2 < D∗. By a direct
calculation, we obtain from (2.15) and (2.16) that

(
d

dD

∣
∣λ(D)

∣
∣
)∣∣
∣
∣
D=D∗

= 1
2

1
√
β2 + 2βT +D

∣
∣
∣
∣
D=D∗

= 1
2
> 0, (2.18)

so (i) is true.
In the following, we will deal with (ii). Clearly, λk(D∗) = 1 for some k ∈ {1,2,3,4} if

and only if the argument argλ(D∗)∈ {0,±π/2,±2π/3,π}. From T2 < D∗, (2.16), and the
expression

λ
(
D∗
)= β+T +

√
D∗ −T2i, (2.19)

we see that

∣
∣λ
(
D∗
)∣∣= 1, Reλ

(
D∗
)
> 0, Imλ

(
D∗
)
> 0, (2.20)
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it follows that the argument argλ(D∗) ∈ {0,±π/2,±2π/3,π} is wrong. This means that
λk(D∗) �= 1 for k = 1,2,3,4. The proof of Lemma 2.2 is complete. �

Theorem 2.3. Suppose that (H1) is satisfied and T ∈ (−β,1−β). Then
(i) if D >D∗, then the equilibrium (0,0) of (1.1) is unstable,

(ii) if T2 < D <D∗, then the equilibrium (0,0) of (1.1) is asymptotically stable,
(iii) the Neimark-Sacker bifurcation occurs at D =D∗, that is, system (1.1) has a unique

closed invariant curve bifurcation from the equilibrium (0,0) near D =D∗,
where D∗ is given by (2.16).

By Lemma 2.2 and the results in [11], we have the theorem, so we omit the proof.

3. Direction and stability of the Neimark-Scaker bifurcation

In this section, we will give an algorithm to study the direction and the stability of the
Neimark-Scaker bifurcation by using the normal form method and the center manifold
theory for discrete-time system developed by Kuznetsov [10]. We may assume the follow-
ing.

(H2) For i= 1,2,3,4, fi ∈ C(3)(R,R), fi(0)= fi′′(0)= 0, and fi′(0) fi′′′(0) �= 0.
Now (1.1) can be rewritten as

(
x1

x2

)

−→
(
β+ a11 f1′(0)e−λτ1 a12 f2′(0)e−λτ2

a21 f3′(0)e−λτ3 β+ a22 f4′(0)e−λτ4

)(
x1

x2

)

+

(
F1
(
x1,D

)

F2
(
x2,D

)

)

, (3.1)

where x = (x1,x2)T ∈R2. We denote

M(D) :=
(
β+ a11 f1′(0)e−λτ1 a12 f2′(0)e−λτ2

a21 f3′(0)e−λτ3 β+ a22 f4′(0)e−λτ4

)

, (3.2)

r1 := T +
√
D−T2i− a11 f1

′(0)e−λτ1 ,

r2 := T +
√
D−T2i− a22 f4

′(0)e−λτ4 .
(3.3)

Then, from the definition of T , we can obtain

r1 =−r2. (3.4)

Let q(D)∈ C2 be an eigenvector of M(D) corresponding to eigenvalue λ(D) given by
(2.14), then

M(D)q(D)= λ(D)q(D). (3.5)

Again let p(D)∈ C2 be an eigenvector of the transposed matrix MT(D) corresponding to
its eigenvalue, then

MT(D)p(D)= λ(D)p(D). (3.6)
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By a direct calculation, we obtain

q ∼

(
1,
a21 f3′(0)e−λτ3

r2

)T
,

p ∼

(
1,
a12 f2′(0)e−λτ2

r2

)T
,

(3.7)

where r j ( j = 1,2) is given by (3.3). For the eigenvector q = (1,a21 f3′(0)e−λτ3/r2)T , to
normalize p, let

p = r2

r2− r2

(
1,
a12 f2′(0)e−λτ2

r2

)T
, (3.8)

then we have 〈p,q〉 = 1, where 〈·,·〉 means the standard scalar product in C2 : 〈p,q〉 =
p1q1 + p2q2. Any vector x ∈R2 can be represented for D near D∗ as

x = yq(D) + yq(D), (3.9)

for some complex y. Obviously,

y = 〈p(D),x
〉
. (3.10)

Thus, system (3.1) can be transformed for D near D∗ into the following form:

y −→ λ(D)y + g(y, y,D), (3.11)

where λ(D) can be written as λ(D) = (1 +ϕ(D))eiθ(D), (ϕ(D) is a smooth function with
ϕ(D∗)= 0), and

g(y, y,D)=
∑

k+l�2

1
k! l!

gkl(D)yk yl. (3.12)

Form assumption (H2), we know that Fi (i= 1,2) in (3.1) can be expanded as

F1(ξ,D)= a11

6
f1
′′′(0)ξ3

1 +
a12

6
f2
′′′(0)ξ3

2 +O
(‖ξ‖4),

F2(ξ,D)= a21

6
f3
′′′(0)ξ3

3 +
a22

6
f4
′′′(0)ξ3

4 +O
(‖ξ‖4).

(3.13)

It follows that

Bi(u,v) :=
2∑

j,k=1

∂2Fi
(
ξ,D∗

)

∂ξj∂ξk

∣
∣
∣
∣
ξ=0

ujvk = 0, i= 1,2,

C1(u,v,w) :=
2∑

j,k,l=1

∂3F1
(
ξ,D∗

)

∂ξj∂ξk∂ξl

∣
∣
∣
∣
ξ=0

ujvkwl = a11 f1
′′′(0)u1v1w1 + a12 f2

′′′(0)u2v2w2,

C2(u,v,w) :=
2∑

j,k,l=1

∂3F2
(
ξ,D∗

)

∂ξj∂ξk∂ξl

∣
∣
∣
∣
ξ=0

ujvkwl = a21 f3
′′′(0)u1v1w1 + a22 f4

′′′(0)u2v2w2.

(3.14)
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By (3.12)–(3.14) and the formulae

g20
(
D∗
)= 〈p,B(q,q)

〉
, g11

(
D∗
)= 〈p,B(q,q)

〉
,

g01
(
D∗
)= 〈p,B(q,q)

〉
, g21

(
D∗
)= 〈p,C(q,q,q)

〉
,

(3.15)

we obtain

g20
(
D∗
)= g11

(
D∗
)= g02

(
D∗
)= 0,

g21
(
D∗
)= p1C1(q,q,q) + p2C2(q,q,q),

(3.16)

which, together with e−iθ(D∗) = λ(D∗) and the expression of D, implies that

Re
(
e−iθ(D∗)g21

2

)
−Re

((
1− 2e−iθ(D∗)

)
e−2iθ(D∗)

2
(
1− e−iθ(D∗)

) g20g11

)
− 1

2

∣
∣g11

∣
∣2− 1

4

∣
∣g02

∣
∣2

= Re
(
e−iθ(D∗)

2
g21

)
.

(3.17)

From the above argument and the results [10, 12], we have the following result.

Theorem 3.1. Suppose that (H2) is satisfied and T ∈ (−β,1− β). Then the direction and
the stability of the Neimark-Sacker bifurcation of (1.1) can be determined by the sign of
Re((e−iθ(D∗)/2)g21). Indeed, if Re((e−iθ(D∗)/2)g21) < 0(> 0), then the Neimark-Sacker bifur-
cation of (1.1) at D = D∗ is supercritical (subcritical) and a unique closed invariant curve
bifurcating from (0,0) is asymptotically stable (unstable), where D∗ is given by (2.16).

The proof is similar to our above argument and we will omit it.
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