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In measure-theoretic sense, the n-torus Tn is the cube [0,1]n with Lebesgue measure.
A function f in C∞(Rn) is said to be in C∞(Tn) if f (x +m) = f (x) for all x ∈ Rn and
m∈ Zn. �(Rn) denotes the space of rapidly decreasing functions.

Given f ∈ L1(Rn), we denote its Fourier transform by

̂f (ξ)=
∫

Rn
f (x)e−2πix·ξdx, ξ ∈Rn. (1)

Given f ∈ L1(Tn), we denote its Fourier coefficients by

˜f (m)=
∫

Rn
f (x)e−2πim·xdx, m∈ Zn. (2)

We have supm∈Zn | ˜f (m)| ≤ ‖ f ‖L1(Tn).

Lemma 1. Suppose that f , ̂f are in L1(Rn), then it can be assumed that f and ̂f are both
continuous since they can be expressed in terms of each other via Fourier inversion. If they
satisfy

∣

∣ f (x)
∣

∣+
∣

∣ ̂f (x)
∣

∣≤ C(1 + |x|)−n−δ (3)
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for some C,δ > 0, then

∑

m∈Zn
̂f (m)e2πim·x =

∑

m∈Zn
f (x+m), (4)

for all x ∈Rn, and in particular,

∑

m∈Zn
̂f (m)=

∑

m∈Zn
f (m). (5)

(See [1, Theorem 3.1.17].)

Lemma 2. Let s∈ Z with s≥ 0, suppose that f is in Cs(Tn), then

∣

∣ ˜f (m)
∣

∣≤ cn,s
max

(‖ f ‖L1(Tn), sup|α|=s
∣

∣˜∂α f (m)
∣

∣

)

(

1 + |m|)s , (6)

for some constant cn,s.

(See [1, Corollary 3.2.10].)
We are in the position to get the following theorem.

Theorem 3. If φ is in �(Rn) and

g(x)=
∑

m∈Zn
φ(x+m), (7)

then g ∈ C∞(Tn). Conversely, for every g ∈ C∞(Tn), there exists φ ∈�(Rn) such that

g(x)=
∑

m∈Zn
φ(x+m). (8)

Proof. The proof of the first part is trivial.
Now assume that g ∈ C∞(Tn) and set

G(x)=
∑

m∈Zn
g̃(m)�B(m,λ)(x), (9)

where B(m,λ)= {x ∈Rn : |x−m| < λ}, 0 < λ < 2/5, and �B(m,λ) denotes the characteris-
tic function of B(m,λ).

According to Lemma 2, for all positive integers N , we have

∣

∣g̃(m)
∣

∣≤ cn,N
max

(‖g‖L1(Tn), sup|α|=N
∣

∣˜∂αg(m)
∣

∣

)

(

1 + |m|)N
(10)

≤ cn,N

max
(‖g‖L1(Tn), sup|α|=N

∥

∥∂αg
∥

∥

L1(Tn)

)

(

1 + |m|)N
. (11)

So, it is easily seen that G(x)∈ L1(Rn).
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Set

k(x)=
⎧

⎨

⎩

ce1/(|x|2−1), |x| ≤ 1,

0, |x| > 1,
(12)

where c is a constant such that
∫

Rn k(x)dx = 1.
For ε > 0, set kε(x)= ε−nk(ε−1x), and denote

G1(x)= (G∗kλ/4
)

(x). (13)

Then by the property of convolution, G1 ∈ C∞(Rn) and ∂αG1 =G∗∂αkλ/4.
Also, since ∂γkλ/4(y) is continuous and supported in B(0,λ/4). So for any multi-index

γ and nonnegative integer N ,

(

1 + |x|)N∣∣∂γG1(x)
∣

∣

= (1 + |x|)N
∣

∣

∣

∣

∫

Rn
G(x− y)∂γkλ/4(y)dy

∣

∣

∣

∣

≤ C(1 + |x|)N sup
y∈B(0,λ/4)

∣

∣G(x− y)
∣

∣

≤ C(1 + |m|)N∣∣g̃(m)
∣

∣,

(14)

here m is the only point with integer coordinates that is in B(x,5λ/4) (if there is one such
m, otherwise (1 + |x|)N |∂γG1(x)| is 0). C depends only on γ and N . So by (11), G1 is in
�(Rn).

And

G1(m)=
∫

B(0,λ/4)
G(m− y)kλ/4(y)dy =G(m)

∫

B(0,λ/4)
kλ/4(y)dy =G(m)= g̃(m). (15)

Suppose that φ is the function in �(Rn) such that ̂φ = G1. Clearly, φ and G1 satisfy the
conditions of Lemma 1, and so we have

g(x)=
∑

m∈Zn
g̃(m)e2πim·x =

∑

m∈Zn
G1(m)e2πim·x =

∑

m∈Zn
φ(x+m). (16)

�

C∞(Tn) is generally topologized by the family of seminorms

ρα( f )= sup
x

∣

∣∂α f (x)
∣

∣, (17)

where α ranges over all multi-indices. In this topology, φj → φ means

sup
x

∣

∣∂αφj(x)− ∂αφ(x)
∣

∣−→ 0 (18)

for all multi-indices α. C∞(Tn) is a Fréchet space and it can be regarded as a quotient
space of �(Rn) up to isomorphism of topological vector spaces.
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Theorem 4. Set

H =
{

φ ∈�
(

Rn
)

:
∑

m∈Zn
φ(x+m)≡ 0

}

, (19)

then H is a closed subspace of �(Rn), and there is a linear one-to-one correspondence be-
tween the quotient space �(Rn)/H and C∞(Tn) which is a homomorphism.

Proof. It is easy to see that H is closed in �(Rn).
Define Λ : �(Rn)/H → C∞(Tn) by

Λ(φ+H)=
∑

m∈Zn
φ(x+m). (20)

It is obvious that Λ is well defined, linear, one-to-one, and onto. It remains to prove that
Λ is continuous and open.

If d is an invariant metric on �(Rn) compatible with its topology, then

ρ
(

φ+H ,ϕ+H
)= inf

{

d
(

φ−ϕ,ψ
)

: ψ ∈H} (21)

defines an invariant metric on �(Rn)/H which is compatible with the quotient topology.
Suppose φj +H → φ+H ( j →∞) in the quotient topology of �(Rn)/H , we have

ρ
(

φj +H ,φ+H
)= inf

{

d
(

φj −φ,ψ
)

: ψ ∈H}−→ 0, ( j −→∞). (22)

For each j, there is ψj ∈H such that

d
(

φj −φ,ψj
)≤ 2inf

{

d
(

φj −φ,ψ
)

: ψ ∈H}. (23)

So,

lim
j→∞

d
(

φj −ψj ,φ
)= lim

j→∞
d
(

φj −φ,ψj
)= 0. (24)

That is, φj −ψj → φ ( j →∞) in �(Rn). Hence, it is easy to see that

lim
j→∞

∑

m∈Zn

(

φj(x+m) +ψj(x+m)
)= lim

j→∞

∑

m∈Zn
φj(x+m)=

∑

m∈Zn
φ(x+m) (25)

in the topology of C∞(Tn).
That is,

lim
j→∞

Λ(φj +H)=Λ(φ+H), (26)

so Λ is continuous.
Since both �(Rn)/H and C∞(Tn) are F-spaces, Λ is also open, by the open mapping

theorem. This completes the proof. �

The elements of the dual space �′(Tn) of C∞(Tn) are called distributions on Tn. The
above result may shed some light on the relation between �′(Tn) and �′(Rn), the space of
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tempered distributions on Rn. For example, for every u∈�′(Tn), u ◦Λ ◦π is in �′(Rn),
where π(φ) = φ +H is the quotient mapping from �(Rn) to �(Rn)/H . Hence, �′(Tn)
can be imbedded into �′(Rn) in a natural way.
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