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1. Introduction

In this paper we investigate the problem of existence of a renormalized solutions for elliptic
equations of the type

−div(a(x, u,∇u)) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is an open bounded subset of R
N, N ≥ 1, with the data f in L1(Ω). The

operator −div(a(x, u,∇u)) is a Leray-Lions operator defined on the weighted sobolev spaces
W

1,p
0 (Ω, w), but which is not restricted by any growth condition with respect to u (see

assumptions (2.2), (2.4), and (2.5) of Section 3). The function a(x, s, ξ) is controlled by a real
function b :] −∞, m[→ R which blows up for a finite valuem > 0 (see (2.2), (2.3)).

There are mainly two types of difficulties that are studying Problem (1.1). One
consists to give a sense to the flux a(x, u,∇u) on the set {x ∈ Ω;u(x) = m}. The second
one is that the data f only belong to L1, so that proving existence of a weak solution
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(i.e., in the distribution meaning) seems to be an arduous task. To overcome this difficulty
we use in this paper the framework of renormalized solutions. This notion was introduced
by DiPerna and Lions [1] for the study of Boltzmann equation (see also Lions [2] for a few
applications to fluid mechanics models). This notion was then adapted to elliptic vesion
of (1.1) in Boccardo et al. [3], and Murat [4, 5] (see also [6, 7] for nonlinear parabolic
problems). At the same time the equivalent notion of entropy solutions has been developed
independently by Bénilan et al. [8] for the study of nonlinear elliptic problems.

In the case where a(x, u,∇u) is replaced by (d(u) +A(u))∇u (problems with diffusion
matrices that have at least one diagonal coefficient that blows up for a finite value of the
unknown) and f ∈ L2(Ω), existence and uniqueness has been established in Blanchard and
Redwane [9, 10].

As far as we have the stationary and evolution equations case (1.1), the existence and a
partial uniqueness of renormalized solutions have been proved in Blanchard et al. [11] in the
case where a(x, u,∇u) is replaced by A(x, u)∇u (where A(x, s) is a Carathéodory symmetric
matrices, such that A(x, s) blows up as s → m− uniformly with respect to x). It has also
been applied to the study of linear and nonlinear elliptic and parabolic equations when the
diffusion coefficient has a singularity for a finite value of the unknown (see Garcı́a Vázquez
and Ortegón Gallego [12, 13] and Orsina [14]).

The paper is organized as follows. In Section 2 we will precise some basic properties of
weighted Sobolev spaces. Section 3 is devoted to specify the assumptions on a(x, s, ξ), b(s),
and f needed in the present study and gives the definition of a renormalized solution of (1.1).
In Section 4 (Theorem 4.1)we establish the existence of such a solution.

2. Preliminaries

Throughout the paper, we assume that the following assumptions hold true. Ω is a bounded
open subset on R

N, N ≥ 1. Let us suppose that 1 < p < ∞ is a real number, and ω(x) =
{ωi(x)}{0≤i≤N} is a vector of weight functions. Furthermore we suppose that every component
ωi(x) is a measurable function which is strictly positive and satisfies

ωi ∈ L1
loc(Ω), ωi

−1/(p−1) ∈ L1
loc(Ω). (2.1)

We define the weighted Lebesgue space Lp(Ω, ω0) with weight ω0, as the space of all real-
valued measurable functions u for which

‖u‖p,ω0
=
(∫

Ω
|u(x)|pω0(x)dx

)1/p

< +∞. (2.2)

In order to define the weighted Sobolev space of W1,p(Ω, ω), as the space of all real-valued
functions u ∈ Lp(Ω, ω0) such that the derivaties in the sense of distributions satisfy ∂u/∂xi ∈
Lp(Ω, ωi) for all i = 1, . . . ,N. This set of functions forms a Banach space under the norm

‖u‖1,p,ω =

(∫
Ω
|u(x)|pω0(x)dx +

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣
p

ωi(x)dx

)1/p

. (2.3)
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To deal with the Dirichlet problem, we use the space X = W
1,p
0 (Ω, ω) defined as the closure

of C∞
0 (Ω) with respect to the norm ‖ · ‖1,p,ω. Note that, C∞

0 (Ω) is dense in W
1,p
0 (Ω, ω) and

(W1,p
0 (Ω, ω), ‖ · ‖1,p,ω) is a reflexive Banach space. Note that the expression

‖u‖X =

(
N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣
p

ωi(x)dx

)1/p

(2.4)

is a norm defined on X and is equivalent to the norm (2.3). Moreover (X, ‖ · ‖X) is a reflexive
Banach space, and there exist a weight function σ on Ω and a parameter 1 < q < ∞ such that
the Hardy inequality

(∫
Ω
|u|qσ(x)dx

)1/q

≤ C
(

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣
p

ωi(x)dx

)1/p

(2.5)

holds for every u ∈ X with a constant C > 0 independent of u. Moreover, the imbedding
X ↪→ Lq(Ω, σ) is compact.

We recall that the dual of the weighted Sobolev spaces W1,p
0 (Ω, ω) is equivalent to

W−1,p′(Ω, ω∗), where ω∗ = {ω∗
i = ω

1−p′
i ; i = 1, . . . ,N} and p′ = p/(p − 1) is the conjugate of p.

For more details we refer the reader to [15] (see also [16]).

3. Assumptions on the Data and Definition of a Renormalized Solution

Throughout the paper, we assume that the following assumptions hold true. Ω is a bounded
open set on R

N, N ≥ 1. Let 1 < p < ∞, and let ω(x) = {ωi(x)}{0≤i≤N} be a vector of weight
functions.

Let now −div(a(x, u,∇u)) be a Leray-Lions operator defined on W
1,p
0 (Ω, ω) into

W−1,p′(Ω, ω∗) and where

a : Ω × R × R
N −→ R

N is a Carathéodory function, such that (3.1)

there exists a positive function b ∈ C0((−∞, m))which satisfies

lim
r→m−

b(r) = +∞;
∫m
0
b(s)ds < +∞, b(r) ≥ α > 0 ∀r ∈ ]−∞, m[,

a(x, s, ξ) · ξ ≥ b(s)p−1
N∑
i=1

ωi(x)|ξi|p, a(x, s, 0) = 0,

(3.2)

for almost every x ∈ Ω, for every s ∈ R and ξ ∈ R
N .

For any i = 1, . . . ,N,

|ai(x, s, ξ)| ≤ ωi(x)1/p
⎡
⎣L(x) + σ(x)1/p′ |s|q/p′ + b(s)p−1 N∑

j=1

ω
1/p′

j (x)
∣∣ξj∣∣p−1

⎤
⎦, (3.3)
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for almost every x ∈ Ω, for every s and ξ, and where L(x) is a positive function in Lp
′
(Ω)

[
a(x, s, ξ) − a(x, s, ξ′)][ξ − ξ′] ≥ 0, (3.4)

for any ξ, ξ′ ∈ R
N , for any s ∈ R and for almost every x ∈ Ω

f is an element of L1(Ω). (3.5)

Remark 3.1. As already mentioned in the introduction, problem (1.1) does not admit a weak
solution under assumptions (3.1)–(3.5) since the growth of a(x, u,∇u) is not controlled with
respect to u, the field a(x, u,∇u) is not, in general, defined as a distribution because the
difficulty is defining the field a(x, u,∇u) on the subset {x ∈ Ω;u(x) = m} of Ω, (since on
this set, b(u) = +∞).

The following notations will be used throughout the paper. For any K ≥ 0, the
truncation at heightK is defined by TK(r) = max(−K, min(r,K)), for any positive numbers l
and K, the functions TKl are defined by

TKl (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−K, if r ≤ −K,
r, if −K ≤ r ≤ l,
l, if r ≥ l.

(3.6)

We define for n ≥ 1 fixed

θn(r) = T1(r − Tn(r)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if |r| ≤ n,
r − n sg(s), if n ≤ |r| ≤ n + 1,

sg(s), if |r| ≥ n + 1,

(3.7)

and Sn(r) = 1 − |θn(r)|, for all r ∈ R.
The definition of a renormalized solution for Problem (1.1) can be stated as follows.

Definition 3.2. A measurable function u defined on Ω is a renormalized solution of Problem
(1.1) if

TK(u) ∈W1,p
0 (Ω, ω) ∀K ≥ 0, (3.8)

u(x) ≤ m for almost every x ∈ Ω, (3.9)

a
(
x, TKm (u),∇TKm (u)

)
χ{u<m} ∈

N∏
i=1

Lp
′(
Ω, w1−p′

i

)
, (3.10)
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∫
{−n−1≤u(x)≤−n}

a(x, u,∇u)∇udx −→ 0 as n −→ +∞, (3.11)

1
δ

∫
{m−2δ≤u(x)≤m−δ}

a(x, u,∇u)∇udx −→
∫
{u=m}

fdx as δ −→ 0, (3.12)

and if, for every function S inW1,∞(R) such that supp(S) is compact and S(m) = 0, u satisfies

∫
Ω
a(x, u,∇u)∇(S(u)ϕ)dx =

∫
Ω
fS(u)ϕdx, ∀ϕ ∈W1,p

0 (Ω, ω) ∩ L∞(Ω). (3.13)

The following remarks are concerned with Definition 3.2.

Remark 3.3. Notice that, thanks to our regularity assumptions (3.8), (3.9), (3.10) and the
choice of S, all terms in (3.13) are well defined.

The following two identifications are made in (3.13):

(i) a(x, u,∇u)∇(S(u)ϕ) identifies with a(x, TKm (u),∇TKm (u))∇(S(u)ϕ) for almost every
x ∈ Ω, where K > 0 and supp(S) ⊂ [−K,K]. As a consequence of (3.8), (3.9), and
(3.10), and of S ∈W1,∞(R), ϕ ∈W1,p

0 (Ω, ω) ∩ L∞(Ω), it follows that

a
(
x, TKm (u),∇TKm (u)

)
∇(S′(u)ϕ

) ∈ L1(Ω), (3.14)

(ii) fS(u)ϕ ∈ L1(Ω), because f ∈ L1(Ω) and S(u)ϕ ∈ L∞(Ω).

4. Existence Result

This section is devoted to establish the following existence theorem.

Theorem 4.1. Under assumptions (3.1)–(3.5) there exists a renormalized solution u of Problem (1.1).

Proof. The proof is divided into 7 steps. In Step 1, we introduce an approximate problem.
Step 2 is devoted to establish a few a priori estimates, the limit u of the approximate solutions
uε is introduced and it is shown that u satisfies (3.8) and (3.9). Step 3 is devoted to prove an
energy estimate (Lemma 4.2) which is a key point for the monotonicity arguments that are
developed in Step 4. Step 5 is devoted to prove that u satisfies (3.11). In Step 6 we prove that
u satisfies (3.12). Finally, Step 7 is devoted to prove that u satisfies (3.13) of Definition 3.2.

Step 1. Let us introduce the following regularization of the data:

bε(r) = b
(
T1/ε
m−ε(r)

)
∀r ∈ R for ε > 0, (4.1)

aε(x, s, ξ) = a
(
x, T1/ε

m−ε(s), ξ
)

a.e. in Ω, ∀s ∈ R, ∀ξ ∈ R
N, (4.2)

fε ∈ Lp′(Ω);
∥∥fε∥∥L1(Ω) ≤

∥∥f∥∥L1(Ω) : f
ε −→ f strongly in L1(Ω) as ε tends to 0. (4.3)
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Let us now consider the following regularized problem:

−div(aε(x, uε,∇uε)) = fε in Ω, (4.4)

uε = 0 on ∂Ω. (4.5)

In view of (3.3), (4.1), and (4.2), aε satisfy. For i = 1, . . . ,N

∣∣aεi (x, s, ξ)∣∣ ≤ ωi(x)1/p
⎡
⎣L(x) + σ(x)1/p′∣∣∣T1/ε

m−ε(s)
∣∣∣q/p′ + bε(s)p−1

N∑
j=1

ω
1/p′

j (x)
∣∣ξj∣∣p−1

⎤
⎦ (4.6)

a.e. x ∈ Ω, for all s ∈ R, ξ ∈ R
N. And

α ≤ bε(r) ≤ max
{−1/ε≤r≤m−ε}

b(r) = Cε ∀r ∈ R. (4.7)

As a consequence, proving existence of a weak solution uε ∈ W
1,p
0 (Ω, ω) of (4.4) and

(4.5) is an easy task (see, e.g., Theorem 2.1 and Remark 2.1 in Chapter 2 of [17] and see also
[18]).

Step 2. A priori estimates and pointwise convergence of uε.
Using TK(uε) as a test function in (4.4) leads to

∫
Ω
aε(x, uε,∇uε)∇TK(uε)dx =

∫
Ω
fεTK(uε)dx ≤ K∥∥f∥∥L1(Ω). (4.8)

Since aε satisfies (3.2), (4.2), and owing to (4.8) we have

∫
Ω
bε(uε)p−1

N∑
i=1

∣∣∣∣∂TK(u
ε)

∂xi

∣∣∣∣
p

ωi(x)dx ≤ K∥∥f∥∥L1(Ω), (4.9)

αp−1
∫
Ω

N∑
i=1

∣∣∣∣∂TK(u
ε)

∂xi

∣∣∣∣
p

ωi(x)dx ≤ K∥∥f∥∥L1(Ω). (4.10)

From (4.10) we deduce with a classical argument (see, e.g., [18]) that, for a subsequence still
indexed by ε,

uε −→ u a.e. in Ω, (4.11)

TK(uε) −→ TK(u) weakly in W
1,p
0 (Ω, ω) and strongly in Lq(Ω, σ), (4.12)

as ε tends to 0, where u is a measurable function defined on Ω which is finite a.e. in Ω.
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Taking now Zε =
∫TKm (uε)
0 bε(s)ds as a test function in (4.4) gives

∫
Ω
aε(x, uε,∇uε)∇Zεdx =

∫
Ω
fεZεdx. (4.13)

Since aε satisfies (3.2) and b satisfies (3.1), permit to deduce from (4.13) that

∫
Ω

N∑
i=1

∣∣∣∣∂Z
ε

∂xi

∣∣∣∣
p

ωi(x)dx ≤ CK

∥∥f∥∥L1(Ω), (4.14)

where |Zε| ≤ ∫m−Kb(s)ds = CK is a constant independent of ε.
Now for a fixed K > 0, assumption (3.3) gives for i = 1, . . . ,N,

∣∣∣aεi
(
x, TKm (uε),∇TKm (uε)

)∣∣∣

≤ ωi(x)1/p
⎡
⎣L(x) + σ(x)1/p′ max (K,m)q/p

′
+

N∑
j=1

ω
1/p′

j (x)

∣∣∣∣∣
∂Zε

∂xj

∣∣∣∣∣
p−1⎤
⎦.

(4.15)

In view of (4.14) and (4.15), we deduce that

aε
(
x, TKm (uε),∇TKm (uε)

)
is bounded in

N∏
i=1

Lp
′(
Ω, w1−p′

i

)
, (4.16)

then there exists a function XK ∈∏N
i=1L

p′(Ω, w1−p′
i ) such that

aε
(
x, TKm (uε),∇TKm (uε)

)
⇀ XK weakly in

N∏
i=1

Lp
′(
Ω, w1−p′

i

)
as ε −→ 0. (4.17)

To prove that u is less or equal to m is an easy task which is performed exactly as in [10, 11].
Using T+

2m(u
ε) − T+

m(u
ε) as a test function in (4.4) leads to

∫
Ω
aε(x, uε,∇uε)∇(T+

2m(u
ε) − T+

m(u
ε)
)
dx =

∫
Ω
fε
(
T+
2m(u

ε) − T+
m(u

ε)
)
dx, (4.18)

which implies easily that

∫
Ω
aε
(
x, uε,∇(T+

2m(u
ε) − T+

m(u
ε)
))∇(T+

2m(u
ε) − T+

m(u
ε)
)
dx ≤ m∥∥f∥∥L1(Ω). (4.19)

Then (3.2), (4.1), and (4.2) yield

b(m − ε)p−1
∫
Ω

N∑
i=1

∣∣∣∣∣
∂
(
T+
2m(u

ε) − T+
m(u

ε)
)

∂xi

∣∣∣∣∣
p

ωi(x)dx ≤ m∥∥f∥∥L1(Ω). (4.20)
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With the help of Poincaré’s inequality, we have

∫
Ω

∣∣T+
2m(u

ε) − T+
m(u

ε)
∣∣pω0(x)dx ≤ Cm

b(m − ε)p−1∥∥f∥∥L1(Ω)

, (4.21)

where C does not depend on ε. Then in view of (3.1), (4.11), and ω0 > 0, we can pass to the
limit in (4.21) as ε tends to 0, to deduce that

T+
2m(u) − T+

m(u) = 0 a.e. in Ω,

u ≤ m a.e. in Ω.
(4.22)

Let us now take TK(vε) as a test function in (4.4), where vε =
∫uε
0 b

ε(s)ds. We obtain

∫
Ω
aε(x, uε,∇uε)∇TK(vε)dx =

∫
Ω
fεTK(vε)dx ≤ K∥∥f∥∥L1(Ω). (4.23)

Then (3.2) yields

∫
Ω

N∑
i=1

∣∣∣∣∂TK(v
ε)

∂xi

∣∣∣∣
p

ωi(x)dx ≤ K∥∥f∥∥L1(Ω). (4.24)

We deduce with a classical argument that, for a subsequence still indexed by ε,

vε −→ v a.e. in Ω, (4.25)

TK(vε) −→ TK(v) weakly in W
1,p
0 (Ω, ω), (4.26)

as ε tends to 0, where v is a measurable function defined on Ωwhich is finite a.e. in Ω.
Using the admissible test function θn(vε) in (4.4) leads to

∫
Ω
aε(x, uε,∇uε)∇θn(vε)dx =

∫
Ω
fεθn(vε)dx. (4.27)

As a consequence of the previous convergence results, we are in a position to pass to the limit
as ε tends to 0 in (4.27)

lim
ε→ 0

∫
Ω
aε(x, uε,∇uε)∇θn(vε)dx =

∫
Ω
fθn(v)dx. (4.28)
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Using the pointwise convergence of θn(u) to 0 as n tends to +∞ and |θn(u)| ≤ 1 a.e.
in Ω independently of n, since f ∈ L1(Ω), Lebesgue’s convergence theorem shows that∫
Ωfθn(v)dx → 0, as n tends to +∞. Passing to the limit in (4.28) we obtain

lim
n→+∞

lim
ε→ 0

∫
{n≤|vε |≤n+1}

aε(x, uε,∇uε)∇vεdx = 0. (4.29)

Step 3. In this step we prove the following monotonicity estimate.

Lemma 4.2. The subsequence of uε defined in Step 1 satisfies for any K ≥ 0

lim
ε→ 0

∫
Ω

[
aε
(
TKm (uε),∇TKm (uε)

)
bε(uε)p−1

− aε
(
TKm (uε),∇TKm (u)

)
bε(uε)p−1

][
∇TKm (uε) − ∇TKm (u)

]
dx = 0. (4.30)

Proof. Let K ≥ 0 be fixed. Equality (4.30) is split into

∫
Ω

[
aε
(
TKm (uε),∇TKm (uε)

)
bε(uε)p−1

− aε
(
TKm (uε),∇TKm (u)

)
bε(uε)p−1

][
∇TKm (uε) − ∇TKm (u)

]
dx

= Aε
1 +A

ε
2 +A

ε
3,

(4.31)

where

Aε
1 =
∫
Ω

aε
(
TKm (uε),∇TKm (uε)

)
bε(uε)p−1

∇TKm (uε)dx dsdt,

Aε
2 = −

∫
Ω

aε
(
TKm (uε),∇TKm (uε)

)
bε(uε)p−1

∇TKm (u)dx dsdt,

Aε
3 = −

∫
Ω

aε
(
TKm (uε),∇TKm (u)

)
bε(uε)p−1

(
∇TKm (uε) − ∇TKm (u)

)
dx dsdt.

(4.32)

In the sequel we pass to the limit in (4.31)when ε tends to 0.

Limit of Aε
1

Using the admissible test function Sn(vε)
∫TKm (u)
0 (1/b(s)p−1)ds in (4.4) leads to

∫
Ω
Sn(vε)aε(x, uε,∇uε)

∇TKm (u)

b(u)p−1
dx +

∫
Ω
aε(uε,∇uε)∇Sn(vε)·

(∫TKm (u)

0

1

b(s)p−1
ds

)
dx

=
∫
Ω
fεSn(vε)

∫TKm (u)

0

1

b(s)p−1
dsdx,

(4.33)

where vε =
∫uε
0 b

ε(s)ds, pass to the limit as ε tends to 0 in (4.33).
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Since supp(Sn) ⊂ [−(n + 1), n + 1] and {x ∈ Ω; |vε| ≤ n + 1} ⊂ {x ∈ Ω; |uε| ≤ (n + 1)/α},
we have for i = 1, . . . ,N and ε ≤ α/(n + 1)

∣∣aεi (x, uε,∇uε)Sn(vε)∣∣ = ∣∣aεi (x, T(n+1)/α (uε),∇T(n+1)/α(uε)
)
Sn(vε)

∣∣

≤ ‖Sn‖L∞(R)ωi(x)1/p
⎡
⎣L(x) + σ(x)1/p′∣∣T(n+1)/α(uε)∣∣q/p′

+
N∑
j=1

ω
1/p′

j (x)

∣∣∣∣∣
∂Tn+1(vε)

∂xj

∣∣∣∣∣
p−1⎤
⎦.

(4.34)

In view of (4.24), (4.34) we deduce that for fixed n ≥ 1:

aε
(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)
Sn(vε) is bounded in

N∏
i=1

Lp
′(
Ω, w1−p′

i

)
, (4.35)

independently of ε ≤ α/(n + 1). Then there exists a function Yn ∈∏N
i=1L

p′(Ω, w1−p′
i ) such that

for fixed n ≥ 1:

Sn(vε)aε
(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)
⇀ Yn weakly in

N∏
i=1

Lp
′(
Ω, w1−p′

i

)
as ε −→ 0.

(4.36)

Now for max(K,m) ≤ n/α, we have

Sn(vε)aε
(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)
χ{−K<uε<m}

= Sn(vε)aε
(
x, TmK (uε),∇TmK (uε)

)
χ{−K<uε<m}

(4.37)

a.e. in Ω, which implies that, through the use of (4.17), (4.25), and (4.36) and passing to the
limit as ε tends to 0,

Ynχ{−K<u<m} = Sn(v)XKχ{−K<u<m} (4.38)

a.e. in Ω − {{u = −K} ∪ {u = m}} for max(K,m) ≤ n/α. As a consequence of (4.38) we have
for max(K,m) ≤ n/α

Yn∇TKm (u) = Sn(v)XK∇K
m(u) a.e. in Ω. (4.39)
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We are now in a position to exploit (4.33), which gives together with (4.36) and (4.39)

lim
ε→ 0

∫
Ω
Sn(vε)aε(x, uε,∇uε)

∇TKm (u)

b(u)p−1
dx

= lim
ε→ 0

∫
Ω
Sn(vε)aε

(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)∇TKm (u)

b(u)p−1
dx

=
∫
Ω
Yn

∇TKm (u)

b(u)p−1
dx

=
∫
Ω
Sn(v)XK

∇TKm (u)

b(u)p−1
dx.

(4.40)

Passing to the limit as n tends to +∞ in (4.40) leads to

lim
n→+∞

lim
ε→ 0

∫
Ω
Sn(vε)aε(x, uε,∇uε)

∇TKm (u)

b(u)p−1
dx =

∫
Ω
XK

∇TKm (u)

b(u)p−1
dx. (4.41)

The second term of (4.33)

∣∣∣∣∣
∫
Ω
aε(x, uε,∇uε)∇Sn(vε).

(∫TKm (u)

0

1

b(s)p−1
ds

)
dx

∣∣∣∣∣

≤ max(m,K)
αp−1

∫
{n≤|vε |≤n+1}

aε(x, uε,∇uε)∇vεdx.
(4.42)

Then (4.29) implies that

lim
n→+∞

lim
ε→ 0

∫
Ω
aε(x, uε,∇uε)∇Sn(vε).

(∫TKm (u)

0

1

b(s)p−1
ds

)
dx = 0. (4.43)

In view (4.41) and (4.43), passing to the limit as ε tends to 0 and as n tends to +∞ in (4.33) is
an easy task and leads to

∫
Ω
XK

∇TKm (u)

b(u)p−1
dx =

∫
Ω
f

∫TKm (u)

0

1

b(s)p−1
dsdx. (4.44)

We are now in a position to exploit (4.44).

The use of the test function
∫TKm (uε)
0 (1/bε(s)p−1)ds in (4.4), yields

∫
Ω
aε(x, uε,∇uε)∇T

K
m (uε)

bε(uε)p−1
dx =

∫
Ω
fε
∫TKm (uε)

0

1

bε(s)p−1
dsdx. (4.45)
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Passing to the limit as ε tends to 0 in (4.45), in view (4.44), we have

lim
ε→ 0

Aε
1 = lim

ε→ 0

∫
Ω
aε(x, uε,∇uε)∇T

K
m (uε)

bε(uε)p−1
dx =

∫
Ω
XK

∇TKm (u)

b(u)p−1
dx. (4.46)

Limit of Aε
2

In view of (4.12), (4.17) and since 1/bε(uε)p−1 converges to 1/b(u)p−1 a.e. in Ω and due to the
bound 1/bε(uε)p−1 ≤ 1/αp−1 a.e. in Ω, we have

lim
ε→ 0

Aε
2 = −

∫
Ω
XK

∇TKm (u)

b(u)p−1
dx. (4.47)

Limit of Aε
3

Let us remark that (3.1), (4.1), and (4.11) imply that

aε
(
x, TKm (uε),∇TKm (u)

)
bε(uε)p−1

−→ a
(
x, TKm (u), DTKm (u)

)
b(u)p−1

a.e. in Ω, (4.48)

as ε tends to 0, and that for i = 1, . . . ,N

∣∣∣∣∣
aεi
(
TKm (uε),∇TKm (u)

)
bε(uε)p−1

∣∣∣∣∣

≤ w1/p
i (x)

⎡
⎣ 1
αp−1

L(x) +
max (K,m)q/p

′

αp−1
σ1/p′(x) +

N∑
j=1

w
1/p′

j

∣∣∣∣∣
∂TKm (u)
∂xj

∣∣∣∣∣
p−1⎤
⎦

(4.49)

a.e. in Ω, uniformly with respect to ε.
It follows that when ε tends to 0

a
(
x, TKm (uε),∇TKm (u)

)
bε(uε)p−1

−→ a
(
x, TKm (u),∇TK(u)

)
b(u)p−1

strongly in
N∏
i=1

Lp
′(
Ω, w1−p′

i

)
. (4.50)

In view of (4.12), we conclude that

(
∇TKm (uε) − ∇TKm (u)

)
⇀ 0 weakly in

N∏
i=1

Lp(Ω, wi), as ε goes to 0. (4.51)

As a consequence of (4.50) and (4.51) we have for all K > 0

lim
ε→ 0

Aε
3 = 0. (4.52)
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Equations (4.46), (4.46), (4.47), and (4.46) allow to pass to the limit as ε tends to zero in (4.31)
and to obtain (4.30) of Lemma 4.2.

Step 4. In this step we identify the weak limit XK and we prove the weak L1 convergence of
the “truncated” energy (aε(x, TKm (uε),∇TKm (uε))/bε(uε)p−1)∇TKm (uε) as ε tends to 0.

Lemma 4.3. For fixed K ≥ 0, one has

XK = a
(
x, TKm (u),∇TKm (u)

)
a.e. in {x ∈ Ω;u(x) < m}. (4.53)

And as ε tends to 0

aε
(
x, TKm (uε),∇TKm (uε)

)
bε(uε)p−1

∇TKm (uε)⇀
a
(
x, TKm (u),∇TKm (u)

)
b(u)p−1

∇TKm (u) weakly in L1(Ω). (4.54)

Proof. LetK ≥ 0 be fixed. From (4.11) and (4.50) together with (4.30) of Lemma 4.2, we obtain

lim
ε→ 0

∫
Ω

aε
(
x, TKm (uε),∇TKm (uε)

)
b
(
TKm (uε)

)p−1 ∇TKm (uε)dx =
∫
Ω

XK

b
(
TKm (u)

)p−1 ∇TK(u)dx. (4.55)

We remark the monotone character a (with respect to ξ) and since 1/bε(uε)p−1 converges to
1/b(u)p−1 a.e. in Ω and due to the bound 1/bε(uε)p−1 ≤ 1/αp−1 a.e. in Ω, we conclude that for
all ψ ∈∏N

i=1L
p(Ω, wi)we have

0 ≤ lim
ε→ 0

∫
Ω

[
aε
(
x, TKm (uε),∇TKm (uε)

)
bε(uε)p−1

− aε
(
x, TKm (uε), ψ

)
bε(uε)p−1

][
∇TKm (uε) − ψ

]
dx

= lim
ε→ 0

∫
Ω

aε
(
x, TKm (uε),∇TKm (uε)

)
bε(uε)p−1

[
∇TKm (uε) − ψ

]
dx

− lim
ε→ 0

∫
Ω

aε
(
x, TKm (uε), ψ

)
bε(uε)p−1

[
∇TKm (uε) − ψ

]
dx

=
∫
Ω

XK

b(u)p−1
[
∇TKm (u) − ψ

]
dx −

∫
Ω

a
(
x, TKm (u), ψ

)
b(u)p−1

[
∇TKm (u) − ψ

]
dx

×
∫
Ω

[
XK

b(u)p−1
− a
(
x, TKm (u), ψ

)
b(u)p−1

][
∇TKm (u) − ψ

]
dx.

(4.56)

The usual Minty’s argument applies in view of (4.56). It follows that

XK

b(u)p−1
=
a
(
x, TKm (u),∇TKm (u)

)
b(u)p−1

a.e. in Ω (4.57)

which together with (4.20) yields (4.53) of Lemma 4.3.
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In order to prove (4.54), we observe that the monotone character of a (with respect to
ξ) and (4.30) give

[
aε
(
x, TKm (uε),∇TKm (uε)

)
bε(uε)p−1

− aε
(
x, TKm (uε),∇TKm (u)

)
bε(uε)p−1

][
∇TKm (uε) − ∇TKm (u)

]
−→ 0 (4.58)

strongly in L1(Ω) as ε tends to 0. Moreover (4.12), (4.17), (4.50), and (4.53) imply that

aε
(
x, TKm (uε),∇TKm (uε)

)
bε(uε)p−1

∇TKm (u)⇀
a
(
x, TKm (u),∇TKm (u)

)
b(u)p−1

∇TKm (u) (4.59)

weakly in L1(Ω) as ε tends to 0

aε
(
x, TKm (uε),∇TKm (u)

)
bε(uε)p−1

∇TKm (uε)⇀
a
(
x, TKm (u),∇TKm (u)

)
b(u)p−1

∇TKm (u) (4.60)

weakly in L1(Ω) as ε tends to 0, and

aε
(
x, TKm (uε),∇TKm (u)

)
bε(uε)p−1

∇TKm (u)⇀
a
(
x, TKm (u),∇TKm (u)

)
b(u)p−1

∇TKm (u) (4.61)

strongly in L1(Ω) as ε tends to 0.
Using the above convergence results (4.59), (4.60), and (4.61) in (4.58) we obtain that

for any K ≥ 0

aε
(
x, TKm (uε),∇TKm (uε)

)
bε(uε)p−1

∇TKm (uε)⇀
a
(
x, TKm (u),∇TKm (u)

)
b(u)p−1

∇TKm (u) (4.62)

weakly in L1(Ω) as ε tends to 0.

Step 5. In this step we prove that u satisfies (3.11).
Using (Tn+1m (uε) − Tnm(uε)) as a test function in (4.4) leads to

∫
Ω
aε(x, uε,∇uε)∇

(
Tn+1m (uε) − Tnm(uε)

)
dx =

∫
Ω
fε
(
Tn+1m (uε) − Tnm(uε)

)
dx. (4.63)



International Journal of Mathematics and Mathematical Sciences 15

Since supp(Tn+1m (·) − Tnm(·)) ⊂ [−(n + 1),−n], we have

∫
{−n−1≤uε(x)≤−n}

aε(x, uε,∇uε)∇uεdx

=
∫
Ω
aε(x, uε,∇uε)∇

(
Tn+1m (uε) − Tnm(uε)

)
dx

=
∫
Ω

aε(x, uε,∇uε)
bε(uε)p−1

∇
(
Tn+1m (uε) − Tnm(uε)

)
b
(
Tn+1m−1(u

ε)
)p−1

dx

=
∫
Ω

aε
(
x, Tn+1m (uε),∇Tn+1m (uε)

)
bε(uε)p−1

∇Tn+1m (uε)b
(
Tn+1m−1(u

ε)
)p−1

dx

−
∫
Ω

aε(x, Tnm(u
ε),∇Tnm(uε))

bε(uε)p−1
∇Tnm(uε)b

(
Tn+1m−1(u

ε)
)p−1

dx.

(4.64)

In view of (4.54) of Lemma 4.3 and since b(Tn+1m−1(u
ε))p−1 converges to b(Tn+1m−1(u))

p−1 a.e. in Ω
and due to the bound b(Tn+1m−1(u

ε))p−1 ≤ maxs∈[−n−1,m−1]b(s)
p−1 a.e. in Ω, we can pass to the

limit as ε tends to 0 for fixed n ≥ 0 to obtain

lim
ε→ 0

∫
{−n−1≤uε(x)≤−n}

aε(x, uε,∇uε)∇uεdx

=
∫
Ω

a
(
x, Tn+1m (u),∇Tn+1m (u)

)
b(u)p−1

∇Tn+1m (u)b
(
Tn+1m−1(u)

)p−1
dx

−
∫
Ω

a(x, Tnm(u),∇Tnm(u))
b(u)p−1

∇Tnm(u)b
(
Tn+1m−1(u)

)p−1
dx

=
∫
{−n−1≤u(x)≤−n}

a(x, u,∇u)∇udx.

(4.65)

Taking the limit as ε tends to 0 and n tends to +∞ in (4.63) and using the estimate (4.64) and
(4.65) show that

lim
n→+∞

∫
{−n−1≤u(x)≤−n}

a(x, u,∇u)∇udx ≤ lim
n→+∞

∫
{u≤−n}

∣∣f∣∣dx = 0. (4.66)

Step 6. In this step we prove that u satisfies (3.12).
Using Sn(vε)(1/δ)(T+

m−δ(u) − T+
m−2δ(u)) as a test function in (4.4) leads to

1
δ

∫
Ω
Sn(vε)aε(x, uε,∇uε)∇

(
T+
m−δ(u) − T+

m−2δ(u)
)
dx

=
∫
Ω
Sn(vε)fε

(
T+
m−δ(u) − T+

m−2δ(u)
)

δ
dx,

(4.67)
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where vε =
∫uε
0 b

ε(s)ds. Since supp(Sn) ⊂ [−(n + 1), n + 1] and {x ∈ Ω; |vε| ≤ n + 1} ⊂ {x ∈
Ω; |uε| ≤ (n + 1)/α}we have

1
δ

∫
Ω
Sn(vε)aε(x, uε,∇uε)∇

(
T+
m−δ(u) − T+

m−2δ(u)
)
dx

=
1
δ

∫
Ω
Sn(vε)aε

(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)∇(T+
m−δ(u) − T+

m−2δ(u)
)
dx.

(4.68)

In view of (4.22), (4.36), (4.39), and (4.53), passing to the limit as ε tends to 0 and n tends to
+∞

lim
n→+∞

lim
ε→ 0

1
δ

∫
Ω
Sn(vε)aε

(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)∇(T+
m−δ(u) − T+

m−2δ(u)
)
dx

= lim
n→+∞

1
δ

∫
Ω
Sn(v)a

(
x, T(n+1)/α(u),∇T(n+1)/α(u)

)∇(T+
m−δ(u) − T+

m−2δ(u)
)
dx

= lim
n→+∞

1
δ

∫
Ω
Sn(v)a(x, Tm−δ(u),∇Tm−δ(u))∇

(
T+
m−δ(u) − T+

m−2δ(u)
)
dx

=
1
δ

∫
Ω
a(x, Tm−δ(u),∇Tm−δ(u))∇

(
T+
m−δ(u) − T+

m−2δ(u)
)
dx

=
1
δ

∫
{m−2δ≤u≤m−δ}

a(x, u,∇u)∇udx.

(4.69)

Taking the limit as ε tends to 0, n tends to +∞ and δ tends to 0 in (4.67) and using the estimate
(4.68) and (4.69) show that

lim
δ→ 0

1
δ

∫
{m−2δ≤u≤m−δ}

a(x, u,∇u)∇udx = lim
δ→ 0

∫
Ω
f

(
T+
m−δ(u) − T+

m−2δ(u)
)

δ
dx

=
∫
{u=m}

f(x)dx.

(4.70)

Step 7. In this step, u is shown to satisfy (3.13). Let ϕ ∈ W
1,p
0 (Ω, ω) ∩ L∞(Ω) and let S be a

function in W1,∞(R) such that S has a compact support and S(m) = 0. Let K be a positive
real number such that supp(S) ⊂ [−K,K] and vε =

∫uε
0 b

ε(s)ds. Using S(u)Sn(vε)ϕ as a test
function in (4.4) leads to

∫
Ω
Sn(vε)aε(x, uε,∇uε)∇

(
S(u)ϕ

)
dx +

∫
Ω
S(u)ϕaε(x, uε,∇uε)∇Sn(vε)dx

=
∫
Ω
fεSn(vε)S(u)ϕdx.

(4.71)

In what follows we pass to the limit as ε tends to 0 and n tends to +∞ in each term of
(4.71).
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Limit of First Term in (4.71)

Since supp Sn ⊂ [−(n + 1), n + 1] and {x ∈ Ω; |vε| ≤ n + 1} ⊂ {x ∈ Ω; |uε| ≤ (n + 1)/α}, we have

Sn(vε)aε(x, uε,∇uε) = Sn(vε)aε
(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)
a.e. in Ω. (4.72)

In view of (4.22), (4.36), (4.39), and (4.53), passing to the limit as ε tends to 0

lim
ε→ 0

∫
Ω
Sn(vε)aε(x, uε,∇uε)∇

(
S(u)ϕ

)
dx

= lim
ε→ 0

∫
Ω
Sn(vε)aε

(
x, T(n+1)/α(uε),∇T(n+1)/α(uε)

)∇(S(u)ϕ)dx

=
∫
Ω
Sn(v)a

(
x, T(n+1)/α(u),∇T(n+1)/α(u)

)∇(S(u)ϕ)dx

=
∫
Ω
Sn(v)a

(
x, TKm (u),∇TKm (u)

)
∇(S(u)ϕ)dx,

lim
n→+∞

lim
ε→ 0

∫
Ω
Sn(vε)aε(x, uε,∇uε)∇

(
S(u)ϕ

)
dx

= lim
n→+∞

∫
Ω
Sn(v)a

(
x, TKm (u),∇TKm (u)

)
∇(S(u)ϕ)dx

=
∫
Ω
a
(
x, TKm (u),∇TKm (u)

)
∇(S(u)ϕ)dx =

∫
Ω
a(x, u,∇u)∇(S(u)ϕ)dx.

(4.73)

Limit of Second Term in (4.71)

Since supp(S′
n) ⊂ [−(n + 1),−n] ∪ [n + 1, n] for any n ≥ 1. As a consequence

∣∣∣∣
∫
Ω
S(u)ϕaε(x, uε,∇uε)∇Sn(vε)dx

∣∣∣∣ ≤ ‖S‖L∞(Ω)

∥∥ϕ∥∥L∞(Ω)

∫
{n≤|vε |≤n+1}

aε(x, uε,∇uε)∇vεdx.
(4.74)

Taking the limit as ε tends to 0 and n tends to +∞ in (4.74) and using the estimate (4.29) show
that

lim
n→+∞

lim
ε→ 0

∣∣∣∣
∫
Ω
S(u)ϕaε(x, uε,∇uε)∇Sn(vε)dx

∣∣∣∣ = 0. (4.75)

Limit of the Right-Hand Side of (4.71)

Due to (4.3) and (4.25), we have

lim
n→+∞

lim
ε→ 0

∫
Ω
fεSn(vε)S(u)ϕdx =

∫
Ω
fS(u)ϕdx. (4.76)
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As a consequence of the previous convergence results, we are in a position to pass to the limit
as ε tends to 0 in (4.71) and to conclude that u satisfies (3.13). The proof of Theorem 4.1 is
achieved.
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l’Université de Séville, Laboratoire d’Analyse Numérique, Paris VI, Paris, France, 1993.
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Journal de Mathématiques Pures et Appliquées, vol. 77, no. 2, pp. 117–151, 1998.

[7] D. Blanchard, F. Murat, and H. Redwane, “Existence and uniqueness of a renormalized solution for
a fairly general class of nonlinear parabolic problems,” Journal of Differential Equations, vol. 177, no. 2,
pp. 331–374, 2001.
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