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1. Introduction

Consider the following initial boundary value parabolic problem:

ut +Au = f, in Q = Ω × J, J = (0, T],

u(x, t) = 0, on ∂Ω × J,

u(x, 0) = u0, in Ω,

(1.1)

where Ω is a bounded domain in Rd (d ≤ 4) with piecewise smooth boundary ∂Ω, and A
is a second-order symmetric positive definite elliptic operator. Coefficients of A, f(x, t) and
u0(x) together with their derivatives up to certain order are bounded in order to guarantee
our analysis. Note that our assumptions on u do not have any restrictions, since it will be
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shown that approximate solutions considered below are uniformly close to the exact solution
and thus only depend on the data of (1.1) in a neighborhood of u.

Superconvergence of finite element methods for parabolic problems has been studied
in many works. For example, Thomée [1], Chen and Huang [2] studied superconvergence of
the gradient in L2 norm. In 1989, Thomée et al. [3] studiedmaximum-norm superconvergence
of the gradient in piecewise linear finite element approximations of a parabolic problem.
An analogous result was also obtained by Chen [4]. Moreover, Li and Wei [5] investigated
global strong superconvergence of finite element schemes for a class of Sobolev equations in
Rd (d ≥ 1), and two order superconvergence results are proved in W1,p(Ω) and Lp(Ω) for
2 ≤ p < ∞. In particular, Kwak et al. [6] studied superconvergence of a semi-discrete finite
element scheme for parabolic problems in R2, in which superconvergence results inW1,p(Ω)
and Lp(Ω) are established for 2 ≤ p ≤ ∞.

In this paper, we extend superconvergence results obtained in [6]. We derive the two
order (2 ≤ p < ∞) and the almost two order (p = ∞) global superconvergence estimates
of U − Rhu in W1,p(Ω) and in Lp(Q), where U is the approximate solution, and Rhu is the
Ritz projection of the exact solution of (1.1). In addition to the results in [6], we establish
two order superconvergence estimates in Lp norm for piecewise cubic or higher elements.
Moreover, results of the p = ∞ case are also included in two space dimensions (d = 1
or 2). As an application, by employing the interpolated finite element operators (cf. [7, 8])
to the approximate solution U in the rectangular mesh, we obtain the two order global
superconvergence of the error between u and the interpolation ofU. For a general domainΩ,
we can also apply the optimal partition to most rectangular meshes to derive one and a half-
order superconvergence.

The rest of this paper is organized as follows. Section 2 provides some preliminaries.
Several useful lemmas are established in Section 3. In Sections 4 and 5, we derive the
superconvergence in W1,p(Ω) and Lp(Q) respectively. Finally, an application is presented in
Section 6.

2. Preliminaries

We denote Wm,p(Ω) and Hm(Ω), m ≥ 0 and 1 ≤ p ≤ ∞, the Sobolev spaces on Ω associated
with the norms

‖·‖m,p = ‖·‖Wm,p(Ω), ‖·‖m = ‖·‖Hm(Ω), ‖·‖ = ‖·‖L2(Ω). (2.1)

If X is a normed space with the norm ‖ · ‖X and φ : J → X, then we define

∥
∥φ
∥
∥
p

Lp(0,t;X) =
∫ t

0

∥
∥φ(τ)

∥
∥
p

X dτ,

∥
∥φ
∥
∥
p

Lp(J ;X) =
∫T

0

∥
∥φ(τ)

∥
∥
p

X dτ,

∥
∥φ
∥
∥
L∞(J ;X) = ess sup

t∈J

∥
∥φ(t)

∥
∥
X.

(2.2)
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Moreover, we denote

(

φ, ψ
)

=
∫

Ω
φψ dx,

(

φ, ψ
)

Q =
∫

Q

φψ dx dt =
∫T

0

(

φ, ψ
)

dt,

(2.3)

the inner product in L2(Ω) (or L2(Ω)2) and L2(Q) (or L2(Q)2), respectively. We also use
Sobolev spacesW2l,l

p (Q) with norm

∥
∥φ
∥
∥
W2l,l

p (Q) =

⎛

⎝

∫

Q

∑

|α|+2s≤2l
|Dα

xD
s
t φ(x, t)|

p dxdt

⎞

⎠

1/p

. (2.4)

We use C to denote a generic positive constant independent of h that can take different
values at different occurrences.

Let T be a family of quasiuniform triangulation of Ω, and let Sh ⊂ H1
0(Ω) be the kth

(k ≥ 1) degree finite element space satisfying the following properties (cf. [9, 10]).

Lemma 2.1. For all k ≥ 1, 1 ≤ s ≤ k + 1 and 1 ≤ p ≤ ∞, we have

inf
χ∈Sh

{

‖v − χ‖0,p + h‖v − χ‖1,p
}

≤ Chs‖v‖s,p, ∀v ∈Ws,p(Ω) ∩H1
0(Ω). (2.5)

Lemma 2.2. For all χ ∈ Sh, we have

‖χ‖1,p′ ≤ Ch
−d/p‖χ‖1,1, 2 ≤ p <∞, p′ =

p

p − 1
, (2.6)

‖χ‖0,∞ ≤ Ch−d/p‖χ‖0,p, 2 ≤ p <∞. (2.7)

Given a function u ∈ Wk+1,p(Ω) ∩H1
0(Ω), we define its Ritz projection Rhu ∈ Sh that

satisfies

A
(

Rhu − u, χ
)

= 0, ∀χ ∈ Sh. (2.8)

Then we get the following well-known estimate:

‖Rhu − u‖0,p + h‖Rhu − u‖1,p ≤ Chk+1‖u‖k+1,p, 1 < p <∞. (2.9)
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Moreover, by using the duality argument and (2.9), it is true that for v ∈Wl,p′(Ω),

|(Rhu − u, v)| ≤ Chk+1+l‖u‖k+1,p‖v‖l,p′ , 0 ≤ l ≤ k − 1, (2.10)

where 1 < p <∞ and 1/p + 1/p′ = 1.
We now turn to the finite element scheme of (1.1).
Find a mapU(t) : J → Sh such that

(

Ut, χ
)

+A
(

U,χ
)

=
(

f(t), χ
)

, χ ∈ Sh, t ∈ J,

U(0) = U0 in Ω,
(2.11)

whereU0 ∈ Sh is defined by

A
(

U0, χ
)

=
(

f(0), χ
)

−
(

Rhut(0), χ
)

, χ ∈ Sh, (2.12)

and ut(0) = f(0) −Au0 is given by (1.1).

3. Auxiliary Lemmas

To investigate the superconvergence of finite element approaches for parabolic problems,
here and throughout the paper, we decompose the error asU−u = (U−Rhu)+(Rhu−u) = ξ+η
and estimate ξ in a superconvergent order.

We start with the superconvergence of initial value errors.

Lemma 3.1. Let u and U be solutions of (1.1) and (2.11), respectively. Then the following estimates
are true:

Ut(0) = Rhut(0), (3.1)

‖ξ(0)‖1 ≤

⎧

⎨

⎩

Chk+2‖ut(0)‖k+1, k > 1,

Ch2‖ut(0)‖2, k = 1,
(3.2)

‖ξ(0)‖0,p ≤ Chk+3‖ut(0)‖k+1,p, 2 ≤ p <∞, k > 2. (3.3)

Proof. From (2.12) and (2.11), we have for all χ ∈ Sh

(

Rhut(0), χ
)

=
(

f(0), χ
)

−A
(

U0, χ
)

=
(

Ut(0), χ
)

, (3.4)

and thus (3.1) holds.
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By the definition of ξ, (2.11), (2.8), (1.1), and the definition of η, we obtain that for all
χ ∈ Sh,

(

ξt, χ
)

+A
(

ξ, χ
)

=
(

Ut, χ
)

+A
(

U,χ
)

−
(

Rhut, χ
)

−A
(

Rhu, χ
)

=
(

f, χ
)

−
(

Rhut, χ
)

−A
(

u, χ
)

=
(

ut, χ
)

−
(

Rhut, χ
)

= −
(

ηt, χ
)

.

(3.5)

Let t = 0, and note that ξt(0) = 0, we obtain

A
(

ξ(0), χ
)

= −
(

ηt(0), χ
)

, χ ∈ Sh. (3.6)

Then by taking χ = ξ(0), it follows from (2.10) that

‖ξ(0)‖21 ≤

⎧

⎨

⎩

Chk+2‖ut(0)‖k+1‖ξ(0)‖1, k > 1,

Ch2‖ut(0)‖2‖ξ(0)‖, k = 1,
(3.7)

which implies (3.2).
Finally we turn to the proof of (3.3). To do so, we construct an auxiliary problem. Let

Φ ∈W1,p′

0 (Ω) satisfy

A(v,Φ) =
(

v, φ
)

, v ∈ H1
0(Ω), (3.8)

and hence by the regularity estimate, it holds that

‖Φ‖2,p′ ≤ C‖φ‖0,p′ , (3.9)

where p′ = p/(p − 1).
Therefore, it follows from (3.8), (2.8), (3.6), (2.10), (2.9), and (3.9) that for φ ∈ Lp′(Ω),

(

ξ(0), φ
)

= A(ξ(0),Φ)

= A(ξ(0), RhΦ)

=
(

ηt(0),Φ − RhΦ
)

−
(

ηt(0),Φ
)

≤ Chk+2‖ut(0)‖k+1,p‖Φ − RhΦ‖1,p′ + Chk+3‖ut(0)‖k+1,p‖Φ‖2,p′

≤ Chk+3‖ut(0)‖k+1,p‖Φ‖2,p′

≤ Chk+3‖ut(0)‖k+1,p‖φ‖0,p′ ,

(3.10)

which implies (3.3).



6 International Journal of Mathematics and Mathematical Sciences

The following lemma gives superconvergence estimates for ξtt and ∇ξ.

Lemma 3.2. Let u andU be solutions of (1.1) and (2.11), respectively. Then for k > 1,

(∫ t

0
‖ξtt‖2dτ

)1/2

+ ‖ξt‖1 ≤ Chk+2
⎡

⎣‖utt‖k+1 +
(∫ t

0
‖uttt‖2k+1dτ

)1/2
⎤

⎦, t ∈ J. (3.11)

Proof. By differentiating (3.5) in time, we have

(

ξtt, χ
)

+A
(

ξt, χ
)

= −
(

ηtt, χ
)

, χ ∈ Sh. (3.12)

Choosing χ = ξtt, (3.12) becomes

‖ξtt‖2 +
1
2
d

dt
A(ξt, ξt) = −

(

ηtt, ξtt
)

. (3.13)

Integrating both sides of (3.13) with respect to t and applying the integration by parts
argument, we obtain that from (3.1) and (2.10)

∫ t

0
‖ξtt‖2dτ +

1
2
A(ξt, ξt) = −

∫ t

0

(

ηtt, ξtt
)

dτ

= −
(

ηtt, ξt
)

+
∫ t

0

(

ηttt, ξt
)

dτ

≤ Chk+2‖utt‖k+1‖ξt‖1 + Chk+2
∫ t

0
‖uttt‖k+1‖ξt‖1dτ

≤ ε‖ξt‖21 + C
[

h2k+4
(

‖utt‖2k+1 +
∫ t

0
‖uttt‖2k+1dτ

)

+
∫ t

0
‖ξt‖21dτ

]

.

(3.14)

Therefore, the proof is completed by eliminating ε‖ξt‖21 and applying the Gronwall inequality.

Furthermore, the result below for k = 1 can then be obtained by replacing (2.10) by
(2.9) in the proof of Lemma 3.2.

Lemma 3.3. It holds that

(∫ t

0
‖ξtt‖2dτ

)1/2

+ ‖ξt‖1 ≤ Ch2
⎡

⎣‖utt‖2 +
(∫ t

0
‖uttt‖22dτ

)1/2
⎤

⎦, t ∈ J. (3.15)

4. Superconvergence in W1,p(Ω)

In this Section, we derive the two order global superconvergence (2 ≤ p <∞) and the almost
two order global superconvergence (p = ∞) estimates on ξ inW1,p(Ω).
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Theorem 4.1. Under the assumptions that ut ∈ Wk+1,p(Ω), utt ∈ Hk+1(Ω), and uttt ∈
L2(0, t;Hk+1(Ω)), we have for d ≤ 4 and 2 ≤ p <∞,

‖ξ‖1,p ≤ Ch
k+2, k > 1. (4.1)

Proof. We first introduce an auxiliary problem.
For ψ ∈ Lp′(Ω), let ψx be an arbitrary component of ∇ψ, and let Ψ ∈ W

1,p′

0 (Ω) be the
solution of

A(v,Ψ) = −
(

v, ψx
)

, ∀v ∈ H1
0(Ω). (4.2)

The following priori estimate holds:

‖Ψ‖1,p′ ≤ C
∥
∥ψ
∥
∥
0,p′ . (4.3)

Let v = ξ in (4.2), it follows from the integration by parts argument, (2.8) and (3.5) that

(

ξx, ψ
)

= A(ξ,Ψ)

= A(ξ, RhΨ)

= −
(

ηt + ξt, RhΨ
)

.

(4.4)

From (2.10), the stability of Rh and (4.3), we obtain

−
(

ηt, RhΨ
)

≤ Chk+2‖ut‖k+1,p‖RhΨ‖1,p′

≤ Chk+2‖ut‖k+1,p‖Ψ‖1,p′

≤ Chk+2‖ut‖k+1,p
∥
∥ψ
∥
∥
0,p′ .

(4.5)

On the other hand, for s = s′ = 2 and d = 1 or 2, or s = 2d/(d − 2), s′ = s/(s − 1), and
d = 3 or 4, Sobolev embedding inequalities (cf. [11]), Lemma 3.2, the stability of Rh, and (4.3)
imply that

−(ξt, RhΨ) ≤ C‖ξt‖0,s‖RhΨ‖0,s′

≤ C‖ξt‖1‖RhΨ‖1,p′

≤ Chk+2
∥
∥ψ
∥
∥
0,p′ .

(4.6)
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Combining (4.4), (4.5), and (4.6), we have

‖ξx‖0,p = sup
ψ∈Lp′ (Ω)

(

ξx, ψ
)

∥
∥ψ
∥
∥
0,p′

≤ Chk+2. (4.7)

Therefore, (4.1) follows from summing up all components ξx of ∇ξ.

The following theorem can then be obtained immediately by using Lemma 3.2 and
Theorem 4.1.

Theorem 4.2. Under the assumptions of Lemma 3.2 and Theorem 4.1, we have that for d ≤ 4,

‖ξ‖1,Q ≤ Chk+2, k > 1. (4.8)

We now turn to the case of p = ∞.

Theorem 4.3. Assume that ut ∈ L∞(J ;Wk+1,p(Ω)), utt ∈ L∞(J ;Hk+1(Ω)), and uttt ∈ L2(J ;
Hk+1(Ω)). Then for d = 1 and 2,

‖ξ‖L∞(J ;W1,∞(Ω)) ≤ Chk+2−ε, k > 1, (4.9)

where p is large enough and ε > d/p.

Proof. We first define the Green functions associated with the bilinear form A(·, ·).
Let G∗

z ∈ H1
0(Ω) be the pre-Green function, and let ∂zG∗

z be the directional derivative
of G∗

z along some direction with respect to z. Let Gh
z, ∂zG

h
z ∈ Sh be the finite element

approximations of G∗
z and ∂zG

∗
z, respectively. Then we know that (cf. [1, 12])

∥
∥
∥Gh

z

∥
∥
∥ +
∥
∥
∥Gh

z

∥
∥
∥
1,q

≤ C, q < 2, (4.10)

∥
∥
∥∂zG

h
z

∥
∥
∥

2
+
∥
∥
∥∂zG

h
z

∥
∥
∥
1,1

≤ C log
1
h
. (4.11)

Now by definitions of Green functions, (3.5), Hölder’s inequalities, (2.10), and (3.11),
it is true that for all (z, t) ∈ Q,

ξ(z, t) = A
(

ξ, Gh
z

)

= −
(

ηt, G
h
z

)

−
(

ξt, G
h
z

)

≤ Chk+2‖ut‖k+1,p
∥
∥
∥Gh

z

∥
∥
∥
1,p′

+ ‖ξt‖
∥
∥
∥Gh

z

∥
∥
∥

≤ Chk+2
(∥
∥
∥Gh

z

∥
∥
∥
1,p′

+
∥
∥
∥Gh

z

∥
∥
∥

)

,

(4.12)
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which together with (4.10) yields

‖ξ‖0,∞ ≤ Chk+2. (4.13)

Similarly, by the inverse property (2.6) and (4.11), we have

∂zξ(z, t) = A
(

ξ, ∂zG
h
z

)

≤ Chk+2
(

‖∂zGh
z‖1,p′ + ‖∂zGh

z‖
)

≤ Chk+2
(

h−d/p‖∂zGh
z‖1,1 + ‖∂zGh

z‖
)

≤ Chk+2−d/p log 1
h
,

(4.14)

which implies that, for p large enough and h sufficiently small,

‖∇ξ‖0,∞ ≤ Chk+2−ε, ε >
d

p
. (4.15)

Inequality (4.9) then follows from (4.13) and (4.15).

By the similar arguments used in the proof of Theorems 4.1–4.3 and Lemma 3.3, we
obtain the following results.

Theorem 4.4. Under the assumptions of Theorems 4.1–4.3 with k = 1, we have, for d ≤ 4,

‖ξ‖1,p ≤ Ch2, (4.16)

‖ξ‖1,Q ≤ Ch2. (4.17)

Moreover, for d = 1, 2,

‖ξ‖L∞(J ;W1,∞(Ω)) ≤ Ch2. (4.18)

5. Superconvergence in Lp(Q)

In this section, we establish the strong superconvergence for ξ in Lp(Q) with 2 ≤ p ≤ ∞.
We start with the following two order global superconvergence for 2 ≤ p <∞.

Theorem 5.1. Assume that ut(0) ∈ Wk+1,p(Ω), ut ∈ Lp(J ;Wk+1,p(Ω)), utt ∈ Lp(J ;Hk+1(Ω)), and
uttt ∈ Lp(J ;L2(0, t;Hk+1(Ω))). Then, for d ≤ 4 and 2 ≤ p <∞, it holds that

‖ξ‖0,p,Q ≤ Chk+3, k > 2. (5.1)
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Proof. First, we construct an adjoint problem of (1.1).
LetW ∈ H1

0(Ω) satisfy

(v,Wt) −A(v,W) = (v,w), v ∈ H1
0(Ω), (5.2)

W(T) = 0 in Ω. (5.3)

By taking s = T − t, (5.2) and (5.3) can then be reduced to the weak form of (1.1) and
thus we have the regularity estimate (cf. [2])

‖W‖W2,1
p′ (Q) ≤ C‖w‖0,p′,Q. (5.4)

Let v = ξ in (5.2), it follows from (2.8) and (3.12) that

(ξ,w) = (ξ,Wt) −A(ξ,W)

=
d

dt
(ξ,W) − [(ξt,W) +A(ξ,W)]

=
d

dt
(ξ,W) − [(ξt,W) +A(ξ, RhW)]

=
d

dt
(ξ,W) −

[

(ξt,W) −
(

ηt, RhW
)

− (ξt, RhW)
]

=
d

dt
(ξ,W) +

(

ηt, RhW
)

+ (ξt, RhW −W).

(5.5)

After integrating in t, we have

(ξ,w)Q = −(ξ(0),W(0)) +
∫T

0

(

ηt, RhW
)

dt +
∫T

0
(ξt, RhW −W)dt. (5.6)

Here the fact thatW(T) = 0 was used.
Now we estimate the right-hand side of (5.6) term by term.
First of all, by Hölder’s inequalities, (3.3), and the Sobolev embedding inequality, we

obtain that

−(ξ(0),W(0)) ≤ ‖ξ(0)‖0,p‖W(0)‖0,p′

≤ Chk+3‖ut(0)‖k+1,p‖W‖L∞(J ;Lp′ (Ω))

≤ Chk+3‖ut(0)‖k+1,p‖W‖W1,1(J ;Lp′ (Ω))

≤ Chk+3‖ut(0)‖k+1,p‖W‖W2,1
p′ (Q)

≤ Chk+3‖W‖W2,1
p′ (Q),

(5.7)
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where

‖W‖W1,1(J ;Lp′ (Ω)) =
∫T

0

(

‖W‖0,p′ + ‖Wt‖0,p′
)

dt. (5.8)

Secondly, it follows from (2.9), (2.10) and Hölder’s inequalities that

∫T

0

(

ηt, RhW
)

dt =
∫T

0

(

ηt,W
)

dt +
∫T

0

(

ηt, RhW −W
)

dt

≤ Chk+3
∫T

0
‖ut‖k+1,p‖W‖2,p′ dt + Chk+2

∫T

0
‖ut‖k+1,p‖RhW −W‖1,p′ dt

≤ Chk+3
∫T

0
‖ut‖k+1,p‖W‖2,p′ dt

≤ Chk+3
(∫T

0
‖ut‖

p

k+1,p dt

)1/p

‖W‖W2,1
p′ (Q)

≤ Chk+3‖W‖W2,1
p′ (Q).

(5.9)

Finally, by Hölder’s inequalities, Sobolev embedding inequalities and Lemma 3.2, we
have

∫T

0
(ξt, RhW −W)dt ≤

∫T

0
‖ξt‖0,4‖RhW −W‖0,4/3 dt

≤ Ch
∫T

0
‖ξt‖1‖W‖1,4/3 dt

≤ Ch
∫T

0
‖ξt‖1‖W‖2,p′ dt

≤ Ch
(∫T

0
‖ξt‖

p

1 dt

)1/p

‖W‖W2,1
p′ (Q)

≤ Chk+3‖W‖W2,1
p′ (Q).

(5.10)

Therefore, (5.1) holds by combining all estimates together with (5.4) and (5.6).



12 International Journal of Mathematics and Mathematical Sciences

We finally establish the almost two order global superconvergence in L∞(Q). We
define a function g(t) ∈ H1

0(Ω), and its finite element approximation gh(t) ∈ Sh satisfy that

(

v, gt
)

−A
(

v, g
)

= 0, v ∈ H1
0(Ω), (5.11)

g(T) = δh in Ω, (5.12)
(

χ, ght
)

−A
(

χ, gh
)

= 0, χ ∈ Sh, (5.13)

gh(T) = δh in Ω, (5.14)

where δh = δz
h
(x) is the discrete Delta function which satisfies

(

δh, χ
)

= χ(z), ∀χ ∈ Sh. (5.15)

Then the following estimate holds (cf. [2]):

∥
∥gh
∥
∥
0,1,Q +

∥
∥ght

∥
∥
0,1,Q +

∥
∥
∥φ2D2

xg
∥
∥
∥

2

0,2,Q
≤ C log

1
h
, (5.16)

where φ is the weight function defined by

φ(t) =
(

|x − z|2 + t + β2
)1/2

, β = γh, γ � 1. (5.17)

Furthermore, we have the following estimate.

Lemma 5.2. For 1 < q < 2 and its conjugate index q′, we have

∥
∥g
∥
∥
Lq(J ;W2,q(Ω)) ≤ Ch

−4/q′
(

log
1
h

)1/2

. (5.18)

Proof. Using the Hölder inequality, it is easy to see that

∥
∥
∥D2

xg
∥
∥
∥
0,q,Q

≤
(∫

Q

φ−4q/(2−q) dx dt

)(2−q)/2q

‖φ2D2
xg‖0,2,Q. (5.19)

Note that (cf. [2])

∫

Q

φ−λ dx dt ≤ C
β4−λ

λ − 4
, λ > 4, (5.20)

the proof is then completed by the norm equivalence inH1
0(Ω) ∩W2,q(Ω).
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The following theorem gives the superconvergence of ξ in L∞(Q).

Theorem 5.3. Assume that ut(0) ∈Wk+1,p(Ω) and ut ∈ Lp(J ;Wk+1,p(Ω)). Then, for d = 1, 2,

‖ξ‖0,∞,Q ≤ Chk+3−ε, k > 2, (5.21)

with ε > 4/p and p large enough.

Proof. (5.13) and (3.5) yield that

Dt

(

ξ, gh
)

=
(

ξt, gh
)

+
(

ξ, ght
)

=
(

ξt, gh
)

+A
(

ξ, gh
)

= −
(

ηt, gh
)

.

(5.22)

Then by integrating in t, it follows from (5.15) and (5.14) that

ξ(z, T) = (ξ(T), δh)

=
(

ξ(T), gh(T)
)

−
(

ξ(0), gh(0)
)

+
(

ξ(0), gh(0)
)

= −
∫T

0

(

ηt, gh
)

dt +
(

ξ(0), gh(0)
)

.

(5.23)

On the one hand, (2.10) and Lemma 5.2 imply that, for p > 2,

−
∫T

0

(

ηt, gh
)

dt =
∫T

0

(

ηt, g − gh
)

dt −
∫T

0

(

ηt, g
)

dt

≤ Chk+2
∫T

0
‖ut‖k+1,p

∥
∥g − gh

∥
∥
1,p′ dt + Ch

k+3
∫T

0
‖ut‖k+1,p

∥
∥g
∥
∥
2,p′ dt

≤ Chk+3
∫T

0
‖ut‖k+1,p

∥
∥g
∥
∥
2,p′ dt

≤ Chk+3−4/p
(∫T

0
‖ut‖

p

k+1,p dt

)1/p
∥
∥g
∥
∥
Lp′(J ;W2,p′ (Ω))

≤ Chk+3−4/p
(

log
1
h

)1/2

.

(5.24)
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On the other hand, it follows from (2.7), the Sobolev embedding inequality, (3.3), and (5.16)
that

(

ξ(0), gh(0)
)

≤ ‖ξ(0)‖0,∞
∥
∥gh(0)

∥
∥
0,1

≤ Ch−d/p‖ξ(0)‖0,p
∥
∥gh
∥
∥
L∞(J ;L1(Ω))

≤ Ch−d/p‖ξ(0)‖0,p
∥
∥gh
∥
∥
W1,1(J ;L1(Ω))

≤ Chk+3−d/p log 1
h
.

(5.25)

Therefore, (5.21) follows from (5.23), (5.24), and (5.25).

6. An Application

In this section, we apply the interpolation postprocessing technique to improve the accuracy
of the approximate solution U. Let Th be a quasi-uniform rectangular partition of Ω ⊂ R2,
and let Sh be the space of continuous piecewise polynomial:

Sh =
{

v ∈ H1
0(Ω) : v ∈ Qk(T), T ∈ Th

}

, (6.1)

where

Qk = span
{

xi1x
j

2 : 0 ≤ i, j ≤ k
}

, k ≥ 1. (6.2)

We introduce the higher interpolation operator Ik+22h , which satisfies the following
properties (cf. [7, 8]), for k ≥ 1, 2 ≤ p ≤ ∞, and l = 0, 1,

∥
∥
∥u − Ik+22h u

∥
∥
∥
l,p

≤ Chk+3−l‖u‖k+3,p, (6.3)

Ik+22h ikh = Ik+22h , (6.4)
∥
∥
∥Ik+22h χ

∥
∥
∥
l,p

≤ C
∥
∥χ
∥
∥
l,p, χ ∈ Sh, (6.5)

where ik
h
is the finite element interpolation operator.

In addition, we assume that Au = −Δu in (1.1). By replacing the approximate solution
U by its interpolation Ik+22h U, we can then establish the two order and the almost two order
global superconvergence of u − Ik+22h U inW1,p(Ω) and Lp(Q) for 2 ≤ p ≤ ∞.
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Theorem 6.1. Under the assumptions of Theorems 4.1–4.4, 5.1 and 5.3, we have for u ∈Wk+3,p(Ω)∩
Lp(J ;Wk+3,p(Ω)) with k > 1 and u ∈W3,p(Ω) ∩ Lp(J ;W3,p(Ω)) with k = 1,

∥
∥
∥u − Ik+22h U

∥
∥
∥
1,p

≤ Chk+2, 2 ≤ p <∞, k > 1,

∥
∥
∥u − Ik+22h U

∥
∥
∥
1,Q

≤ Chk+2, k > 1,

∥
∥
∥u − Ik+22h U

∥
∥
∥
L∞(J ;W1,∞(Ω))

≤ Chk+2−ε, k > 1,

∥
∥
∥u − I22hU

∥
∥
∥
1,p

≤ Ch2, k = 1,

∥
∥
∥u − I22hU

∥
∥
∥
1,Q

≤ Ch2, k = 1,

∥
∥
∥u − I22hU

∥
∥
∥
L∞(J ;W1,∞(Ω))

≤ Ch2, k = 1,

∥
∥
∥u − Ik+22h U

∥
∥
∥
0,p,Q

≤ Chk+3, 2 ≤ p <∞, k > 2,

∥
∥
∥u − Ik+22h U

∥
∥
∥
0,∞,Q

≤ Chk+3−ε, k > 2,

(6.6)

with ε > 2/p and p large enough.

Proof. From (6.4), we have

u − Ik+22h U = u − Ik+22h u + Ik+22h

(

ikhu − Rhu
)

+ Ik+22h (Rhu −U), (6.7)

which together with the triangular inequality and (6.5) yields that

∥
∥
∥u − Ik+22h U

∥
∥
∥
l,p

≤
∥
∥
∥u − Ik+22h u

∥
∥
∥
l,p

+ C
(∥
∥
∥ikhu − Rhu

∥
∥
∥
l,p

+ ‖Rhu −U‖l,p
)

. (6.8)

Moreover, for 2 ≤ p ≤ ∞, the following estimates hold (cf. [7, 8]):

∥
∥
∥ikhu − Rhu

∥
∥
∥
0,p

≤ Chk+3‖u‖k+3,p
(

log
1
h

)p

, k > 2,

∥
∥
∥ikhu − Rhu

∥
∥
∥
1,p

≤ Chk+2‖u‖k+3,p, k > 1,

∥
∥
∥i1hu − Rhu

∥
∥
∥
1,p

≤ Ch2‖u‖3,p,

(6.9)

where

p =

⎧

⎨

⎩

0, when p <∞,

1, when p = ∞.
(6.10)
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Hence the proof is completed by (6.3) and the estimates for ξ in Theorems 4.1–4.4, 5.1,
and 5.3.
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