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The so-called Prüfer υ-multiplication domains (PυMDs) are usually defined as domains whose
finitely generated nonzero ideals are t-invertible. These domains generalize Prüfer domains and
Krull domains. The PυMDs are relatively obscure compared to their verywell-known special cases.
One of the reasons could be that the study of PυMDs uses the jargon of star operations, such as the
υ-operation and the t-operation. In this paper, we provide characterizations of and basic results on
PυMDs and related notions without star operations.
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1. Introduction and Preliminaries

Prüfer v-multiplication domains, explicitly introduced in [1] under the name of v-
multiplication rings, have been studied a great deal as a generalization of Prüfer domains
and Krull domains. One of the attractions of Prüfer v-multiplication domains is that they
share many properties with Prüfer domains and, furthermore, they are stable in passing to
polynomials, unlike Prüfer domains (since a polynomial ringD[X] is a Prüfer domain only in
the trivial case, i.e., whenD is a field). On the other hand, Prüfer v-multiplication domains are
a special case of v-domains, a class of integrally closed domains which has recently attracted
new attention [2–4]. The paper [5] provides a clue to where v-domains arose as a separate
class of rings, though they were not called v-domains there.

The notions of v-domain and of several of its specializations may be obscured
by the jargon of Krull’s star operations used in the “official” definitions and standard
characterizations (the best source available for star operations and for this type of approach to
v-domains is Sections 32 and 34 of [6]). The overhanging presence of star operations seems
to have limited the popularization of these distinguished classes of integral domains and,
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perhaps, has prevented the use of other powerful techniques, such as those of homological
algebra, in their study.

The aim of this note is to provide “star operation free” definitions and charac-
terizations of the above-mentioned classes of integral domains. In particular, we prove
statements that, when used as definitions, do not mention any star operations, leading to
new characterizations of various special classes of v-domains.

Let D be an integral domain with quotient field K. Let F(D) be the set of all nonzero
D-submodules of K and let F(D) be the set of all nonzero fractional ideals of D, that is,
A ∈ F(D) if A ∈ F(D) and there exists an element 0/=d ∈ D with dA ⊆ D. Let f(D) be the set
of all nonzero finitely generated D-submodules of K. Then, obviously f(D) ⊆ F(D) ⊆ F(D).

For D-submodules A,B ∈ F(D), we use the notation (A : B) to denote the set {x ∈
K | xB ⊆ A}. If (A : B)/= (0), clearly, (A : B) ∈ F(D) and if A ∈ F(D), then (A : B) ∈ F(D).
Denote (D : A) by A−1, which belongs to F(D)) whenever A does, and (D : A) = (0) if
A ∈ F(D) \ F(D). If A ⊆ B then A−1 ⊇ B−1. Moreover, from the definition, it follows that
AA−1 ⊆ D andD−1 = D. Recall that, forA ∈ F(D),Av := (A−1)−1 = (D : (D : A)) and note that,
if A ∈ F(D) \ F(D), then Av = K, since (D : A) = (0). Set At :=

⋃{Fv | F ⊆ A and F ∈ f(D)}.
It can be easily shown that (Av)−1 = A−1 = (A−1)v. If A ∈ F(D)) is such that A = Av (resp.,
A = At) we say that A is a fractional v-ideal (resp., a fractional t-ideal) of D. Note that, if
A ∈ F(D) \ F(D), then A = Av if and only if A = K; on the other hand, it is possible that
A = At � K for A ∈ F(D) \ F(D) (e.g., if D is a fgv-domain, i.e., an integral domain such that
every nonzero finitely generated ideal is a v-ideal [7], then A = At for every A ∈ F(D)).

A fractional v-ideal is also called a fractional divisorial ideal. If A ∈ F(D), A−1 is a
fractional v-ideal, and every fractional invertible ideal (i.e., every fractional ideal A such that
AA−1 = D) is both a fractional v-ideal and a fractional t-ideal. If there is a finitely generated
fractional ideal F such that Av = Fv, we say that Av is a fractional v-ideal of finite type. Note
that, in this definition, we do not require that F ⊆ A; if there is a finitely generated fractional
ideal F such that Av = Fv and F ⊆ A, we say that Av is a fractional v-ideal of strict finite
type. Examples of v-ideals of finite type that are not v-ideals of strict finite type are given in
[8, Section (4c)]. If ∗ provides here a general notation for the v- and t-operation, then call
A ∈ F(D)∗-invertible if there is B ∈ F(D) such that (AB)∗ = D. It can be shown that in this
case B∗ = A−1. It is obvious that an invertible ideal is t-invertible and a t-invertible ideal is
also v-invertible. So, D is called a v-domain (resp., a Prüfer v-multiplication domain (for short,
PvMD)) if every F ∈ f(D) is v-invertible (resp., t-invertible). Both these notions generalize
the concept of Prüfer domain, since a Prüfer domain can be characterized by the fact that
every F ∈ f(D) is invertible, and, at the same time, the concept of Krull domain because, as
we mention later, a domain D is a Krull domain if and only if every nonzero ideal of D is
t-invertible.

It can be shown that F ∈ f(D) is t-invertible if and only if F is v-invertible and F−1 is a
v-ideal of finite type [9, Theorem 1.1(c)]. In particular, from the previous considerations, we
deduce

Prüfer domain =⇒ PvMD =⇒ v-domain. (1.1)

It is well known that the converse of each of the previous implications does not hold in
general. For instance, a Krull domain which is not Dedekind (e.g., the polynomial ring Z[X])
shows the irreversibility of the first implication. An example of a v-domain which is not a
PvMDwas given in [5].
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2. Results

The following result maybe in the folklore. We have taken it from [10], where the second-
named author of the present paper made a limited attempt to define PvMDs without the
v-operation.

Lemma 2.1. Given an integral domain D, a fractional ideal A ∈ F(D) is v-invertible if and only if
(A−1 : A−1) = D.

Proof. Suppose that (A−1 : A−1) = D. Let x ∈ (AA−1)−1 ⊇ D. Then, x(AA−1) ⊆ D or xA−1 ⊆ A−1

or x ∈ (A−1 : A−1) = D. So, (AA−1)−1 ⊆ D andwe have (AA−1)−1 = D. This gives (AA−1)v = D.
Conversely, if A is v-invertible, then (AA−1)−1 = D. Let x ∈ (A−1 : A−1) ⊇ D. Then,

xA−1 ⊆ A−1. Multiplying both sides by A and applying the v-operation, we get x ∈ D. So,
D ⊆ (A−1 : A−1) ⊆ D and the equality follows.

Theorem 2.2. The following are equivalent for an integral domain D:

(i) D is a v-domain,

(ii) (F−1 : F−1) = D for each F ∈ f(D),

(iii) (Fv : Fv) = D for each F ∈ f(D),

(iv) ((a, b)−1 : (a, b)−1) = D for each two generated fractional ideals (a, b) ∈ f(D),

(v) ((a) ∩ (b)) : ((a) ∩ (b)) = D for all a, b ∈ D \ {0}.
Proof. (i)⇔(ii) follows from Lemma 2.1 and from the definition of a v-domain.

(i)⇒(iii). Let F ∈ f(D) and x ∈ (Fv : Fv) ⊇ D. Then, xFv ⊆ Fv. Multiplying both sides
by F−1 and applying the v-operation, we get x(FvF−1)v ⊆ (FvF−1)v. But, by (i), (FvF−1)v =
(FF−1)v = D and so x ∈ D. This forces D ⊆ (Fv : Fv) ⊆ D.

(iii)⇒(i). Let F ∈ f(D) and x ∈ (FvF−1)−1 ⊇ D. Then, x(FvF−1) ⊆ D. But then xFv ⊆ Fv,
which gives x ∈ (Fv : Fv) = D. Therefore D ⊆ (FvF−1)−1 ⊆ D, which means that every
F ∈ f(D) is v-invertible.

(ii)⇒(iv) is obvious.
(iv)⇒(v). Let a, b ∈ D be two nonzero elements and, by (iv), let ((a, b)−1 : (a, b)−1) = D.

Since (a, b)−1 = (D : (a, b)) = (D : (a)) ∩ (D : (b)) = (a−1) ∩ (b−1) = a−1b−1((a) ∩ (b)), then
from the assumption we have (a−1b−1((a) ∩ (b)) : a−1b−1((a) ∩ (b))) = D which is the same as
((a) ∩ (b)) : ((a) ∩ (b)) = D, for all a, b ∈ D \ {0}.

(v)⇒(i). Recall that D is a v-domain if and only if every two generated nonzero ideal
of D is v-invertible [11, Lemma 2.6]. (Note that H. Prüfer proved that every F ∈ f(D) is
invertible if and only if every two generated nonzero ideal of D is invertible [12, page 7];
a similar result, for the t-invertibility case, was proved in [11, Lemma 1.7].) Now, let a, b ∈
D \ {0} and x ∈ ((a, b)(a, b)−1)

−1 ⊇ D. Then x(a, b)(a, b)−1 ⊆ D, or x(a, b)−1 ⊆ (a, b)−1, or
xa−1b−1((a) ∩ (b)) ⊆ a−1b−1((a) ∩ (b)). This is equivalent to x((a) ∩ (b)) ⊆ (a) ∩ (b) or x ∈
(((a) ∩ (b)) : ((a) ∩ (b))) = D. This forces D ⊆ ((a, b)(a, b)−1)

−1 ⊆ D.

Call an integral domain D a v-finite conductor (for short, a v-FC-) domain if (a) ∩ (b) is
a v-ideal of finite type, for every pair a, b ∈ D \ {0} [13, Section 2].

The above definition of v-FC-domain makes use of the v-operation. We have a
somewhat contrived solution for this, in the form of the following characterization of v-FC-
domains.
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Proposition 2.3. An integral domain D with quotient field K is a v-FC-domain if and only if for
each pair a, b inD \ {0} there exist y1, y2, . . . , yn ∈ K \ {0}, with n ≥ 1, such that (a, b)v =

⋂{yiD |
1 ≤ i ≤ n}. Consequently, D is a v-FC-domain if and only if for each pair a, b in D \ {0} there exist
z1, z2, . . . , zm ∈ K \ {0}, withm ≥ 1, such that ((a) ∩ (b))−1 =

⋂{zjD | 1 ≤ j ≤ m}.

Proof. Let D be a v-FC-domain and let a, b ∈ D \ {0}. Then, there are a1, a2, . . . , an ∈ D such
that (a)∩(b) = (a1, a2, . . . , an)

v. Dividing both sides by ab, we get (a, b)−1 = a−1b−1((a)∩(b)) =
(a1/ab, a2/ab, . . . , an/ab)

v. This gives

(a, b)v =
(( a1

ab
,
a2

ab
, . . . ,

an

ab

)v
)−1

=
⋂{

ab

ai
D | 1 ≤ i ≤ n

}

. (2.1)

Conversely, if for each pair a, b in D \ {0} there exist y1, y2, . . . , yn ∈ K \ {0} such that
(a, b)v =

⋂{yiD | 1 ≤ i ≤ n}, then

a−1b−1((a) ∩ (b)) = (a, b)−1 =
(
(a, b)v

)−1 =
(⋂

{yiD | 1 ≤ i ≤ n}
)−1

. (2.2)

On the other hand, (
⋂{yiD | 1 ≤ i ≤ n})−1 = (y−1

1 D,y−1
2 D, . . . , y−1

n D)
v
[14, Lemma 1.1],

and this gives (a) ∩ (b) = ((ab/y1)D, (ab/y2)D, . . . , (ab/yn)D)v.
For the “consequently” part, note that ((a) ∩ (b))−1 = a−1b−1(a, b)v.

An immediate consequence of the above results is the following characterization of
PvMDs, in which statements (iii) and (iv) are “v-operation free.”

Corollary 2.4. The following are equivalent for an integral domain D,

(i) D is a PvMD,

(ii) D is a v-domain and a v-FC-domain,

(iii) for all a, b ∈ D \ (0), ((a) ∩ (b))−1 is a finite intersection of principal fractional ideals and
((a) ∩ (b)) : ((a) ∩ (b)) = D,

(iv) for all a, b ∈ D \ (0), ((a) ∩ (b))−1 is a finite intersection of principal fractional ideals and
((a, b)−1 : (a, b)−1) = D.

Proof. (i)⇔(ii) stems from the fact that D is a PvMD (resp., a v-domain) if and only if every
two generated nonzero ideal of D is t-invertible (resp., v-invertible) [15, Lemma 1.7] (resp.,
[11, Lemma 2.6]). Moreover, every two generated ideal ofD is t-invertible if and only if every
two-generated ideals (a, b) ofD is v-invertible and such that (a, b)−1 = (x1, x2, . . . , xr)

v where
r ≥ 1 and x1, x2, . . . , xr ∈ K [9, Theorem 1.1(c)]. Finally, since (a, b)−1 = a−1b−1((a) ∩ (b)),
(a, b)−1 is a fractional v-ideal of finite type if and only if (a) ∩ (b) is a v-ideal of finite type.

(ii)⇔(iii) and (ii)⇔(iv) are straightforward consequences of Theorem 2.2 and
Proposition 2.3.

Recall that an integral domain D is called a finite conductor (for short, FC-) domain
if ((a) ∩ (b)) is finitely generated for each pair a, b ∈ D. Just to show how far we have
traveled since 1978, when this notion was introduced, we state and provide an easy proof
to the following statement, which appeared as the main result in [16, Theorem 2].
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Corollary 2.5. An integrally closed FC-domain is a PvMD.

Proof. First note that, since D is integrally closed (F : F) = D for every finitely generated
ideal F of D [6, Theorem 34.7]. So, for each pair a, b ∈ D \ {0}, since D is a FC-domain,
((a) ∩ (b)) : ((a) ∩ (b)) = D. But this makes D a v-domain by Theorem 2.2 and, so, a PvMD
by Corollary 2.4.

Lemma 2.1 can also be instrumental in characterizing completely integrally closed (for
short, CIC-) domains (see, e.g., [6, Theorem 34.3]). Also the previous approach leads to a
characterization of Krull domains in a manner similar to the characterization of v-domains
leading to the characterization of PvMDs.

Proposition 2.6. The following are equivalent for an integral domain D:

(i) D is a CIC-domain,

(ii) (A−1 : A−1) = D for all A ∈ F(D).

In particular, a CIC-domain is a v-domain.

Proof. Note that D is CIC if and only if every A ∈ F(D) is v-invertible [6, Proposition
34.2 and Theorem 34.3]. Now, the equivalence (i)⇔(ii) is an immediate consequence of
Lemma 2.1. The last statement is a straightforward consequence of the equivalence (i)⇔(ii)
of Theorem 2.2.

Remark 2.7. We have been informed by the referee that he/she has used Proposition 2.6 while
teaching a course on multiplicative ideal theory. So, like Lemma 2.1, this is another folklore
result in need of a standard reference.

Theorem 2.8. The following are equivalent for an integral domain D:

(i) D is a Krull domain,

(ii) D is a Mori v-domain,

(iii) for each A ∈ F(D), there exist y1, y2, . . . , yn ∈ A such that A−1 =
⋂{yi

−1D | 1 ≤ i ≤ n}
and, for all a, b ∈ D \ {0}, ((a) ∩ (b)) : ((a) ∩ (b)) = D,

(iv) for each A ∈ F(D), there exist x, y ∈ A such that A−1 = x−1D ∩ y−1D and for all a, b ∈
D \ {0}, ((a) ∩ (b)) : ((a) ∩ (b)) = D.

Before we prove Theorem 2.8, it seems pertinent to give some introduction. For a quick
review of Krull domains, the reader may consult the first few pages of [17]. A number of
characterizations of Krull domains can be also found in [14, Theorem 2.3]. The one that we
can use here is: D is a Krull domain if and only if each A ∈ F(D) is t-invertible. Which means, as
observed above, that D is a Krull domain if and only if for each A ∈ F(D), A is v-invertible and
A−1 is a fractional v-ideal of finite type. In particular, we reobtain that a Krull domain is a PvMD
(and so, in particular, a v-domain).

An integral domain D is called a Mori domain if D satisfies the ascending chain
condition on integral divisorial ideals (see, e.g., [18]). Different aspects of Mori domains were
studied by Toshio Nishimura in a series of papers. For instance, in [19, Theorem, page 2],
he showed that a domain D is a Krull domain if and only if D is a Mori domain and completely
integrally closed. For another proof of this result, see [20, Corollary 2.2].
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On the other hand, an integral domain D is a Mori domain if and only if, for each
A ∈ F(D), Av is a fractional v-ideal of strict finite type [21, Lemma 1]. A variation of this
characterization is given next.

Lemma 2.9. Let D be an integral domain. Then, D is Mori if and only if for each A ∈ F(D) there
exist y1, y2, . . . , yn ∈ A \ {0}, with n ≥ 1, such that A−1 =

⋂{yi
−1D | 1 ≤ i ≤ n}.

Proof. As we observed above, D is a Mori domain if and only if for each A ∈ F(D) there exist
y1, y2, . . . , yn ∈ A \ {0} such that Av = (y1, y2, . . . , yn)

v. This last equality is equivalent to
A−1 = (y1, y2, . . . , yn)

−1 =
⋂{yi

−1D | 1 ≤ i ≤ n}, since, by [14, Lemma 1.1], we have

(⋂
{y−1

i D | 1 ≤ i ≤ n}
)−1

=
((

y−1
1

)−1
,
(
y−1
2

)−1
, . . . ,

(
y−1
n

)−1)v

=
(
y1, y2, . . . , yn

)v
. (2.3)

Proof of Theorem 2.8. (i)⇒(ii) because we already observed that a Krull domain is a CIC Mori
domain. Moreover, a CIC-domain is a v-domain (Proposition 2.6).

(ii)⇒(i) We want to prove that, for each A ∈ F(D), A is v-invertible and A−1 is a
fractional v-ideal of finite type. The second property is a particular case of the assumption that
every fractional divisorial ideal of D is a v-ideal of finite type. For the first property, we have
that, for eachA ∈ F(D), there exists F ∈ f(D), with F ⊆ A, such thatAv = Fv (or, equivalently,
A−1 = F−1). Since D is a v-domain, we have D = (FF−1)v = (FvF−1)v = (AvF−1)v = (AA−1)v.

(ii)⇔(iii) is a straightforward consequence of Lemma 2.9 and Theorem 2.2 ((i)⇔(v)).
(iii)⇒(iv) follows form the fact that (iii)⇔(i) and, if D is a Krull domain, then for

every A ∈ F(D) there exist x, y ∈ A such that Av = (x, y)v [22, Proposition 1.3]. Therefore,
A−1 = (x, y)−1 = x−1D ∩ y−1D.

(iv)⇒(iii) is trivial.

Remark 2.10. (1) In (iii) of Theorem 2.8, we cannot say that for every A ∈ F(D) the inverse
A−1 is expressible as a finite intersection of principal fractional ideals, because this would be
equivalent to Av being of finite type for each A ∈ F(D). But there do exist non-Mori domains
D such that Av is of finite type for all A ∈ F(D). For a discussion of those examples you may
consult [23, Section 2] and [8, Section (4c)].

(2) Note that a Mori domain is obviously a v-FC-domain, since in a Mori domain
every divisorial ideal is a v-ideal of (strict) finite type. Therefore, the equivalences (i)⇔(ii) of
Theorem 2.8 and of Corollary 2.4 shed new light on the relations between PvMDs and Krull
domains in the class of v-domains.

While several of the above results provide characterizations of Prüfer v-multiplication
domains, v-domains, Mori and Krull domains, without using Krull’s theory of star
operations, they do not diminish the importance of star operations in anyway. After all, it was
the star operations that developed the notions mentioned above this far. An interested reader
will have to extend this work further so that mainstream techniques could be used. To make
a start in that direction, we give below some further “star operation free” characterizations of
PvMDs, besides the ones we have already given above.

Given an integral domain D, a prime ideal P is called essential for D if DP is a valuation
domain and the domain D is called essential if there is a family of essential primes {Pα} for
D such that D =

⋂
DPα . Also, call a prime ideal P of D an associated prime of a principal

ideal if P is a minimal prime over a proper nonzero ideal of the type ((a):D(b)), for some
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a, b ∈ D. The associated primes of principal ideals have been discussed in [24], where it was
also shown that if S is a multiplicative set in D then DS =

⋂
DP where P ranges over the

associated primes of principal ideals disjoint from S [24, Proposition 4]. For brevity, we call
here an associate prime of a principal ideal of D simply an associated prime of D.

Following [25], call D a P-domain if every associated prime of D is essential. It is easy
to see that a P-domain is an essential domain. More precisely, it was shown in [25, Proposition
1.1] thatD is a P-domain if and only if D is essential and every quotient ring of D is essential. Also,
ifD is a P-domain then so are the rings of fractions ofD and the rings of polynomials overD
[25, Corollary 1.2]. From [25, Corollary 1.4 and Example 2.1] one can also get the information
that a PvMD is a P-domain, but not conversely.

We now state a result that is already known but that can be of use if someone wants to
deal with PvMDs without having to use, in statements (ii) and (iii), the star operations.

Proposition 2.11. The following are equivalent for an integral domain D:

(i) D is a PvMD,

(ii) D is a P-domain such that, for every pair a, b ∈ D\{0}, ((a) ∩ (b))−1 is a finite intersection
of principal fractional ideals,

(ii′) D is a P-domain and a v-FC-domain,

(iii) D is an essential domain such that, for every pair a, b ∈ D \ {0}, ((a) ∩ (b))−1 is a finite
intersection of principal fractional ideals,

(iii′) D is an essential v-FC-domain.

Proof. As we already mentioned above, from [25] we know that a PvMD is a P-domain and
that a P-domain is essential. Moreover, from Corollary 2.4, ifD is a PvMD, we have, for every
pair a, b ∈ D \ {0}, that ((a) ∩ (b))−1 is a finite intersection of principal fractional ideals (or,
equivalently, D is a v-FC-domain, by Proposition 2.3). Therefore, (i)⇒(ii)⇒(iii), (ii)⇔(ii′),
and (iii)⇔(iii′).

(iii)⇒(ii). Recall that, from [26, Lemma 3.1], we have that an essential domain is a
v-domain (the reader may also want to consult the survey paper [4, Proposition 2.1] and,
for strictly related results, [27, Lemma 4.5] and [28, Theorem 3.1 and Corollary 3.2]). The
conclusion follows from Corollary 2.4 ((ii)⇒(i)) (and Proposition 2.3).

Remark 2.12. Note that, from the proof of Proposition 2.11 ((iii)⇒(ii)), we have that each of
the statements of Proposition 2.11 is equivalent to

(iv) D is a v-domain such that, for every pair a, b ∈ D\{0}, ((a) ∩ (b))−1 is a finite intersection
of principal fractional ideals

which is obviously also equivalent to (ii) of Corollary 2.4.
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