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1. Introduction

The quantum dynamical Yang-Baxter (QDYB) equation was introduced by Gervais and
Neveu [1]. It was realized by Felder [2] that this equation is equivalent to the Star-Triangle
relation in statistical mechanics. It is a generalization of the quantum Yang-Baxter equation,
involving an extra, so-called dynamical, parameter. In [2] an interesting elliptic solution to
the QDYB equation with spectral parameter was given, adapted from the A(1)

n solution to
the Star-Triangle relation constructed in [3]. Felder also defined a tensor category, which he
suggested that it should be thought of as an elliptic analog of the category of representations
of quantum groups. This category was further studied in [4] in the sl2 case.

In [5], the authors considered objects in Felder’s category which were proposed as
analogs of exterior and symmetric powers of the vector representation of gln. To each object in
the tensor category they associate an algebra of vector-valued difference operators and prove
that a certain operator, constructed from the analog of the top exterior power, commutes with
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all other difference operators. This is also proved in [6, Appendix B] in more detail and in [7]
using a different approach.

An algebraic framework for studying dynamical R-matrices without spectral parame-
ter was introduced in [8]. There the authors defined the notion of h-bialgebroids and h-Hopf
algebroids, a special case of the Hopf algebroids defined by Lu [9]. See [10, Remark 2.1] for
a comparison of Hopf algebroids to related structures. In [8] the authors also show, using
a generalized version of the FRST construction, how to associate to every solution R of the
nonspectral quantum dynamical Yang-Baxter equation an h-bialgebroid. Under some extra
condition they get an h-Hopf algebroid by adjoining formally the matrix elements of the
inverse L-matrix. This correspondence gives a tensor equivalence between the category of
representations of the R-matrix and the category of so-called dynamical representations of
the h-bialgebroid.

In this paper we define an h-Hopf algebroid associated to the elliptic R-matrix from [2]
with both dynamical and spectral parameters for g = sln. This generalizes the spectral elliptic
dynamical GL(2) quantum group from [11] and the nonspectral trigonometric dynamical
GL(n) quantum group from [12]. As in [11], this is done by first using the generalized
FRST construction, modified to also include spectral parameters. In addition to the usual
RLL relation, residual relations must be added “by hand” to be able to prove that different
expressions for the determinant are equal.

Instead of adjoining formally all the matrix elements of the inverse L-matrix, we adjoin
only the inverse of the determinant, as in [11]. Then we express the antipode using this
inverse. The main problem is to find the correct formula for the determinant, to prove that
it is central and to provide row and column expansion formulas for the determinant in the
setting of h-bialgebroids.

It would be interesting to develop harmonic analysis for the elliptic GL(n) quantum
group, similarly to [13]. In this context it is valuable to have an abstract algebra to work with
and not only a tensor category analogous to a category of representations. For example, the
analog of the Haar measure seems most naturally defined as a certain linear functional on the
algebra.

The plan of this paper is as follows. After introducing some notation in Section 2.1,
we recall the definition of the elliptic R-matrix in Section 2.2. In Section 3 we review the
definition of h-bialgebroids and the generalized FRST construction with special emphasis on
how to treat residual relations for a general R-matrix. We write down the relations explicitly
in Section 4 for the algebra Fell(M(n)) obtained from the elliptic R-matrix. In particular we
show that only one family of residual identities is needed.

Left and right analogs of the exterior algebra over C
n are defined in Section 5

in a similar way as in [12]. They are certain comodule algebras over Fell(M(n)) and
arise naturally from a single relation analogous to v ∧ v = 0. The matrix elements of
these corepresentations are generalized minors depending on a spectral parameter. Their
properties are studied in Section 6. In particular we show that the left and right versions
of the minors in fact coincide. In Section 6.3 we prove Laplace expansion formulas for these
elliptic quantum minors.

In Section 7 we show that the h-bialgebroid Fell(M(n)) can be equipped with a
cobraiding, in the sense of [14], extending the n = 2 case from [10]. We use this and the ideas
as in [5, 6] to prove that the determinant is central for all values of the spectral parameters.
This implies that the determinant is central in the operator algebra as shown in [5].

Finally, in Section 7.4 we define Fell(GL(n)) to be the localization of Fell(M(n)) at the
determinant and show that it has an antipode giving it the structure of an h-Hopf algebroid.
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2. Preliminaries

2.1. Notation

Let p, q ∈ R, 0 < p, q < 1. We assume p, q are generic in the sense that if paqb = 1 for some
a, b ∈ Z, then a = b = 0.

Denote by θ the normalized Jacobi theta function:

θ(z) = θ
(
z; p

)
=
∞∏

j=0

(
1 − zpj

)(

1 − p
j+1

z

)

. (2.1)

It is holomorphic on C
× := C \ {0} with zero set {pk : k ∈ Z} and satisfies

θ
(
z−1

)
= θ

(
pz

)
= −z−1θ(z) (2.2)

and the addition formula

θ

(
xy,

x

y
, zw,

z

w

)
= θ

(
xw,

x

w
, zy,

z

y

)
+
(
z

y

)
θ
(
xz,

x

z
, yw,

y

w

)
, (2.3)

where we use the notation

θ(z1, . . . , zn) = θ(z1) · · · θ(zn). (2.4)

Recall also the Jacobi triple product identity, which can be written

∑

k∈Z
(−z)kpk(k−1)/2 = θ(z)

∞∏

j=1

(
1 − pj

)
. (2.5)

It will sometimes be convenient to use the auxiliary function E given by

E : C −→ C, E(s) = qsθ
(
q−2s

)
. (2.6)

Relation (2.2) implies that E(−s) = −E(s).
The set {1, 2, . . . , n}will be denoted by [1, n].

2.2. The Elliptic R-Matrix

Let h be a complex vector space, viewed as an abelian Lie algebra, h∗ its dual space, and let V =
⊕λ∈h∗Vλ a diagonalizable h-module. A dynamical R-matrix is by definition a meromorphic
function

R : h∗ × C
× −→ Endh(V ⊗ V ) (2.7)



4 International Journal of Mathematics and Mathematical Sciences

satisfying the quantum dynamical Yang-Baxter equation with spectral parameter (QDYBE):

R

(
λ,
z2
z3

)(23)

R

(
λ − h2, z1

z3

)(13)

R

(
λ,
z1
z2

)(12)

= R
(
λ − h3, z1

z2

)(12)

R

(
λ,
z1
z3

)(13)

R

(
λ − h1, z2

z3

)(23)

.

(2.8)

Equation (2.8) is an equality in the algebra of meromorphic functions h∗ × C
× → End(V ⊗3).

Upper indices are leg-numbering notation, and h indicates the action of h. For example,

R

(
λ − h3, z1

z2

)(12)

(u ⊗ v ⊗w) = R
(
λ − α, z1

z2

)
(u ⊗ v) ⊗w, if w ∈ Vα. (2.9)

An R-matrix R is called unitary if

R(λ, z)R
(
λ, z−1

)(21)
= IdV⊗V (2.10)

as meromorphic functions on h∗ × C
× with values in Endh(V ⊗ V ).

In the example we study, h is the Cartan subalgebra of sl(n). Thus h is the abelian
Lie algebra of all traceless diagonal complex n × n matrices. Let V be the h-module C

n with
standard basis e1, . . . , en. Define ω(i) ∈ h∗ (i = 1, . . . , n) by

ω(i)(h) = hi, if h = diag(h1, . . . , hn) ∈ h. (2.11)

We have V = ⊕ni=1Vω(i) and Vω(i) = Cei. Define

R : h∗ × C
× −→ End(V ⊗ V ) (2.12)

by

R(λ, z) =
n∑

i=1

Eii ⊗ Eii +
∑

i /= j

α
(
λij , z

)
Eii ⊗ Ejj +

∑

i /= j

β
(
λij , z

)
Eij ⊗ Eji, (2.13)

where Eij ∈ End(V ) are the matrix units, λij (λ ∈ h∗) is an abbrevation for λ(Eii − Ejj), and

α, β : C × C
× −→ C (2.14)
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are given by

α(λ, z) = α
(
λ, z; p, q

)
=
θ(z)θ

(
q2(λ+1)

)

θ
(
q2z

)
θ
(
q2λ

) , (2.15)

β(λ, z) = β
(
λ, z; p, q

)
=
θ
(
q2
)
θ
(
q−2λz

)

θ
(
q2z

)
θ
(
q−2λ

) . (2.16)

Proposition 2.1 (see [2]). The map R is a unitary R-matrix.

For the reader’s convenience, we give the explicit relationship between the R-matrix
(2.13) and Felders R-matrix as written in [5] which we denote by R1. Thus R1 : h∗1 × C →
End(V ⊗ V ), where h1 is the Cartan subalgebra of gl(n), is defined as in (2.13) with α, β
replaced by α1, β1 : C

2 → C,

α1(λ, x) = α1
(
λ, x; τ, γ

)
=
θ1(x; τ)θ1

(
λ + γ ; τ

)

θ1
(
x − γ ; τ)θ1(λ; τ)

,

β1(λ, x) = β1
(
λ, x; τ, γ

)
= −θ1(x + λ; τ)θ1

(
γ ; τ

)

θ1
(
x − γ ; τ)θ1(λ; τ)

.

(2.17)

Here τ, γ ∈ C with Im τ > 0, and θ1 is the first Jacobi theta function:

θ1(x; τ) = −
∑

j∈Z+1/2
eπij

2τ+2πij(x+1/2). (2.18)

As proved in [2], R1 satisfies the following version of the QDYBE:

R1

(
λ − γh3, x1 − x2

)(12)
R1(λ, x1 − x3)(13)R1

(
λ − γh1, x2 − x3

)(23)

= R1(λ, x2 − x3)(23)R1(λ − γh2, x1 − x3)(13)R1(λ, x1 − x2)(12)
(2.19)

and the unitarity condition

R1(λ, x)R21
1 (λ,−x) = IdV⊗V . (2.20)

We can identify h∗ 	 h∗1/C tr where tr ∈ h∗1 is the trace. Since R1 has the form (2.13), it is
constant, as a function of λ ∈ h∗1, on the cosets modulo C tr. So R1 induces a map h∗ × C →
End(V ⊗ V ), which we also denote by R1, still satisfying (2.19), (2.20).

Let τ, γ ∈ C with Im τ > 0 be such that p = eπiτ , q = eπiγ . Then, as meromorphic
functions of (λ, x) ∈ h∗ × C,

R1

(
γλ,−x; τ

2
, γ

)
= R

(
λ, z; p, q

)
, (2.21)
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where z = e2πix. Indeed, using the Jacobi triple product identity (2.5) we have

θ1
(
x;
τ

2

)
= ieπi(τ/2−x)θ(z)

∞∏

j=1

(
1 − pj

)
, (2.22)

and substituting this into (2.17) gives α1(γλ,−x; τ/2, γ) = α(λ, z; p, q) and β1(γλ,−x; τ/2, γ) =
β(λ, z; p, q)which proves (2.21).

By replacing λ, xi in (2.19) by γλ, −xi and using (2.21) we obtain (2.8) with zi = e2πixi .
Similarly the unitarity (2.10) of R is obtained from (2.20).

2.3. Useful Identities

We end this section by recording some useful identities. Recall the definitions of α, β in (2.15).
It is immediate that

α
(
λ, q2

)
= β

(
−λ, q2

)
. (2.23)

By induction, one generalizes (2.2) to

θ
(
psz

)
= (−1)s

(
ps(s−1)/2zs

)−1
θ(z), for s ∈ Z. (2.24)

Applying (2.24) to the definitions of α, β we get

α
(
λ, pkz

)
= q2kα(λ, z), β

(
λ, pkz

)
= q2k(λ+1)β(λ, z), (2.25)

and, using also θ(z−1) = −z−1θ(z),

lim
z→ p−kq−2

q−1θ
(
q2z

)

qθ
(
q−2z

) α(λ, z) = α
(
λ, pkq2

)
,

lim
z→ p−kq−2

q−1θ
(
q2z

)

qθ
(
q−2z

) β(λ, z) = −β
(
−λ, pkq2

)
,

(2.26)

for λ ∈ C, z ∈ C
×, and k ∈ Z. By the addition formula (2.3)with

(
x, y, z,w

)
=
(
z1/2q−λ+1, z1/2qλ−1, z1/2qλ+1, z1/2q−λ−1

)
, (2.27)

we have

α(λ, z)α(−λ, z) − β(λ, z)β(−λ, z) = q2 θ
(
q−2z

)

θ
(
q2z

) . (2.28)



International Journal of Mathematics and Mathematical Sciences 7

3. h-Bialgebroids

3.1. Definitions

We recall some definitions from [8]. Let h∗ be a finite-dimensional complex vector space (e.g.,
the dual space of an abelian Lie algebra), and letMh∗ be the field of meromorphic functions
on h∗.

Definition 3.1. An h-algebra is a complex associative algebra A with 1 which is bigraded over
h∗, A = ⊕α,β∈h∗Aαβ, and equipped with two algebra embeddings μl, μr : Mh∗ → A, called the
left and right moment maps, such that

μl
(
f
)
a = aμl

(
Tαf

)
, μr

(
f
)
a = aμr

(
Tβf

)
, for a ∈ Aαβ, f ∈Mh∗ , (3.1)

where Tα denotes the automorphism (Tαf)(ζ) = f(ζ +α) ofMh∗ . A morphism of h-algebras is
an algebra homomorphism preserving the bigrading and the moment maps.

The matrix tensor product A⊗̃B of two h-algebras A, B is the h∗-bigraded vector space
with (A⊗̃B)αβ = ⊕γ∈h∗(Aαγ⊗Mh∗Bγβ), where ⊗Mh∗ denotes tensor product over C modulo the
relations:

μAr
(
f
)
a ⊗ b = a ⊗ μBl

(
f
)
b, ∀a ∈ A, b ∈ B, f ∈Mh∗ . (3.2)

The multiplication (a ⊗ b)(c ⊗ d) = ac ⊗ bd for a, c ∈ A and b, d ∈ B and the moment maps
μl(f) = μAl (f) ⊗ 1 and μr(f) = 1 ⊗ μBr (f) make A⊗̃B into an h-algebra.

Example 3.2. Let Dh be the algebra of operators on Mh∗ of the form
∑

i fiTαi with fi ∈ Mh∗

and αi ∈ h∗. It is an h-algebra with bigrading fT−α ∈ (Dh)αα, and both moment maps equal to
the natural embedding.

For any h-algebraA, there are canonical isomorphismsA 	 A⊗̃Dh 	 Dh⊗̃A defined by

x 	 x ⊗ T−β 	 T−α ⊗ x, for x ∈ Aαβ. (3.3)

Definition 3.3. An h-bialgebroid is an h-algebraA equipped with two h-algebra morphisms, the
comultiplicationΔ : A → A⊗̃A and the counit ε : A → Dh such that (Δ⊗Id)◦Δ = (Id⊗Δ)◦Δ
and (ε ⊗ Id) ◦Δ = Id = (Id ⊗ ε) ◦Δ, under the identifications (3.3).

3.2. The Generalized FRST Construction

In [8] the authors gave a generalized FRST construction which attaches an h-bialgebroid to
each solution of the quantum dynamical Yang-Baxter equation without spectral parameter.
One way of extending to the case including a spectral parameter is described in [11].
However, when specifying the R-matrix to (2.13) with n = 2, they had to impose in addition
certain so-called residual relations in order to prove, for example, that the determinant is
central. Such relations were also required in [4] in a different algebraic setting. In the setting of
operator algebras, where the algebras consist of linear operators on a vector space depending
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meromorphically on the spectral variables, as in [5], such relations are consequences of the
ordinary RLL relations by taking residues.

Another motivation for our procedure is that h-bialgebroids associated to gauge
equivalent R-matrices should be isomorphic. In particular one should be allowed to multiply
the R-matrix by any nonzero meromorphic function of the spectral variable without changing
the isomorphism class of the associated algebra (for the full definition of gauge equivalent R-
matrices see [8]).

These considerations suggest the following procedure for constructing an h-
bialgebroid from a quantum dynamical R-matrix with spectral parameter.

Let h be a finite-dimensional abelian Lie algebra, V = ⊕α∈h∗Vα a finite-dimensional
diagonalizable h-module, and R : h∗ ×C

× → Endh(V ⊗V ) a meromorphic function. We attach
to this data an h-bialgebroid AR as follows. Let {ex}x∈X be a homogeneous basis of V , where
X is an index set. The matrix elements Rab

xy : h∗ × C
× → C of R are given by

R(ζ, z)(ea ⊗ eb) =
∑

x,y∈X
Rab
xy(ζ, z)ex ⊗ ey. (3.4)

They are meromorphic on h∗ × C
×. Define ω : X → h∗ by ex ∈ Vω(x). Let ÃR be the complex

associative algebra with 1 generated by {Lxy(z) : x, y ∈ X, z ∈ C
×} and two copies of

Mh∗ , whose elements are denoted by f(λ) and f(ρ), respectively, with defining relations
f(λ)g(ρ) = g(ρ)f(λ) for f, g ∈Mh∗ and

f(λ)Lxy(z) = Lxy(z)f(λ +ω(x)), f
(
ρ
)
Lxy(z) = Lxy(z)f

(
ρ +ω

(
y
))
, (3.5)

for all x, y ∈ X, z ∈ C
× and f ∈Mh∗ . The bigrading on ÃR is given by Lxy(z) ∈ (ÃR)ω(x),ω(y)

for x, y ∈ X, z ∈ C
× and f(λ), f(ρ) ∈ (ÃR)00 for f ∈ Mh∗ . The moment maps are defined by

μl(f) = f(λ), μr(f) = f(ρ). The counit and comultiplication are defined by

ε(Lab(z)) = δabT−ω(a),

ε
(
f(λ)

)
= ε

(
f
(
ρ
))

= fT0,

Δ(Lab(z)) =
∑

x∈X
Lax(z) ⊗ Lxb(z),

Δ
(
f(λ)

)
= f(λ) ⊗ 1,

Δ
(
f
(
ρ
))

= 1 ⊗ f(ρ).

(3.6)

This makes ÃR into an h-bialgebroid.
Consider the ideal in ÃR generated by the RLL relations:

∑

x,y∈X
R
xy
ac

(
λ,
z1
z2

)
Lxb(z1)Lyd(z2) =

∑

x,y∈X
Rbd
xy

(
ρ,
z1
z2

)
Lcy(z2)Lax(z1), (3.7)
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where a, b, c, d ∈ X, and z1, z2 ∈ C
×. More precisely, to account for possible singularities of R,

we let IR be the ideal in ÃR generated by all relations of the form

∑

x,y∈X
lim

w→ z1/z2

(
ϕ(w)Rxy

ac (λ,w)
)
Lxb(z1)Lyd(z2)

=
∑

x,y∈X
lim

w→ z1/z2

(
ϕ(w)Rbd

xy

(
ρ,w

))
Lcy(z2)Lax(z1),

(3.8)

where a, b, c, d ∈ X, z1, z2 ∈ C
×, and ϕ : C

× → C is a meromorphic function such that the
limits exist.

We define AR to be ÃR/IR. The bigrading descends to AR because (3.8) is
homogeneous, of bidegree ω(a) + ω(c), ω(b) + ω(d), by the h-invariance of R. One checks
that Δ(IR) ⊆ ÃR⊗̃IR + IR⊗̃ÃR and ε(IR) = 0. Thus AR is an h-bialgebroid with the induced
maps.

Remark 3.4. Objects in Felder’s tensor category associated to an R-matrix R are certain
meromorphic functions L : h∗ × C

× → Endh(Cn ⊗W) where W is a finite-dimensional h-
module [2]. After regularizing L with respect to the spectral parameter it will give rise to a
dynamical representation of the h-bialgebroid AR in the same way as in the nonspectral case
treated in [8]. The residual relations incorporated in (3.8) are crucial for this fact to be true in
the present, spectral, case.

3.3. Operator form of the RLL Relations

It is well known that the RLL relation (3.7) can be written as a matrix relation. We show how
this is done in the present setting. It will be used later in Section 6.2.

Assume Rab
xy(ζ, z) are defined, as meromorphic functions of ζ ∈ h∗ for any z ∈ C

×.
Define R(λ, z),R(ρ, z) ∈ End(V ⊗ V ⊗AR) by

R(λ, z)(ea ⊗ eb ⊗ u) =
∑

x,y∈X
ex ⊗ ey ⊗ Rab

xy(λ, z)u,

R
(
ρ, z

)
(ea ⊗ eb ⊗ u) =

∑

x,y∈X
ex ⊗ ey ⊗ Rab

xy

(
ρ, z

)
u,

(3.9)

for a, b ∈ X, u ∈ AR. Note that the λ and ρ in the left-hand side are not variables but merely
indicate which moment map is to be used. For z ∈ C

× we also define L(z) ∈ End(V ⊗AR) by

L(z) =
∑

x,y∈X
Exy ⊗ Lxy(z). (3.10)

Here Exy are the matrix units in End(V ), andAR acts on itself by left multiplication. The RLL
relation (3.7) is equivalent to

R

(
λ,
z1
z2

)
L1(z1)L2(z2) = L2(z2)L1(z1)R

(
ρ + h1 + h2,

z1
z2

)
(3.11)
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in End(V ⊗ V ⊗ AR), where Li(z) = L(z)(i,3) ∈ End(V ⊗ V ⊗ AR) for i = 1, 2 and the operator
R(ρ + h1 + h2, z1/z2) ∈ End(V ⊗ V ⊗AR) is given by

ea ⊗ eb ⊗ u 
−→
∑

x,y∈X
ex ⊗ ey ⊗ Rab

xy

(
ρ +ω(a) +ω(b),

z1
z2

)
u, (3.12)

where Rab
xy(ρ + ω(a) + ω(b), z1/z2) means the image in AR of the meromorphic function h∗ �

ζ 
→ Rab
xy(ζ+ω(a)+ω(b), z1/z2) under the right moment map μr . This equivalence can be seen

by acting on eb ⊗ ed ⊗ 1 in both sides of (3.11) and collecting and equating terms of the form
ea ⊗ ec ⊗ u. The matrix elements of the R-matrix in the right-hand side can then be moved to
the left using that R is h-invariant and using relation (3.5).

4. The Algebra Fell(M(n))

We now specialize to the case where h is the Cartan subalgebra of sl(n), V = C
n, andR is given

by (2.13)–(2.16). The case n = 2 was considered in [11]. We will show that (3.8) contains
precisely one additional family of relations, as compared to (3.7), and we write down all
relations explicitly.

When we apply the generalized FRST construction to this data we obtain an h-
bialgebroid which we denote by Fell(M(n)). The generators Lij(z) will be denoted by eij(z).
Thus Fell(M(n)) is the unital associative C-algebra generated by eij(z), i, j ∈ [1, n], z ∈ C

×,
and two copies ofMh∗ , whose elements are denoted by f(λ) and f(ρ) for f ∈Mh∗ , subject to
the following relations:

f(λ)eij(z) = eij(z)f(λ +ω(i)), f
(
ρ
)
eij(z) = eij(z)f

(
ρ +ω

(
j
))
, (4.1)

for all f ∈Mh∗ , i, j ∈ [1, n], and z ∈ C
×, and

n∑

x,y=1

R
xy
ac

(
λ,
z1
z2

)
exb(z1)eyd(z2) =

n∑

x,y=1

Rbd
xy

(
ρ,
z1
z2

)
ecy(z2)eax(z1), (4.2)

for all a, b, c, d ∈ [1, n]. More explicitly, from (2.13)we have

Rab
xy(ζ, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, a = b = x = y,

α
(
ζxy, z

)
, a /= b, x = a, y = b,

β
(
ζxy, z

)
, a /= b, x = b, y = a,

0, otherwise,

(4.3)
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which substituted into (4.2) yields four families of relations:

eab(z1)eab(z2) = eab(z2)eab(z1), (4.4a)

eab(z1)ead(z2) = α
(
ρbd,

z1
z2

)
ead(z2)eab(z1) + β

(
ρdb,

z1
z2

)
eab(z2)ead(z1), (4.4b)

α

(
λac,

z1
z2

)
eab(z1)ecb(z2) + β

(
λac,

z1
z2

)
ecb(z1)eab(z2) = ecb(z2)eab(z1), (4.4c)

α

(
λac,

z1
z2

)
eab(z1)ecd(z2) + β

(
λac,

z1
z2

)
ecb(z1)ead(z2)

= α
(
ρbd,

z1
z2

)
ecd(z2)eab(z1) + β

(
ρdb,

z1
z2

)
ecb(z2)ead(z1),

(4.4d)

where a, b, c, d ∈ [1, n], a/= c, and b /=d. Since θ has zeros precisely at pk, k ∈ Z, α and β have
poles at z = q−2pk, k ∈ Z. Thus (4.4b)–(4.4d) are to hold for z1, z2 ∈ C

× with z1/z2 /∈ {pkq−2 :
k ∈ Z}.

In (3.8), assuming a/= c, b /=d, taking z1 = z, z2 = pkq2z, ϕ(w) = q−1θ(q2w)/qθ(q−2w),
and using the limit formulas (2.26), we obtain the relation

α
(
λac, q

2
)(
eab(z)ecd

(
pkq2z

)
− q2kλcaecb(z)ead

(
pkq2z

))

= α
(
ρbd, q

2
)
ecd

(
pkq2z

)
eab(z) − q2kρbdβ

(
ρbd, q

2
)
ecb

(
pkq2z

)
ead(z).

(4.5)

This identity does not follow from (4.4a)–(4.4d) in an obviousway. It will be called the residual
RLL relation.

Proposition 4.1. Relations (4.4a)–(4.4d), and (4.5) generate the ideal IR. Hence (4.1), (4.4a)–
(4.4d), and (4.5) consitute the defining relations of the algebra Fell(M(n)).

Proof. Assume that we have a relation of the form (3.8) and that a limit in one of the terms,
limw→ zϕ(w)Rab

xy(λ,w), say, exists and is nonzero. Then one of the following cases occurs.

(1) At w = z, ϕ(w) and Rab
xy(λ,w) are both regular. If this holds for all terms, then the

relation is just a multiple of one of (4.4a)–(4.4d).
(2) At w = z, ϕ(w) has a pole while Rab

xy(λ,w) is regular. Then Rab
xy(λ,w) must vanish

identically at w = z. The only case where this is possible is when x /=y and
Rab
xy(λ,w) = α(λxy,w), and z = pk. But then there is another term containing β

which is never identically zero for any z, and hence the limit in that term does not
exist.

(3) At w = z, ϕ(w) is regular while Rab
xy(λ,w) has a pole. Since these poles are simple

and occur only when z ∈ q−2pZ, the function ϕmust have a zero of multiplicity one
there. We can assume without loss of generality that ϕ has the specific form

ϕ(w) =
q−1θ

(
q2w

)

qθ
(
q−2w

) . (4.6)

Then, if a/= c and b /=d, (3.8) becomes the residual RLL relation (4.5).
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If instead c = a, b /=d, and we take z1 = z, z2 = pkq2z in (3.8), we get, using (2.26),

0 = α
(
ρbd, p

kq2
)
ead

(
pkq2z

)
eab(z) − β

(
ρbd, p

kq2
)
eab

(
pkq2z

)
ead(z), (4.7)

or, rewritten,

ead
(
pkq2z

)
eab(z) = q2kρbd

E
(
ρbd − 1

)

E
(
ρbd + 1

)eab
(
pkq2z

)
ead(z). (4.8)

However this relation is already derivable from (4.4b) as follows. Take z1 = pkq2z and z2 = z
in (4.4b) multiply both sides by q2kρbd(E(ρbd − 1)/E(ρbd + 1)), and then use (4.4b) on the
right-hand side.

Similarly, if a/= c, d = b, z1 = z, z2 = pkq2z, ϕ(w) = q−1θ(q2w)/qθ(q−2w) in (3.8), and
using (2.26) we get

α
(
λac, p

kq2
)
eab(z)ecb

(
pkq2z

)
− β

(
λca, p

kq2
)
ecb(z)eab

(
pkq2z

)
= 0, (4.9)

or

eab(z)ecb
(
pkq2z

)
= q2kλcaecb(z)eab

(
pkq2z

)
. (4.10)

Similarly to the previous case, this identity follows already from (4.4c).

5. Left and Right Elliptic Exterior Algebras

5.1. Corepresentations of h-Bialgebroids

We recall the definition of corepresentations of an h-bialgebroid given in [13].

Definition 5.1. An h-space V is an h∗-graded vector space overMh∗ , V = ⊕α∈h∗Vα, where each
Vα isMh∗ -invariant. A morphism of h-spaces is a degree-preservingMh∗ -linear map.

Given an h-space V and an h-bialgebroid A, we define A⊗̃V to be the h∗-graded space
with (A⊗̃V )α = ⊕β∈h∗(Aαβ⊗Mh∗Vβ), where ⊗Mh∗ denotes ⊗C modulo the relations

μr
(
f
)
a ⊗ v = a ⊗ fv, (5.1)

for f ∈Mh∗ , a ∈ A, v ∈ V .A⊗̃V becomes an h-space with theMh∗ -action f(a⊗v) = μl(f)a⊗v.
Similarly we define V ⊗̃A as an h-space by (V ⊗̃A)β = ⊕αVα⊗Mh∗Aαβ, where ⊗Mh∗ here means
⊗C modulo the relation v ⊗ μl(f)a = fv ⊗ a andMh∗-action given by f(v ⊗ a) = v ⊗ μr(f)a.

For any h-space V we have isomorphisms Dh⊗̃V 	 V 	 V ⊗̃Dh given by

T−α ⊗ v 	 v 	 v ⊗ Tα, for v ∈ Vα, (5.2)

extended to h-space morphisms.
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Definition 5.2. A left corepresentation V of an h-bialgebroidA is an h-space equipped with an
h-space morphismΔV : V → A⊗̃V such that (ΔV ⊗1)◦ΔV = (1⊗Δ)◦ΔV and (ε⊗1)◦ΔV = IdV
(under the identification (5.2)).

Definition 5.3. A left h-comodule algebra V over an h-bialgebroid A is a left corepresentation
ΔV : V → A⊗̃V and in addition a C-algebra such that VαVβ ⊆ Vα+β and such that ΔV is an
algebra morphism, when A⊗̃V is given the natural algebra structure.

Right corepresentations and comodule algebras are defined analogously.

5.2. The Comodule Algebras Λ and Λ
′
.

We define in this section an elliptic analog of the exterior algebra, following [12], where it
was carried out in the trigonometric nonspectral case. It will lead to natural definitions of
elliptic minors as certain elements of Fell(M(n)). One difference between this approach and
the one in [5] is that the elliptic exterior algebra in our setting is really an algebra and not
just a vector space. Another one is that the commutation relations in our elliptic exterior
algebras are completely determined by requiring the natural relations (5.3a), (5.3b), and (5.5)
and that the coaction is an algebra homomorphism. This fact can be seen from the proof
of Proposition 5.4. Since the proof does not depend on the particular form of α and β, we
can obtain exterior algebras for any h-bialgebroid obtained through the generalized FRST
construction from an R-matrix in the same manner. In particular the method is independent
of the gauge equivalence class of R.

Let Λ be the unital associative C-algebra generated by vi(z), 1 ≤ i ≤ n, z ∈ C
× and a

copy ofMh∗ embedded as a subalgebra subject to the relations

f(ζ)vi(z) = vi(z)f(ζ +ω(i)), (5.3a)

vi(z)vi(w) = 0, (5.3b)

α
(
ζkj ,

z

w

)
vk(z)vj(w) + β

(
ζkj ,

z

w

)
vj(z)vk(w) = 0, (5.3c)

for i, j, k ∈ [1, n], j /= k, z,w ∈ C
×, z/w/∈ {pkq−2 : k ∈ Z} and f ∈ Mh∗ . We require also the

residual relation of (5.3c) obtained by multiplying by ϕ(z/w) = q−1θ(q2z/w)/qθ(q−2z/w)
and letting z/w → p−kq−2. After simplification using (2.26), we get

vk(z)vj
(
pkq2z

)
= q2kζjkvj(z)vk

(
pkq2z

)
. (5.3d)

Λ becomes an h-space by

μΛ
(
f
)
v = f(ζ)v (5.4)

and requiring vi(z) ∈ Λω(i) for each i, z.



14 International Journal of Mathematics and Mathematical Sciences

Proposition 5.4. Λ is a left comodule algebra over Fell(M(n)) with left coaction ΔΛ : Λ →
Fell(M(n))⊗̃Λ satisfying

ΔΛ(vi(z)) =
∑

j

eij(z) ⊗ vj(z), (5.5)

ΔΛ
(
f(ζ)

)
= f(λ) ⊗ 1. (5.6)

Proof. We have

ΔΛ(vi(z))ΔΛ(vi(w)) =
∑

jk

eij(z)eik(w) ⊗ vj(z)vk(w)

=
∑

j /= k

(
α
(
μjk,

z

w

)
eik(w)eij(z) + β

(
μkj ,

z

w

)
eij(w)eik(z)

)
⊗ vj(z)vk(w)

=
∑

j /= k

eij(w)eik(z) ⊗
(
α
(
ζkj ,

z

w

)
vk(z)vj(w) + β

(
ζkj ,

z

w

)
vj(z)vk(w)

)

= 0.
(5.7)

Similarly one proves that (5.3c), (5.3d) are preserved.

Relation (5.3c) is not symmetric under interchange of j and k. We now derive a more
explicit, independent, set of relations for Λ. We will use the function E, defined in (2.6).

Proposition 5.5. (i) The following is a complete set of relations for Λ:

f(ζ)vi(z) = vi(z)f(ζ +ω(i)), (5.8a)

vk
(
psq2z

)
vj(z) = −q2sζkj

E
(
ζkj − 1

)

E
(
ζkj + 1

)vj
(
psq2z

)
vk(z), ∀s ∈ Z, k /= j, (5.8b)

vk(z)vj
(
psq2z

)
= q2sζjkvj(z)vk

(
psq2z

)
, (5.8c)

vk(z)vj(w) = 0 if
z

w
/∈
{
psq±2 | s ∈ Z

}
or if k = j. (5.8d)

(ii) The set

{
vid(zd) · · ·vi1(z1) : 1 ≤ i1 < · · · < id ≤ n,

zi+1
zi
∈ pZq ±2

}
(5.9)

is a basis for Λ overMh∗ .

Proof. (i) Elimination of the vj(z)vk(w)-term in (5.3c) yields

(
α
(
ζjk,

z

w

)
α
(
ζkj ,

z

w

)
− β

(
ζkj ,

z

w

)
β
(
ζjk,

z

w

))
vk(z)vj(w) = 0. (5.10)
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Combining (5.10), (2.28), and the fact that the θ(z) is zero precisely for z ∈ {pk | k ∈ Z} we
deduce that in Λ,

vk(z)vj(w)/= 0 =⇒ z

w
= psq2 for some s ∈ Z. (5.11)

Using (2.25) we obtain from (5.11), (5.3b), and (5.3c) that relations (5.8b), (5.8d) hold in the
left elliptic exterior algebra Λ. Relations (5.8a), (5.8c) are just repetitions of (5.3a), (5.3d).

(ii) It follows from the relations that each monomial in Λ can be uniquely written as
f(ζ)vid(zd) · · ·vi1(z1), where 1 ≤ i1 < · · · < id ≤ n and f ∈Mh∗ . It remains to show that the set
(5.9) is linearly independent overMh∗ . Assume that a linear combination of basis elements is
zero and that the sum has minimal number of terms. By multiplying from the right or left by
vj(w) for appropriate j, w we can assume that the sum is of the form

f1(ζ)vid
(
z1d

)
· · ·vi1

(
z11

)
+ · · · + fr(ζ)vid

(
zrd

) · · ·vi1
(
zr1

)
= 0, (5.12)

for some fixed set {i1, . . . , id}. By the relations, a monomial vid(zd) · · ·vi1(z1) can be given
the ”degree”

∑d
i=1 zit

i−1 ∈ C[t], where t is an indeterminate. Formally, consider C(t) ⊗ Λ, the
tensor product (over C) of Λ by the field of rational functions in t. We identify Λ with its
image under Λ � v 
→ 1 ⊗ v ∈ C(t) ⊗ Λ and view C(t) ⊗ Λ naturally as a vector space over
C(t). By relations (5.8a)–(5.8d), there is a C-algebra automorphism T of C(t) ⊗ Λ satisfying
T(vj(z)) = tvj(z), T(f(ζ)) = f(ζ), and T(p ⊗ 1) = p ⊗ 1. Define

D(vi(z)) = zvi(z), D
(
f(ζ)

)
= 0, D

(
p ⊗ 1) = 0, (5.13)

for f ∈Mh∗ , p ∈ C(t) and i ∈ [1, n], z ∈ C
×, and extend D to a C-linear map D : C(t) ⊗ Λ →

C(t) ⊗Λ by requiring

D(ab) = D(a)T(b) + aD(b), (5.14)

for a, b ∈ C(t) ⊗ Λ. The point is that the requirement (5.14) respects relations (5.8a)–(5.8d),
making D well defined. Write uj = fj(ζ)vid(z

j

d) · · ·vi1(z
j

1). Then one checks that D(uj) =

pj(t)uj , where pj(t) =
∑d

i=1 z
j

i t
i−1. By applying D repeatedly we get

u1
(
z1

)
+ · · · + ur(zr) = 0,

p1(t)u1
(
z1

)
+ · · · + pr(t)ur(zr) = 0,

...

p1(t)
r−1u1

(
z1

)
+ · · · + pr(t)r−1ur(zr) = 0.

(5.15)

Inverting the Vandermonde matrix (pj(t)
i−1)ij we obtain uj(zj) = 0 for each j, that is, fj(ζ) = 0

for each j. This proves linear independence of (5.9).
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Analogously one defines a right comodule algebraΛ′ with generatorswi(z) and f(ζ) ∈
Mh∗ . The following relations will be used:

wk(z)wj
(
psq2z

)
= −q2sζkjwj(z)wk

(
psq2z

)
, ∀s ∈ Z, k /= j,

wk(z1)wj(z2) = 0, if
z2
z1
/∈
{
psq±2 | s ∈ Z

}
, or if k = j.

(5.16)

Λ′ has alsoMh∗-basis of the form (5.9). In fact Λ and Λ′ are isomorphic as algebras.

5.3. Action of the Symmetric Group

From (4.4a)–(4.4d), and (4.5) we see that Sn × Sn acts by C-algebra automorphisms on
Fell(M(n)) as follows:

(σ, τ)
(
f(λ)

)
= f(λ ◦ Lσ), (σ, τ)

(
f
(
μ
))

= f
(
μ ◦ Lτ

)
,

(σ, τ)
(
eij(z)

)
= eσ(i)τ(j)(z),

(5.17)

where Lσ : h → h (σ ∈ Sn) is given by permutation of coordinates:

Lσ
(
diag(h1, . . . , hn)

)
= diag

(
hσ(1), . . . , hσ(n)

)
. (5.18)

Also, Sn acts on Λ by C-algebra automorphisms via

σ
(
f(ζ)

)
= f(ζ ◦ Lσ), σ(vi(z)) = vσ(i)(z). (5.19)

Similarly we define an Sn action on Λ′.

Lemma 5.6. For each v ∈ Λ, w ∈ Λ′, and any σ, τ ∈ Sn we have

ΔΛ(σ(v)) = ((σ, τ) ⊗ τ)(ΔΛ(v)), (5.20)

ΔΛ′(τ(w)) = (σ ⊗ (σ, τ))(ΔΛ′(w)). (5.21)

Proof. By multiplicativity, it is enough to prove these claims on the generators, which is easy.

6. Elliptic Quantum Minors

6.1. Definition

For I ⊆ [1, n] we set

FI(ζ) =
∏

i,j∈I,i<j
E
(
ζij + 1

)
, FI(ζ) =

∏

i,j∈I,i<j
E
(
ζij

)
, (6.1)
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and define the left and right elliptic sign functions:

sgnI(σ; ζ) =
σ(FI(ζ))
Fσ(I)(ζ)

=
∏

i,j∈I,i<j,σ(i)>σ(j)

E
(
ζσ(i)σ(j) + 1

)

E
(
ζσ(j)σ(i) + 1

) ,

sgnI(σ; ζ) =
Fσ(I)(ζ)
σ
(
FI(ζ)

) =
∏

i,j∈I,i<j,σ(i)>σ(j)

E
(
ζσ(j)σ(i)

)

E
(
ζσ(i)σ(j)

) ,

(6.2)

for σ ∈ Sn. In fact, E(ζij)/E(ζji) = −1 so sgn[1,n](σ; ζ) is just the usual sign sgn(σ). However we
view this as a “coincidence” depending on the particular choice of R-matrix from its gauge
equivalence class. We keep our notation to emphasize that the methods do not depend on
this choice of R-matrix.

We will denote the elements of a subset I ⊆ [1, n] by i1 < i2 < · · · .

Proposition 6.1. Let I ⊆ [1, n], d = #I, σ ∈ Sn, and J = σ(I). Then for z ∈ C
×,

vσ(id)
(
q2(d−1)z

)
· · ·vσ(i1)(z) = sgnI(σ; ζ)vjd

(
q2(d−1)z

)
· · ·vj1(z), (6.3)

wσ(i1)(z) · · ·wσ(id)
(
q2(d−1)z

)
= sgnI(σ; ζ)wj1(z) · · ·wjd

(
q2(d−1)z

)
. (6.4)

Proof. We prove (6.3). The proof of (6.4) is analogous. We proceed by induction on #I = d, the
case d = 1 being clear. If d > 1, set I ′ = {i1, . . . , id−1}, J ′ = σ(I ′). Let 1 ≤ j ′1 < · · · < j ′d−1 ≤ n be
the elements of J ′. By the induction hypothesis, the left hand side of (6.3) equals

vσ(id)
(
q2(d−1)z

)
sgnI ′(σ, ζ)vj ′d−1

(
q2(d−2)z

)
· · ·vj ′1(z). (6.5)

Now vσ(id)(q
2(d−1)z) commutes with sgnI ′(σ, ζ) since the latter only involves ζij with

i, j /=σ(id). Using the commutation relations (5.8b)we obtain

sgnI ′(σ, ζ) ·
∏

j∈J ′,j>σ(id)

E
(
ζjσ(id) + 1

)

E
(
ζσ(id)j + 1

) · vjd
(
q2(d−1)z

)
· · ·vj1(z). (6.6)

Replace j ∈ J ′ such that j > σ(id) by σ(i), where i ∈ I, i < id, σ(i) > σ(id).

Introduce the normalized monomials

vI(z) = FI(ζ)
−1vir

(
q2(d−1)z

)
vir−1

(
q2(d−2)z

)
· · ·vi1(z) ∈ Λ, (6.7)

wI(z) = FI(ζ)wi1(z)wi2
(
q2z

)
· · ·wid

(
q2(d−1)z

)
∈ Λ′. (6.8)

Corollary 6.2. Let I ⊆ [1, n]. For any permutation σ ∈ Sn,

σ(vI(z)) = vσ(I)(z), σ
(
wI(z)

)
= wσ(I)(z) (6.9)
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for any z ∈ C
×. In particular vI(z) and wI(z) are fixed by any permutation which preserves the

subset I.

Proof. Let J = σ(I). Then

σ(vI(z)) = σ
(
FI(ζ)

−1
)
vσ(id)

(
q2(d−1)z

)
· · ·vσ(i1)(z)

= σ(FI(ζ))
−1sgnI(σ; ζ)vjd

(
q2(d−1)z

)
· · ·vj1(z)

= vσ(I)(z).

(6.10)

The proof for wI(z) is analogous.

For any I ⊆ [1, n], let SI denote the group of all permutations of the set I. We are now
ready to define certain elements of the h-bialgebroid Fell(M(n))which are analogs of minors.

Proposition 6.3. For I, J ⊆ [1, n] and z ∈ C
×, the left and right elliptic minors,

←−
ξ
J

I (z) and
−→
ξ
J

I (z),
respectively, can be defined by

ΔΛ(vI(z)) =
∑

J

←−
ξ
J

I (z) ⊗ vJ(z), (6.11)

ΔΛ′
(
wJ(z)

)
=
∑

I

wI(z) ⊗ −→ξ
J

I (z), (6.12)

where the sums are taken over all subsets of [1, n].

If #I /= #J , then
←−
ξ
J

I (z) = 0 =
−→
ξ
J

I (z), for all z. If #I = #J = d, they are explicitly given by

←−
ξ
J

I (z) =
FJ

(
ρ
)

FI(λ)

∑

τ∈SJ

sgnJ
(
τ ; ρ

)

sgnI(σ;λ)
eσ(id)τ(jd)

(
q2(d−1)z

)
eσ(id−1)τ(jd−1)

(
q2(d−2)z

)
· · · eσ(i1)τ(j1)(z)

(6.13)

for any σ ∈ SI , and

−→
ξ
J

I (z) =
FJ

(
ρ
)

FI(λ)

∑

σ∈SI

sgnJ
(
τ ; ρ

)

sgnI(σ;λ)
eσ(i1)τ(j1)(z)eσ(i2)τ(j2)

(
q2z

)
· · · eσ(id)τ(jd)

(
q2(d−1)z

)
(6.14)

for any τ ∈ SJ . Moreover,

(σ, τ)
(←−
ξ
J

I (z)
)

=
←−
ξ
τ(J)

σ(I) (z), (σ, τ)
(−→
ξ
J

I (z)
)

=
−→
ξ
τ(J)

σ(I)(z) (6.15)

for any (σ, τ) ∈ Sn × Sn and z ∈ C
×.
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Remark 6.4. In Theorem 6.10 we will prove that, in fact,
←−
ξ
J

I (z) =
−→
ξ
J

I (z).

Proof. We prove the statements concerning the left elliptic minor
←−
ξ
J

I (z). We have

ΔΛ(vI(z)) =
∑

1≤k1,...,kd≤n
FI(λ)

−1eidkd
(
q2(d−1)z

)
· · · ei1k1(z) ⊗ vkd

(
q2(d−1)z

)
· · ·vk1(z)

=
∑

J,#J=d

∑

τ∈SJ
FI(λ)

−1eidτ(jd)
(
q2(d−1)z

)
· · · ei1τ(j1)(z) ⊗ vτ(jd)

(
q2(d−1)z

)
· · ·vτ(j1)(z)

=
∑

J,#J=d

⎛

⎝
∑

τ∈SJ

τ
(
FJ

(
ρ
))

FI(λ)
eidτ(jd)

(
q2(d−1)z

)
· · · ei1τ(j1)(z)

⎞

⎠ ⊗ vJ(z).

(6.16)

Thus (6.11) holds when
←−
ξ
J

I (z) is defined by (6.13) with σ = Id. Then the right hand side

of (6.13) equals (σ, Id)(
←−
ξ
J

I (z)) for any σ ∈ SI . Thus only (6.15) remains. Using (5.20) and
Corollary 6.2 we have

ΔΛ(σ(vI(z))) = ((σ, τ) ⊗ τ)(ΔΛ(vI(z))) =
∑

J

(σ, τ)
((←−

ξ
J

I (z)
)
⊗ vτ(J)(z)

)
. (6.17)

On the other hand, again by Corollary 6.2,

ΔΛ(σ(vI(z))) = ΔΛ
(
vσ(I)(z)

)
=
∑

J

(←−
ξ
τ(J)

σ(I) (z) ⊗ vτ(J)(z)
)
, (6.18)

where we made the substitution J 
→ τ(J). This proves the first equality in (6.15). The
statements concerning the right elliptic minors are proved analogously.

6.2. Equality of Left and Right Minors

The goal of this section is to prove Theorem 6.10 stating that the left and right elliptic
minors coincide. We use ideas from Section 3 of [5], where the authors study the objects of
Felder’s tensor category [2] and associate a linear operator (product of R-matrices) on V ⊗n to
each diagram of a certain form, a kind of braid group representation. Then they consider
the operator associated to the longest permutation, in [7] called the Cherednik operator.
Instead of working with representations, we proceed inside the h-bialgebroid Fell(M(n)) and
consider certain operators on V ⊗n ⊗ Fell(M(n)) depending on n spectral parameters. Using
the analog of the Cherednik operator we prove an extended RLL relation (6.38). Theorem 6.10
then follows by extracting matrix elements from both sides of this matrix equation.

In this section, we set F = Fell(M(n)). Recall the operators from Section 3.3, defined
for any h-bialgebroidAR obtained from the FRST construction. When specializing toFwe get
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operators R(λ, z), R(ρ, z) ∈ End(V ⊗ V ⊗ F), where V = C
n. For z ∈ C

×, define the following
linear operators on V ⊗n ⊗ F:

Rij(λ, z) := lim
w→ z

θ
(
q2w

)
R(λ,w)(i,j,n+1), Rij(ρ, z

)
:= lim

w→ z
θ
(
q2w

)
R(ρ,w)(i,j,n+1). (6.19)

The upper indices in parenthesis are tensor leg numbering and indicate the tensor factors
the operator should act on. The limits are taken in the sense of taking limits of each matrix
element. These operators are well defined for any z, since we multiply away the singularities
in z of α and β (2.15), (2.16).

Let En denote the algebra of all functions

F :
(
C
×)n −→ End

(
V ⊗n ⊗ F). (6.20)

The symmetric group Sn acts on En by

σ(F(z)) = (σ ⊗ IdF) ◦ F(σ(z)) ◦
(
σ−1 ⊗ IdF

)
, (6.21)

for F ∈ En and σ ∈ Sn. In the right hand side of (6.21), σ acts on (C×)n by permuting
coordinates, and on V ⊗n by permuting the tensor factors. For example, we have

(23)
(

R12
(
λ,
z1
z2

))
= R13

(
λ,
z1
z3

)
. (6.22)

Consider the skew group algebra En ∗ Sn, defined as the algebra with underlying space En ⊗
CSn, where CSn is the group algebra, with the multiplication

(F(z) ⊗ σ)(G(z) ⊗ τ) = F(z)σ(G(z)) ⊗ στ, (6.23)

for σ, τ ∈ Sn, F,G ∈ En. Since σ acts on En by automorphisms, En ∗Sn is an associative algebra.
The constant function z 
→ IdV ⊗n⊗F ⊗ (1) is the unit element. Let Bn be the monoid (set with
unital associative multiplication) generated by {s1, . . . , sn−1} and relations

sisi+1si = si+1sisi+1, for 1 ≤ i ≤ n − 2,
sisj = sjsi, if

∣∣i − j∣∣ > 1.
(6.24)

Let σi = (ii + 1) ∈ Sn. We have an epimorphism π : Bn → Sn given by π(si) = σi, π(1) = (1).
Define

W(1) = IdV ⊗n⊗F ⊗ (1),

W(si) = Ri,i+1
(
λ − h≥i+2, zi

zi+1

)
⊗ σi.

(6.25)
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Here and below we use h≥k to denote the expression
∑n

j=k h
j , and operators involving shifts

hi such as Rn−2,n−1(λ − hn, zi/zi+1) are defined as in Section 3.3.

Proposition 6.5. W extends to a well-defined morphism of monoids, that is, a map

W : Bn −→ En ∗ Sn (6.26)

satisfyingW(b1b2) =W(b1)W(b2) for any b1, b2 ∈ Bn.
Proof. We have to show the relations

W(si)W(si+1)W(si) =W(si+1)W(si)W(si+1), (6.27)

W(si)W
(
sj
)
=W

(
sj
)
W(si) if

∣
∣i − j∣∣ > 1. (6.28)

Relation (6.27) follows from the QDYBE (2.8). For example,W(si)W(si+1)W(si) equals

Ri,i+1
(
λ − h≥i+2, zi

zi+1

)
Ri,i+2

(
λ − h≥i+3, zi

zi+2

)
Ri+1,i+2

(
λ − hi − h≥i+3, zi+1

zi+2

)
⊗ σiσi+1σi. (6.29)

Relation (6.28) is easy to check, using the h-invariance of R.

For b ∈ Bn we defineWb(λ, z) ∈ En by

W(b) =Wb(λ, z) ⊗ π(b). (6.30)

From this and the product rule (6.23) it follows that

Wb1b2(λ, z) =Wb1(λ, z) · π(b1)(Wb2(λ, z)), (6.31)

for b1, b2 ∈ Bn. By replacing λ by ρ we get similarly operatorsWb(ρ, z).
Recall the operators L(z) ∈ End(V ⊗ F) from Section 3.3. Define for z ∈ C

×, i ∈ [1, n],

Li(z) = L(z)(i,n+1) ∈ End
(
V ⊗n ⊗ F). (6.32)

If i, j, k are distinct, then one can check that

Rij
(
λ − hk, z

)
Lk(w) = Lk(w)Rij(λ, z), (6.33)

Rij(ρ, z
)
Lk(w) = Lk(w)Rij

(
ρ + hk, z

)
. (6.34)

Due to the RLL relations (3.8) we have

R12
(
λ,
z1
z2

)
L1(z1)L2(z2) = L2(z2)L1(z1)R12

(
ρ + h1 + h2,

z1
z2

)
(6.35)

for any z1, z2 ∈ C
×.
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Define td ∈ Bn, d ∈ [1, n], recursively by

td =

⎧
⎨

⎩

td−1sd−1sd−2 · · · s1, d > 1

1, d = 1.
(6.36)

Let τd be the image of td in Sn:

τd := π(td) =

(
1 2 · · · d d + 1 · · · n

d d − 1 · · · 1 d + 1 · · · n

)

∈ Sn. (6.37)

Proposition 6.6. Let 1 ≤ d ≤ n. For any z = (z1, . . . , zd) ∈ (C×)d we have

Wtd(λ, z)L
1(z1) · · · Ld(zd) = Ld(zd) · · · L1(z1)Wtd

(
ρ + h≤d, z

)
. (6.38)

Proof. We use induction on d. The case d = 1 is trivial, while d = 2 is the RLL relation (6.35).
If d > 2, write td = td−1ud, where ud = sd−1sd−2 · · · s1. Thus, by (6.31),

Wtd(λ, z) =Wtd−1(λ, z) · τd−1(Wud(λ, z)). (6.39)

We claim that

τd−1(Wud(λ, z))L
1(z1) · · ·Ld(zd) = Ld(zd)L1(z1) · · ·Ld−1(zd−1)τd−1

(
Wud

(
ρ + h≤d, z

))
. (6.40)

For notational simplicity, set λ′ = λ − h>d. A calculation using (6.30) shows that, compare the
proof of Proposition 6.5,

Wud(λ, z) = Rd−1,d
(
λ′,

zd−1
zd

)
Rd−2,d

(
λ′ − hd−1, zd−2

zd

)
· · ·R1,d

(
λ′ − h[2,d−1], z1

zd

)
, (6.41)

where h[a,b] means
∑

a≤j≤b h
j . Thus

τd−1(Wud(λ, z)) = R1,d
(
λ′,

z1
zd

)
R2,d

(
λ′ − h1, z2

zd

)
· · ·Rd−1,d

(
λ′ − h≤d−2, zd−1

zd

)
. (6.42)

Using (6.33) and the RLL relation (6.35) repeatedly, we obtain (6.40). Now the proposition
follows by induction on d, using that

Wtd−1(λ, z)L
d(zd) = Ld(zd)Wtd−1

(
λ + hd, z

)
(6.43)

which follows from (6.33).



International Journal of Mathematics and Mathematical Sciences 23

The operator C(λ, z) :=Wtn(λ, z) is called the Cherednik operator. For an operator F(z) ∈
En we define its matrix elements F(z)a1,...,anx1,...,xn ∈ F by

F(z)(ea1 ⊗ · · · ⊗ ean ⊗ 1) =
∑

x1,...,xn

ex1 ⊗ · · · ⊗ exn ⊗ F(z)a1,...,anx1,...,xn . (6.44)

Proposition 6.7. Let

α̃(λ, z) = lim
w→ z

θ
(
q2w

)
α(λ,w) =

θ(z)θ
(
q2(λ+1)

)

θ
(
q2λ

) . (6.45)

Then

C(λ, z)1,...,n1,...,n =
∏

i<j

α̃

(

λij ,
zi
zj

)

=
∏

i<j

qθ

(
zi
zj

)

· F[1,n](λ)
F[1,n](λ)

. (6.46)

Proof. The second equality follows from the definition (6.1) of FI and FI . We prove by
induction on d that Wtd(λ, z)

1,...,n
1,...,n =

∏
i<j≤dα̃(λij , zi/zj). For d = 2 we have td = s1

and Ws1(λ, z)
1,...,n
1,...,n = R12(λ − h>2, z1/z2)1,...,n1,...,n = α̃(λ12, z1/z2) as claimed. For d > 2, using

factorization (6.39) we have

Wtd(λ, z)
1,...,n
1,...,n =

∑

x1,...,xn

Wtd−1(λ, z)
x1,...,xn
1,...,n τd−1(Wud(λ, z))

1,...,n
x1,...,xn

. (6.47)

SinceWtd−1(λ, z) is a product of operators of the form σ(Rii+1(λ, zi/zi+1)) where 1 ≤ i ≤
d−2 and σ ∈ Sn, σ(j) = j, j > d−1, and each of these operators preserve the subspace spanned
by eτ(1) ⊗ · · · ⊗ eτ(d−1) ⊗ ed ⊗ · · · ⊗ en ⊗ a, where τ ∈ Sd−1 and a ∈ F; the operator Wtd−1(λ, z)
also preserves this subspace. This means thatWtd−1(λ, z)

x1,...,xn
1,...,n = 0 unless xj = j for j ≥ d and

{x1, . . . , xd−1} = {1, . . . , d − 1}. Furthermore, by (6.42),

τd−1(Wud(λ, z))
1,...,n
x1,...,xd−1,d,...,n

=
∑

y2,...,yd−1

R̃
1y2
x1d

(
λ,
z1
zd

)
R̃

2y3
x2y2

(
λ −ω(1), z2

zd

)
· · · R̃d−1,d

xd−1yd−1

(

λ −
∑

k≤d−2
ω(k),

zd−1
zd

)

.
(6.48)

Here R̃ab
xy(λ, z) = limw→ zθ(q2w)Rab

xy(λ,w). Since R̃ab
xy(λ, z) = 0 unless {x, y} = {a, b}, we

deduce that, when {x1, . . . , xd−1} = {1, . . . , d − 1}, the terms in the sum (6.48) are zero unless
xi = i for all i and yj = d for all j. Substituting into (6.47) the claim follows by induction.

Lemma 6.8. Fix 2 ≤ d ≤ n and i < d. Then there are elements b, c ∈ Bn such that td = sib and
td = csi.

Proof. Since t2 = s1 and t3 = s1s2s1 = s2s1s2, the statement clearly holds for d = 2, 3. Assuming
d > 3, we first prove the existence of b. If i < d − 1 then by induction there is a b′ ∈ Bn such
that td−1 = sib

′. Hence td = td−1sd−1 · · · s1 = sib
′sd−1 · · · s1. Thus we can take b = b′sd−1 · · · s1.
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If i = d − 1, write td = td−2sd−2 · · · s1sd−1 · · · s1. Then move each of the d − 1 rightmost factors
sd−1, . . . , s1 as far to the left as possible, using that sjsk = sksj when |j − k| > 1. This gives

td = td−2sd−2sd−1sd−3sd−2sd−4 · · · s2s3s1s2s1. (6.49)

Then use sjsj+1sj = sj+1sjsj+1 repeatedly, working from right to left, to obtain

td = td−2sd−1sd−2sd−1sd−3sd−2 · · · s4s2s3s1s2. (6.50)

Finally, sd−1 can be moved to the left of td−2 since the latter is a product of sj ’s with j ≤ d − 3.
To prove the existence of cwe note that Bn carries an involution ∗ : Bn → Bn satisfying

(a1a2)
∗ = a∗2a

∗
1 for any a1, a2 ∈ Bn, defined by s∗j = sj for j ∈ [1, n] and 1∗ = 1. Thus it suffices

to show that t∗
d
= td for any d. This is trivial for d = 2, 3. When d > 3 we have, by induction

on d,

t∗d = (td−1sd−1 · · · s1)∗

= s1 · · · sd−1td−1
= s1 · · · sd−1td−2sd−2 · · · s1
= s1 · · · sd−2td−2sd−1sd−2 · · · s1
= t∗d−1sd−1 · · · s1
= td (since sd−1 commutes with td−2).

(6.51)

Proposition 6.9. Letw = (z0, q2z0, . . . , q2(n−1)z0), where z0 /= 0 is arbitrary, and let σ, τ ∈ Sn. Then

C(λ,w)τ(1),...,τ(n)
σ(1),...,σ(n) =

sgn[1,n](σ;λ)

sgn[1,n](τ ;λ)
C(λ,w)1,...,n1,...,n. (6.52)

Proof. First we claim that for all σ, τ ∈ Sn and each i ∈ [1, n],

Wsi(λ,w)τ(1),...,τ(n)
σσi(1),...,σσi(n)

= σ
(
sgn[1,n](σi;λ)

)
Wsi(λ,w)τ(1),...,τ(n)

σ(1),...,σ(n), (6.53)

Wsi(λ,w)τσi(1),...,τσi(n)
σ(1),...,σ(n) = τ

(
sgn[1,n](σi;λ)

)
Wsi(λ,w)τ(1),...,τ(n)

σ(1),...,σ(n)

= −Wsi(λ,w)τ(1),...,τ(n)
σ(1),...,σ(n).

(6.54)

Indeed, assume that zi/zi+1 = q−2 and that {a1, . . . , an} = {b1, . . . , bn} = [1, n]. Then
Wsi(λ, z)

b1,...,bn
a1,...,an /= 0 if and only if {ai, ai+1} = {bi, bi+1} in which case

Wsi(λ, z)
b1,...,bn
a1,...,an =

E(1)E(λaiai+1 + 1)
E(λbi+1bi)

. (6.55)
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From this and the definitions of the sign functions, (6.2), the claims follow. Next, we prove
(6.52) by induction on the sum � of the lengths of σ and τ . If � = 0, it is trivial. Assuming
(6.52) holds for (σ, τ) we prove it holds for (σσi, τ) and (σ, τσi) where i is arbitrary.

Let i ∈ [1, n]. By Lemma 6.8 we have tn = sib for some b ∈ Bn. We have

Wtn(λ,w)τ(1),...,τ(n)
σσi(1),...,σσi(n)

= (Wsi(λ,w)σi(Wb(λ,w)))τ(1),...,τ(n)σσi(1),...,σσi(n)

=
∑

x1,...,xn

Wsi(λ,w)x1,...,xn
σσi(1),...,σσi(n)

σi(Wb(λ,w))τ(1),...,τ(n)x1,...,xn
.

(6.56)

As in the proof of Proposition 6.7, Wsi(λ,w)x1,...,xn
σσi(1),...,σσi(n)

is zero, if x1, . . . , xn is not a
permutation of 1, . . . , n. Using (6.53) we obtain

σ
(
sgn[1,n](σi;λ)

) ∑

x1,...,xn

Wsi(λ,w)x1,...,xn
σ(1),...,σ(n)σi(Wb(λ,w))τ(1),...,τ(n)x1,...,xn

= σ
(
sgn[1,n](σi;λ)

)
Wtn(λ,w)τ(1),...,τ(n)

σ(1),...,σ(n).

(6.57)

Using the induction hypothesis and the relation sgn[1,n](σ;λ)σ(sgn[1,n](σi;λ)) =
sgn[1,n](σσi;λ) we obtain (6.52) for (σσi, τ).

For the other case, let i be arbitrary, and set j = τn(i). By Lemma 6.8 there is a c ∈ Bn
such that tn = csj . Recall the surjective morphism π : Bn → Sn sending si to σi = (ii + 1).
Then σjπ(c) = π(c)σi. We have

Wtn(λ,w)τσi(1),...,τσi(n)
σ(1),...,σ(n) =

(
Wc(λ,w) · π(c)

(
Wsj (λ,w)

))τσi(1),...τσi(n)

σ(1),...,σ(n)

=
∑

x1,...,xn

Wc(λ,w)x1,...,xn
σ(1),...,σ(n)π(c)

(
Wsj (λ,w)

)τσi(1),...,τσi(n)

x1,...,xn
.

(6.58)

It is easy to check that σ(F(z))b1,...,bna1,...,an = F(σ(z))bσ(1),...,bσ(n)aσ(1),...,aσ(n) for any F(z) ∈ En and σ ∈ Sn. Define
wi by (w1, . . . , wn) = w = (z0, q2z0, . . . , q2(n−1)z0). Then wi/wi+1 = q−2 for each i. Set w′ =
(wπ(c)(1), . . . , wπ(c)(n)). For each i, wπ(c)(i)/wπ(c)(i+1) = wτn(i+1)/wτn(i) = q

−2 also. Therefore

Wtn(λ,w)τσi(1),...,τσi(n)
σ(1),...,σ(n) =

∑

x1,...,xn

Wc(λ,w)x1,...,xnσ(1),...,σ(n)Wsj

(
λ,w′

)τσiπ(c)(1),...,τσiπ(c)(n)
xπ(c)(1),...,xπ(c)(n)

=
∑

x1,...,xn

Wc(λ,w)x1,...,xn
σ(1),...,σ(n)Wsj (λ,w

′)
τπ(c)σj (1),...,τπ(c)σj (n)
xπ(c)(1),...,xπ(c)(n)

=
∑

x1,...,xn

Wc(λ,w)x1,...,xnσ(1),...,σ(n)

(
sgnσj

)
Wsj (λ,w

′)τπ(c)(1),...,τπ(c)(n)xπ(c)(1),...,xπ(c)(n)

=
∑

x1,...,xn

Wc(λ,w)x1,...,xnσ(1),...,σ(n)(−1)π(c)
(
Wsj (λ,w)

)τ(1),...,τ(n)

x1,...,xn

= −Wtn(λ,w)τ(1),...,τ(n)
σ(1),...,σ(n).

(6.59)
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By the induction hypothesis it follows that (6.52) holds for (σ, τσi). This proves the formula
(6.52).

Theorem 6.10. For any subsets I, J ⊆ [1, n] and z ∈ C
×, the left and right elliptic minors coincide:

←−
ξ
J

I (z) =
−→
ξ
J

I (z). (6.60)

We denote this common element by ξJI (z).

Proof. If #I /= #J then both sides are zero. Suppose #I = #J = d. By relation (6.15) we can,
after applying a suitable automorphism, assume that I = J = [1, d]. Since the subalgebra of
F generated by eij(z), i, j ∈ [1, d], z ∈ C

× and f(λ), f(ρ) with f ∈ Mh∗
d
⊆ Mh∗ , hd being the

Cartan subalgebra of sl(d), is isomorphic toFell(M(d)), we can also assume d = n. Identifying
the matrix element 1,...,n

1,...,n on both sides of (6.38)we get

∑

x1,...,xn

C(λ, z)x1,...,xn1,...,n ex1,1(z1) · · · exn,n(zn) =
∑

x1,...,xn

en,xn(zn) · · · e1,x1(z1)C
(
ρ + h≤n, z

)1,...,n
x1,...,xn

. (6.61)

As in the proof of Proposition 6.7, C(λ, z)x1,...,xn1,...,n is zero if x1, . . . , xn is not a permutation of
1, . . . , n. Taking z = w = (z0, q2z0, . . . , q2(n−1)z0) and dividing both sides by

∏
i<jqθ(wi/wj) =∏

i<jqθ(q
2(i−j)) we get

F[1,n](λ)
F[1,n](λ)

∑

σ∈Sn
sgn[1,n](σ;λ)−1eσ(1)1(z0) · · · eσ(n)n

(
q2(n−1)z0

)

=
F[1,n]

(
ρ
)

F[1,n]
(
ρ
)
∑

τ∈Sn
sgn[1,n]

(
τ ; ρ

)
enτ(n)

(
q2(n−1)z0

)
· · · e1σ(1)(z0).

(6.62)

Multiplying by F[1,n](ρ)/F[1,n](λ) and comparing with (6.13) and (6.14), we deduce that
−→
ξ
[1,n]

[1,n](z0) =
←−
ξ

[1,n]

[1,n] (z0), as desired.

6.3. Laplace Expansions

Using the left (right) Fell(M(n))-comodule algebra structure of Λ(Λ′) it is straightforward to
prove Laplace expansion formulas for the elliptic minors. For subsets I, J ⊆ [1, n] we define
Sl(I, J ; ζ), Sr(I, J ; ζ) ∈Mh∗ by

vI
(
q2#Jz

)
vJ(z) = Sl(I, J ; ζ)vI∪J(z),

wI(z)wJ
(
q2#Iz

)
= Sr(I, J ; ζ)wI∪J(z).

(6.63)

That this is possible follows from the definitions (6.7) and (6.8) of vI(z), wI(z), and the
commutation relations (5.8b)–(5.8d), (5.16). In particular Sl(I, J ; ζ) = 0 = Sr(I, J ; ζ), if I∩J /= ∅.
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Theorem 6.11. (i) Let I1, I2, J ⊆ [1, n], and set I = I1 ∪ I2. Then

Sl(I1, I2;λ)ξ
J
I (z) =

∑

J1∪J2=J
Sl
(
J1, J2; ρ

)
ξ
J1
I1

(
q2#I2z

)
ξ
J2
I2
(z). (6.64)

(ii) Let J1, J2, I ⊆ [1, n] and set J = J1 ∪ J2. Then

Sr
(
J1, J2; ρ

)
ξ
J
I (z) =

∑

I1∪I2=I
Sr(I1, I2;λ)ξ

J1
I1
(z)ξJ2I2

(
q2#J1z

)
. (6.65)

Proof. We have

ΔΛ

(
vI1

(
q2#I2z

))
ΔΛ(vI2(z)) =

∑

J1,J2

ξ
J1
I1

(
q2#I2z

)
ξ
J2
I2
(z) ⊗ vJ1

(
q2#I2z

)
vJ2(z)

=
∑

J1,J2

ξ
J1
I1

(
q2#I2z

)
ξ
J2
I2
(z) ⊗ Sl(J1, J2; ζ)vJ(z)

=
∑

J

(
∑

J1∪J2=J
Sl
(
J1, J2; ρ

)
ξ
J1
I1

(
q2#I2z

)
ξ
J2
I2
(z)

)

⊗ vJ(z).

(6.66)

On the other hand,

ΔΛ

(
vI1

(
q2#I2z

))
ΔΛ(vI2(z)) = ΔΛ

(
vI1

(
q2#I2z

)
vI2(z)

)

= ΔΛ(Sl(I1, I2; ζ)vI(z))

=
∑

J

Sl(I1, I2;λ)ξ
J
I (z) ⊗ vJ(z).

(6.67)

Equating these expressions proves (6.64) since, by Proposition 5.5, the set {vJ(z) : J ⊆ [1, n]}
is linearly independent over Mh∗ . The second part is completely analogous, using the right
comodule algebra Λ′ in place of Λ.

In Section 7.4 we will need the following lemma, relating the left and right signums
Sl(I, J ; ζ) and Sr(I, J ; ζ), defined in (6.63). In the nonspectral trigonometric case the
corresponding identity was proved in [15, proof of Proposition 4.1.22].

Lemma 6.12. Let I, J be two disjoint subsets of [1, n]. Then

Sl(I, J ; ζ +ω(I)) = Sr(J, I; ζ)
−1, (6.68)

where ω(I) =
∑

i∈I ω(i).
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Proof. First we claim that, we have the following explicit formulas:

Sl(I, J ; ζ) =
∏

i∈I,j∈J
E
(
ζji + 1

)
, (6.69)

Sr(I, J ; ζ) =
∏

i∈I,j∈J
E(ζij)

−1. (6.70)

Recall the definition (6.7) of vI(z). Since E is odd, relation (5.8b) implies that

vi
(
q2z

)
vj(z) =

E
(
ζji + 1

)

E
(
ζij + 1

)vj
(
q2z

)
vi(z). (6.71)

Also, FJ(ζ) only involves ζij with i, j ∈ J so it commutes with any vk(z) with k ∈ I (since
I ∩ J = ∅). From these facts we obtain

vI
(
q2#Jz

)
vJ(z) =

FI(ζ)
−1FJ(ζ)

−1

FI∪J(ζ)
−1

∏

i∈I,j∈J
i<j

E
(
ζji + 1

)

E
(
ζij + 1

)vI∪J(z)

=
∏

(i,j)∈K
i<j

E
(
ζij + 1

) ∏

i∈I,j∈J
i<j

E
(
ζji + 1

)

E
(
ζij + 1

)vI∪J(z)

=
∏

i∈I,j∈J
E
(
ζji + 1

)
vI∪J(z),

(6.72)

where K = (I × J) ∪ (J × I). This proves (6.69). Similarly one proves (6.70). Now we have

Sl(J, I; ζ +ω(J))
−1 =

∏

i∈I,j∈J
E
(
(ζ +ω(J))ij + 1

)−1
=

∏

i∈I,j∈J
E(ζij)

−1 = Sr(I, J ; ζ). (6.73)

Here we used that for any i ∈ I, j ∈ J we have ω(J)(Eii) = 0, ω(J)(Ejj) = 1, and hence
(ω(J))ij = −1.

7. The Cobraiding and the Elliptic Determinant

7.1. Cobraidings for h-Bialgebroids

The following definition of a cobraiding was given in [14] and studied further in [10]. When
h = 0 the notion reduces to ordinary cobraidings for bialgebras.
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Definition 7.1. A cobraiding on an h-bialgebroidA is a C-bilinear map 〈·, ·〉 : A×A → Dh such
that, for any a, b, c ∈ A and f ∈Mh∗ ,

〈Aαβ,Aγδ〉 ⊆ (Dh)α+γ,β+δ, (7.1a)

〈μr
(
f
)
a, b〉 = 〈a, μl

(
f
)
b〉 = fT0 ◦ 〈a, b〉, (7.1b)

〈aμl
(
f
)
, b〉 = 〈a, bμr

(
f
)〉 = 〈a, b〉 ◦ fT0, (7.1c)

〈ab, c〉 =
∑

i

〈
a, c′i

〉
Tβi

〈
b, c′′i

〉
, Δ(c) =

∑

i

c′i ⊗ c′′i , c′′i ∈ Aβiγ , (7.1d)

〈a, bc〉 =
∑

i

〈a′′i , b〉Tβi〈a′i, c〉, Δ(a) =
∑

i

a′i ⊗ a′′i , a′′i ∈ Aβiγ , (7.1e)

〈a, 1〉 = 〈1, a〉 = ε(a), (7.1f)
∑

ij

μl
(〈
a′i, b

′
j

〉
1
)
a′′i b

′′
j =

∑

ij

μr
(〈
a′′i , b

′′
j

〉
1
)
b′ja

′
i. (7.1g)

The following definition was given in unpublished notes by Rosengren [16]. The
terminology is motivated by Proposition 7.6 concerning FRST algebrasAR, but it makes sense
for arbitrary h-bialgebroids.

Definition 7.2. A cobraiding 〈·, ·〉 on an h-bialgebroid A is called unitary if

ε(ab) =
∑

(a),(b)

〈a′, b′〉Tω12(a)+ω12(b)〈a′′, b′′〉 (7.2)

for all a, b ∈ A. In such sums we always assume, without loss of generality, that all
a′, a′′, b′, b′′ are homogenous and use the notation ω12(a) = γ if a′ ∈ Aαγ for some α (or
equivalently, if a′′ ∈ Aγβ for some β).

7.2. Cobraidings for the FRST Algebras AR

Now let R : h∗ × C
× → Endh(V ⊗ V ) be a meromorphic function, and let AR be the h-

bialgebroid associated to R as in Section 3.2.

Proposition 7.3. Assume that ϕ : C
× → C is a holomorphic function, not vanishing identically,

such that, for each x, y, a, b ∈ X, z ∈ C
×, the limit limw→ z(ϕ(w)Rab

xy(ζ,w)) exists and defines a
meromorphic function inMh∗ . Then the following statements are equivalent:

(i) there exists a cobraiding 〈·, ·〉 : AR ×AR → Dh satisfying

〈
Lij(z1), Lkl(z2)

〉
= lim

w→ z1/z2

(
ϕ(w)Rjl

ik(ζ,w)
)
T−ω(i)−ω(k), (7.3)

(ii) R satisfies the QDYBE (2.8).
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Remark 7.4. (a) The identity (7.1g) is not necessary when proving that (i) implies (ii). Without
assuming (7.1g), 〈·, ·〉 is a pairing on Acop ×A. See [14].

(b) Without the factor ϕ(w), the cobraiding is not well defined if R(ζ, z) has poles in
the z variable. We also remark that the residual relations (3.8) are necessary for (ii) to imply
(i).

Proof. The proof is straightforward and is carried out in [15, Lemma 2.2.5], under the
assumption that the R-matrix is regular in the spectral variable.

We will now generalize slightly the notion of a unitary cobraiding on AR to account
for spectral singularities in the R-matrix as follows.

Call a ∈ AR spectrally homogenous if there exist k ∈ Z≥0 and z1, . . . , zk ∈ C
× such that

a ∈
∑

σ∈Sk

∑

il ,jl∈X
Mh∗ ⊗Mh∗Li1j1

(
zσ(1)

) · · ·Likjk
(
zσ(k)

)
. (7.4)

The multiset {zi}i is called the spectral degree of a and is denoted by sdeg(a). Note that the
spectral degree of a nonzero spectrally homogenous element is uniquely defined, since the
RLL relations (3.8) are spectrally homogenous.

Let ϕ : C
× → C be holomorphic. For spectrally homogenous elements a, b ∈ AR,

define the regularizing factor ϕ̂(a, b) by

ϕ̂(a, b) =
∏

1≤i≤k,1≤j≤l
ϕ

(
zi
wj

)

, (7.5)

where {zi}i = sdeg(a), {wj}j = sdeg(b).

Definition 7.5. Let ϕ : C
× → C be holomorphic. A cobraiding 〈·, ·〉 onAR is unitary with respect

toϕ if

ϕ̂(a, b)ϕ̂(b, a)ε(ab) =
∑

(a),(b)

〈a′, b′〉Tω12(a)+ω12(b)〈a′′, b′′〉 (7.6)

for all spectrally homogenous a, b ∈ AR.

The following proposition was proved in [16] if the spectral variables are taken to be
generic so that no regularizing factors are needed.

Proposition 7.6. Suppose that R : h∗ × C
× → EndC(V ⊗ V ) satisfies the QDYBE and is unitary:

R(ζ, z)R(ζ, z−1)(21) = IdV⊗V . Suppose that ϕ : C
× → C is nonzero holomorphic such that

limw→ z(ϕ(w)Rab
xy(ζ,w)) exists and is a holomorphic function in Mh∗ . Then the cobraiding 〈·, ·〉

on AR given in Proposition 7.3 is unitary with respect to ϕ.

Proof. Since both sides are holomorphic in the spectral variables, it is enough to prove it
for generic values. We claim that for such values, ϕ̂(a, b)〈a, b〉R = 〈a, b〉 where 〈·, ·〉R is
the cobraiding, defined only for generic spectral values, determined by 〈Lij(z), Lkl(w)〉R =

R
jl

ik
(ζ, z/w)T−ω(i)−ω(k). Indeed, this claim follows by induction from the identities (7.1d) and
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(7.1e) using that ϕ̂(a1, b)ϕ̂(a2, c) = ϕ̂(a3, bc) and ϕ̂(c, a1)ϕ̂(b, a2) = ϕ̂(cb, a3) for spectrally
homogenous ai, b, c ∈ AR, the ai having the same spectral degree.

Since the R-matrix R is unitary, the statement of the lemma now follows from the
identity

ε(ab) =
∑

(a),(b)

〈a′, b′〉RTω12(a)+ω12(b)〈a′′, b′′〉R (7.7)

holding for generic spectral values which was proved by Rosengren [16].

7.2.1. The Case of Fell(M(n))

Specializing further to the algebra of interest, Fell(M(n)), we obtain the following corollary.

Corollary 7.7. The h-bialgebroid Fell(M(n)) carries a cobraiding 〈·, ·〉 satisfying

〈
eij(z), ekl(w)

〉
= R̃jl

ik

(
ζ,
z

w

)
T−ω(i)−ω(k) ∀z,w ∈ C

×, i, j ∈ [1, n], (7.8)

where

R̃
jl

ik(ζ, z) = lim
w→ z

(
θ
(
q2w

)
R
jl

ik(ζ,w)
)
. (7.9)

Moreover, this cobraiding is unitary with respect to ϕ : C
× → C, ϕ(z) = θ(q2z).

Proof. It suffices to notice that, by (4.3), (2.15), and (2.16), R̃ is regular in z and apply
Propositions 7.3 and 7.6.

7.3. Properties of the Elliptic Determinant

A common method used to study quantum minors and prove that quantum determinants
are central is the fusion procedure, going back to work by Kulish and Sklyanin [17]. Another
approach, using representation theory, was developed by Noumi et al. [18]. In this section
we show how to prove that the elliptic determinant is central using the properties of the
cobraiding on Fell(M(n)) and how to resolve technical issues connected with the spectral
singularities of the elliptic R-matrix.

Let A = Fell(M(n)). When I = J = [1, n] we set

det(z) = ξJI (z) (7.10)

for z ∈ C
×, where ξ

J
I (z) is the elliptic minor given in Theorem 6.10. Thus one possible

expression for det(z) is

det(z) =
∑

σ∈Sn

F[1,n](ρ
)

σ
(
F[1,n](λ)

)eσ(1)1(z)eσ(2)2
(
q2z

)
· · · eσ(n)n

(
q2(n−1)z

)
. (7.11)
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Theorem 7.8. (a) det(z) is a grouplike element of A for each z ∈ C
×, that is,

Δ(det(z)) = det(z) ⊗ det(z), ε(det(z)) = 1. (7.12)

(b) det(z) is a central element in Fell(M(n)):

[
eij(z),det(w)

]
=
[
f(λ),det(w)

]
=
[
f
(
ρ
)
,det(w)

]
= 0 (7.13)

for all f ∈Mh∗ , i, j ∈ [1, n] and all z,w ∈ C
×.

Proof. Let Λn(z) = Mh∗vI(z), where I = [1, n]. It is a one-dimensional subcorepresentation of
the left exterior corepresentation Λ. Its matrix element is det(z), that is,

Δ(vI(z)) = det(z) ⊗ vI(z). (7.14)

From the coassociativiy and counity axioms for a corepresentation, it follows that det(z) is
grouplike, proving part (a).

The rest of this section is devoted to the proof of part (b). It follows from the definition
that det(z) ∈ A00 and thus it commutes with f(ρ) and f(λ) for any f ∈Mh∗ . To prove that it
commutes with the generators eij(z)we need several lemmas which we now state and prove.

Lemma 7.9. For i, j ∈ [1, n], I, J ⊆ [1, n], #I = #J = 2, we have

〈
ξ
J
I (w), eij(z)

〉
= 0, if

w

z
∈ pZ, (7.15)

〈
eij(z), ξ

J
I (w)

〉
= 0, if

q2w

z
∈ pZ. (7.16)

Proof. Let I = {i1, i2}, i1 < i2, J = {j1, j2}, j1 < j2. Using the left expansion formula (6.13) and
(7.1b), (7.1c)we have

〈
ξ
J
I (w), eij(z)

〉
=

〈
E
(
ρj1j2 + 1

)

E(λi1i2 + 1)
ei2j2

(
q2w

)
ei1j1(w), eij(z)

〉

+
[
j1 ←→ j2

]

= E
(
ζj1j2+1 + 1

)〈
ei2j2

(
q2w

)
ei1j1(w), eij(z)

〉 1
E(ζi1i2 + 1)

+
[
j1 ←→ j2

]
.

(7.17)

Thus we need to prove that for w/z ∈ pZ, the first term is antisymmetric in j1, j2. By (7.1d),

E
(
ζj1j2 + 1

)〈
ei2j2

(
q2w

)
ei1j1(w), eij(z)

〉

= E
(
ζj1j2 + 1

)∑

x

〈
ei2j2

(
q2w

)
, eix(z)

〉
Tω(x)

〈
ei1j1(w), exj(z)

〉

= E
(
ζj1j2 + 1

)∑

x

R̃
j2x

i2i

(

ζ,
q2w

z

)

R̃
j1j

i1x

(
ζ −ω(

j2
)
,
w

z

)
T−ω(j1)−ω(j2)−ω(j).

(7.18)
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Take now w = pkzwhere k ∈ Z. One checks that

R̃ab
xy

(
ζ, pk

)
= θ

(
q2pk

)
q2k(ζba+1−δab)δayδbx, (7.19)

where δxy is the Kronecker delta. In particular, only the x = j1 term is nonzero. Now the
antisymmetry of (7.18) in j1, j2 follows by applying the identities

R̃
j1j

jj1

(
ζ −ω(

j2
)
, pk

)
= q2kζj2j1 · R̃j2j

jj2

(
ζ −ω(

j1
)
, pk

)
, (7.20)

E
(
ζj1j2 + 1

)
R̃
j2j1
i2i

(
ζ, q2pk

)
= −q2kζj1j2 · E(ζj2j1 + 1

)
R̃
j1j2
i2i

(
ζ, q2pk

)
. (7.21)

Relation (7.20) can be proved directly from (7.19)while for (7.21) one can use that

R̃ab
xy

(
ζ, pkz

)

R̃ba
xy

(
ζ, pkz

) = q2kζba
R̃ab
xy(ζ, z)

R̃ba
xy(ζ, z)

(7.22)

together with the relation

E
(
ζj1j2 + 1

)
α̃
(
ζj2j1 , q

2
)
= −E(ζj2j1 + 1

)
β̃
(
ζj2j1 , q

2
)

(7.23)

which holds for any j1 /= j2 which is easily proved by applying θ(z−1) = −z−1θ(z) three times.
Relation (7.16) can be proved analogously, using the right expansion formula (6.14)

for ξJI (w) instead.

Since the cobraiding depends holomorphically on the spectral variables, and all zeros
of θ are simple and of the form pk, we conclude that the following limits exist for all z,w ∈ C

×,
i, j, I, J , #I = #J = 2:

〈
ξ
J
I (w), eij(z)

〉′
:= lim

(z1,w1)→ (z,w)

〈
ξ
J
I (w1), eij(z1)

〉

θ(z1/w1)
,

〈
eij(z), ξ

J
I (w)

〉′
:= lim

(z1,w1)→ (z,w)

〈
eij(z1), ξ

J
I (w1)

〉

θ
(
q2w1/z1

) .

(7.24)

Taking a = eij(z1), b = ξJI (w1) in (7.6), dividing both sides by θ(z1/w1)θ(q2w1/z1) and taking
the limits (z1, w1) → (z,w), where z,w ∈ C

× are arbitrary, we get

ψ(z,w)ε
(
eij(z)ξ

J
I (w)

)
=
∑

x,X

〈
ξXI (w), eix(z)

〉′
Tω(x)+ω(x1)+ω(x2)

〈
exj(z), ξ

J
X(w)

〉′
, (7.25)
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and interchanging a and b,

ψ(z,w)ε
(
ξ
J
I (w)eij(z)

)
=
∑

x,X

〈
eix(z), ξXI (w)

〉′
Tω(x)+ω(x1)+ω(x2)

〈
ξ
J
X(w), exj(z)

〉′
, (7.26)

for all z,w ∈ C
×, where ψ : (C×)2 → C is given by

ψ(z,w) = θ

(
q2z

w

)

θ

(
q4w

z

)

. (7.27)

We are now ready to prove the key identity.

Lemma 7.10. For any i, j ∈ [1, n], I, J ⊆ [1, n], #I = #J = 2 and any z,w ∈ C
×, q2w/z/∈ pZ we

have

ψ(z,w)
∑

x,X

μl

(〈
ξXI (w), eix(z)

〉′
1
)
ξ
J
X(w)exj(z)

= ψ(z,w)
∑

x,X

μr

(〈
ξ
J
X(w), exj(z)

〉′
1
)
eix(z)ξXI (w).

(7.28)

Proof. Using the counit axiom followed by (7.25)we have

ψ(z,w)eij(z)ξ
J
I (w) = ψ(z,w)

∑

x,X

μl
(
ε
(
eix(z)ξXI (w)

)
1
)
exj(z)ξ

J
X(w)

=
∑

x,y,X,Y

μl

(〈
ξYI (w), eiy(z)

〉′
1
)
μl

(〈
eyx(z), ξXY (w)

〉′
1
)
exj(z)ξ

J
X(w).

(7.29)

Applying the identity obtained by dividing by θ(q2w/z) in both sides of the cobraiding
identity (7.1g)with a = eyj(z), b = ξJY (w) in the right hand side of (7.29) gives

ψ(z,w)eij(z)ξ
J
I (w) =

∑

x,y,X,Y

μl

(〈
ξYI (w), eiy(z)

〉′
1
)
μr

(〈
exj(z), ξ

J
X(w)

〉′
1
)
ξXY (w)eyx(z).

(7.30)

Now multiply both sides by μr(〈ξKJ (w), ejk(z)〉′1), and sum over j, J . After applying (7.26)
in the right hand side we get

ψ(z,w)
∑

j,J

μr

(〈
ξKJ (w), ejk(z)

〉′
1
)
eij(z)ξ

J
I (w)

= ψ(z,w)
∑

x,y,X,Y

μl

(〈
ξYI (w), eiy(z)

〉′
1
)
μr

(
ε
(
ξKX (w)exk(z)

)
1
)
ξXY (w)eyx(z).

(7.31)
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By the counit axiom the last expression equals

ψ(z,w)
∑

y,Y

μl

(〈
ξYI (w), eiy(z)

〉′
1
)
ξKY (w)eyk(z). (7.32)

Lemma 7.11. (a) The limit

〈
det(w), eij(z)

〉′ := lim
(z1,w1)→ (z,w)

〈
det(w1), eij(z1)

〉

θ(w1/z1)θ
(
q2w1/z1

) · · · θ(q2(n−2)w1/z1
) (7.33)

exists for any z,w ∈ C
×.

(b) We have

μl
(〈det(w), e11(z)〉′1

)
det(w)e11(z) = μr

(〈det(w), e11(z)〉′1
)
e11(z)det(w) (7.34)

for any z,w ∈ C
×.

Proof. (a) We must show that 〈det(w), eij(z)〉 vanishes for q2kw/z ∈ pZ, where k ∈
{0, 1, . . . , n − 2}. Applying the Laplace expansion (6.65) twice we get

det(w) =
∑

I1∪I2∪I3=[1,n]
Sr(I1, I2, I3;λ)ξ

J1
I1
(w)ξJ2I2

(
q2#J1w

)
ξ
J3
I3

(
q2(#J1+2)w

)
, (7.35)

where J1 = {1, . . . , k}, J2 = {k+1, k+2}, J3 = {k+3, . . . , n}. Substituting this in the pairing and
applying the multiplication-comultiplication relation (7.1d) we see that each term contains
a factor of the form 〈ξYX(q2kw), exy(z)〉, where #X = #Y = 2, which indeed vanishes for
q2kw/z ∈ pZ by Lemma 7.9.

(b) By (7.1a), 〈det(w), exy(z)〉 = 0, if x /=y. Thus (7.34) can be written

∑

x

μl
(〈det(w), e1x(z)〉′1

)
det(w)ex1(z) =

∑

x

μr
(〈det(w), ex1(z)〉′1

)
e1x(z)det(w). (7.36)

If q2kw/z/∈ pZ for any k ∈ {0, 1, . . . , n − 2}, this follows from the cobraiding identity (7.1g)
with a = det(w), b = e11(z) by dividing by the nonzero number

∏n−2
k=0θ(q

kw/z).
So assume q2kw/z ∈ pZ for some k ∈ {0, 1, . . . , n−2}. We again use the iterated Laplace

expansion (7.35). For simplicity of notation, we write it as det(w) =
∑
a1a2a3 where a2 is the

2 × 2 minor. Put b = e11(z). Substituting this, and expanding 〈a1a2a3, b′〉 using (7.1d), we get
after simplification

∑

x

μl
(〈det(w), e1x(z)〉′1

)
det(w)ex1(z)

=
1

∏n−2
m=0,m/= k θ

(
q2mw/z

)
∑

(a),(b)

μl
(〈
a′1, b

′〉1
)
a′′1μl

(〈
a′2, b

′′〉′1
)
a′′2μl

(〈
a′3, b

(3)
〉
1
)
a′′3b

(4).

(7.37)
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Now using the cobraiding identity (7.1g) and its primed version for quadratic minors (7.28),
we can move the b all the way to the left. Doing the steps backwards the claim follows.

It remains to calculate 〈det(w), e11(z)〉′1.

Lemma 7.12. We have

〈det(w), e11(z)〉′1 = qn−1θ

(
q2nw

z

)

. (7.38)

Proof. Expanding det(w) using the left expansion formula (6.13) with

σ =

(
1 2 · · · n
n n − 1 · · · 1

)

, (7.39)

the longest element in Sn, and applying (7.1d) repeatedly we have (putting I = [1, n])

〈det(w), e11(z)〉

=
∑

τ∈Sn

〈
τ
(
FI

(
ρ
))

σ(FI(λ))
e1τ(n)

(
q2(n−1)w

)
· · · enτ(1)(w), e11(z)

〉

=
∑

τ∈Sn
x1,...,xn−1

τ(FI(ζ))
〈
e1τ(n)

(
q2(n−1)w

)
, e1x1(z)

〉
Tω(x1) · · · Tω(xn−1)

〈
enτ(1)(w), exn−11(z)

〉
σ
(
FI(ζ)

−1
)
.

(7.40)

One proves inductively that in all nonzero termswe have τ(j) = n+1−j and xn−j = 1 for
all 1 ≤ j ≤ n−1 by looking from right to left: 〈enτ(1)(w), exn−11(z)〉 = R̃τ(1)1

nxn−1(ζ,w/z)T−ω(n)−ω(xn−1)
which, if 1/=n, is nonzero only for τ(1) = n and xn−1 = 1 by (4.3). Then looking at the second
pairing from the right we see that τ(2) = n − 1 and xn−2 = 1 if it is nonzero, and so on. Thus
only the term τ = σ and x1 = · · · = xn−1 = 1 survives and it equals

σ(FI(ζ))R̃11
11

(

ζ,
q2(n−1)w

z

)

T−ω(1)R̃21
21

(

ζ,
q2(n−2)w

z

)

T−ω(2)

· · · T−ω(n−1)R̃n1
n1

(
ζ,
w

z

)
T−ω(n)−ω(1)σ(FI(ζ))

−1.

(7.41)
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Using that σ(FI(ζ)) =
∏

i<jE(ζji + 1) and that R̃j1
j1(ζ − ω(1), z) = α̃(ζj1 + 1, z) = qθ(z)(E(ζj1 +

2)/E(ζj1 + 1))we get

qn−1θ

(
q2nw

z

)

· θ
(
q2(n−2)w

z

)

θ

(
q2(n−3)w

z

)

· · · θ
(w
z

)

·
∏

i<j

E
(
ζji + 1

)∏

1<j

E
(
ζj1 + 2

)

E
(
ζj1 + 1

)T−ω(1)
∏

i<j

E(ζji + 1)−1.

(7.42)

The factors involving the dynamical variable ζ cancel and the claim follows.

By Lemmas 7.11(b) and 7.12 we conclude that det(w) commutes with e11(z) if
q2nw/z/∈ pZ. By applying an automorphism from the Sn × Sn-action on A as defined in
Section 5.3 and using that det(z) is fixed by those, by relation (6.15), we conclude that det(w)
commutes with any eij(z) as long as q2nw/z/∈ pZ.

For the remaining case we can note that relations (4.4a)–(4.4d) and (4.5) imply that
there is a C-linear map T : Fell(M(n)) → Fell(M(n)) such that T(ab) = T(b)T(a) for all
a, b ∈ Fell(M(n)), given by

T
(
eij(z)

)
= eij

(
z−1

)
, T

(
f(λ)

)
= f(−λ), T

(
f
(
ρ
))

= f
(−ρ), (7.43)

for all f ∈Mh∗ , i, j ∈ [1, n], and z ∈ C
×. One verifies that T(det(z)) = det(q−2(n−1)z−1).

We have proved that [det(w), eij(z)] = 0 if q2nw/z/∈ pZ. Assume q2nw/z ∈ pZ. Then

T
([
det(w), eij(z)

])
=
[
eij

(
z−1

)
,det

(
q−2(n−1)w−1

)]
= 0 (7.44)

since q−2(n−1)w−1/z−1 = q2(q2nw/z)−1 /∈ pZ. This finishes the proof of Theorem(b).

7.4. The Antipode

We use the following definition for the antipode, given in [13].

Definition 7.13. An h-Hopf algebroid is an h-bialgebroid A equipped with a C-linear map S :
A → A, called the antipode, such that

S
(
μr

(
f
)
a
)
= S(a)μl

(
f
)
, S

(
aμl

(
f
))

= μr
(
f
)
S(a), a ∈ A, f ∈Mh∗ , (7.45)

m ◦ (Id ⊗ S) ◦Δ(a) = μl(ε(a)1), a ∈ A,
m ◦ (S ⊗ Id) ◦Δ(a) = μr(Tα(ε(a)1)), a ∈ Aαβ,

(7.46)

wherem denotes themultiplication, and ε(a)1 is the result of applying the difference operator
ε(a) to the constant function 1 ∈Mh∗ .
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Let Fell(M(n))[det(z)−1 : z ∈ C
×] be the polynomial algebra in uncountably many

variables det(z)−1, z ∈ C
×, with coefficients in Fell(M(n)). We define Fell(GL(n)) to be

Fell(M(n))
[
det (z)−1 : z ∈ C

×
]

J
, (7.47)

where J is the ideal generated by the relations det(z)det(z)−1 = 1 = det(z)−1 det(z) for each
z ∈ C

×. We extend the bigrading of Fell(M(n)) to Fell(M(n))[det(z)−1 : z ∈ C
×] by requiring

that det(z)−1 has bidegree 0, 0 for each z ∈ C
×. Then J is homogenous and the bigrading

descends toFell(GL(n)). We extend the comultiplication and counit by requiring that det(z)−1

is grouplike for each z ∈ C
×, that is,

Δ
(
det (z)−1

)
= det (z)−1 ⊗ det (z)−1, ε

(
det (z)−1

)
= 1. (7.48)

Here 1 denotes the identity operator in Dh. One verifies that J is a coideal and that ε(J) =
0, which induces operations Δ, ε on Fell(GL(n)). In this way Fell(GL(n)) becomes an h-
bialgebroid. This algebra is nontrivial since ε(J) = 0 implies that J is a proper ideal.

For i ∈ [1, n] we set ı̂ = {1, . . . , i − 1, i + 1, . . . , n}. For a meromorphic function f on h∗,
we denote the images of f under the left and right moment maps in Fell(GL(n)) also by f(λ)
and f(ρ) respectively.

Theorem 7.14. Fell(GL(n)) is an h-Hopf algebroid with antipode S given by

S
(
f(λ)

)
= f

(
ρ
)
, S

(
f
(
ρ
))

= f(λ), (7.49)

S
(
eij(z)

)
=
Sr

(
ĵ,
{
j
}
;λ

)

Sr
(
ı̂, {i}; ρ) det

(
q−2(n−1)z

)−1
ξı̂ĵ

(
q−2(n−1)z

)
, (7.50)

S
(
det(z)−1

)
= det(z), (7.51)

for all f ∈Mh∗ , i, j ∈ [1, n] and z ∈ C
×.

Proof. We proceed in steps.

Step 1. Define S on the generators of Fell(M(n)) by (7.49), (7.50). We show that the antipode
axiom (7.46) holds if a is a generator. Indeed for a = f(λ) or a = f(ρ), f ∈ Mh∗ , this is
easily checked. Let a = eij(z). Using the right Laplace expansion (6.65) with J1 = ı̂, J2 = {j},
I = [1, n] and z replaced by q−2(n−1)zwe obtain

n∑

x=1

S(eix(z))exj(z) = δij . (7.52)
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Similarly, using the left Laplace expansion (6.64) with I1 = {i}, I2 = ĵ, J = [1, n], and z
replaced by q−2(n−1)z, together with the identity (6.68), we get

n∑

x=1

eix(z)S
(
exj(z)

)
= δij , (7.53)

using also the crucial fact that, by Theorem 7.8, eij(z) commutes in Fell(M(n)) with
det(q−2(n−1)z) and hence in Fell(GL(n)) with det(q−2(n−1)z)−1. This proves that the antipode
axiom (7.46) is satisfied for a = eij(z).

Step 2. We show that S extends to a C-linear map S : Fell(M(n)) → Fell(GL(n)) satisfying
S(ab) = S(b)S(a). For this we must verify that S preserves the relations, (4.1), (4.2), (4.5) of
Fell(M(n)). Since S(eij(z)) ∈ Fell(GL(n))ω(ĵ),ω(ı̂) and ω(i) +ω(ı̂) = 0, we have

S
(
eij(z)

)
S
(
f(λ)

)
= S

(
eij(z)

)
f
(
ρ
)

= f
(
ρ −ω(ı̂))S(eij(z)

)

= f
(
ρ +ω(i)

)
S
(
eij(z)

)

= S
(
f(λ +ω(i))

)
S
(
eij(z)

)
.

(7.54)

Similarly, S(eij(z))S(f(ρ)) = S(f(ρ + ω(j)))S(eij(z)) so relations (4.1) are preserved. Next,
consider the RLL relation

n∑

x,y=1

R
xy
ac

(
λ,
z1
z2

)
exb(z1)eyd(z2) =

n∑

x,y=1

Rbd
xy

(
ρ,
z1
z2

)
ecy(z2)eax(z1). (7.55)

Multiply (7.55) from the left by S(eic(z2)) and from the right by S(edk(z2)), sum over c, d,
and use (7.52), (7.53) to obtain

∑

x,c

Rxk
ac

(
λ −ω(ĉ), z1

z2

)
S(eic(z2))exb(z1) =

∑

x,d

Rbd
xi

(
ρ −ω(ı̂), z1

z2

)
eax(z1)S(edk(z2)). (7.56)

Then multiply from the left by S(eja(z1)) and from the right by S(ebl(z1)), sum over a, b, and
use (7.52), (7.53) again to get

∑

a,c

Rlk
ac

(
λ −ω(â) −ω(ĉ), z1

z2

)
S
(
eja(z1)

)
S(eic(z2))

=
∑

b,d

Rbd
ji

(
ρ −ω(

ĵ
) −ω(ı̂), z1

z2

)
S(edk(z2))S(ebl(z1)).

(7.57)
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Since S(eij(z)) ∈ Fell(GL(n))ĵ,ı̂ and R
bd
ji (ρ − ω(ĵ) − ω(ı̂), z1/z2) = Rbd

ji (ρ − ω(b̂) − ω(d̂), z1/z2)
by the h-invariance of R, (7.57) can be rewritten

∑

a,c

S
(
eja(z1)

)
S(eic(z2))Rlk

ac

(
λ,
z1
z2

)
=
∑

b,d

S(edk(z2))S(ebl(z1))Rbd
ji

(
ρ,
z1
z2

)
. (7.58)

This is the result of formally applying S to the RLL relations, proving that S preserves (4.2).
Similarly (4.5) is preserved.

Step 3. Since, by the above steps, (7.46) holds on the generators of Fell(M(n)) and S(ab) =
S(b)S(a) for all a, b ∈ Fell(M(n)), it follows that (7.46) holds for any a ∈ Fell(M(n)). By
taking in particular a = det(z) we get

det(z)S(det(z)) = 1, S(det(z))det(z) = 1, (7.59)

respectively. Thus, definining S on det(z)−1 by (7.51), the relations det(z)det(z)−1 = 1 =
det(z)−1 det(z) are preserved by S. Hence S extends to an antimultiplicative C-linear map
S : Fell(GL(n)) → Fell(GL(n)) satisfying the antipode axiom (7.46) on Fell(M(n)) and on
det(z)−1. Hence (7.46) holds for any a ∈ Fell(GL(n)).

8. Concluding Remarks

To define the antipode we only needed that eij(z) commutes with det(q−2(n−1)z). This can also
be proved using the Laplace expansions.

Perhaps one could avoid problems with spectral poles and zeros of the R-matrix by
thinking of the algebra as generated by meromorphic sections of a Mh∗⊕h∗-line bundle over
the elliptic curveC

×/{z ∼ pz}. In this directionwe found that the relation eij(pz) = qλi−ρj eij(z)
respects the RLL relation (here h should be the Cartan subalgebra of gln). This relation should
then most likely be added to the algebra.
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