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Let R be a prime ring of char R/= 2, d a nonzero derivation of R and ρ a nonzero right ideal of R
such that [[d(x), x]n, [y, d(y)]m]

t = 0 for all x, y ∈ ρ, where n ≥ 0, m ≥ 0, t ≥ 1 are fixed integers. If
[ρ, ρ]ρ /= 0, then d(ρ)ρ = 0.
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1. Introduction

Throughout this paper, unless specifically stated, R always denotes a prime ring with center
Z(R) and extended centroid C, Q the Martindale quotients ring. Let n be a positive integer.
For given a, b ∈ R, let [a, b]0 = a and let [a, b]1 be the usual commutator ab − ba, and
inductively for n > 1, [a, b]n = [[a, b]n−1, b]. By d we mean a nonzero derivation in R.

A well-known result proven by Posner [1] states that if [[d(x), x], y] = 0 for all x, y ∈
R, then R is commutative. In [2], Lanski generalized this result of Posner to the Lie ideal.
Lanski proved that if U is a noncommutative Lie ideal of R such that [[d(x), x], y] = 0 for
all x ∈ U,y ∈ R, then either R is commutative or char R = 2 and R satisfies S4, the standard
identity in four variables. Bell and Martindale III [3] studied this identity for a semiprime
ring R. They proved that if R is a semiprime ring and [[d(x), x], y] = 0 for all x in a non-zero
left ideal of R and y ∈ R, then R contains a non-zero central ideal. Clearly, this result says that
if R is a prime ring, then R must be commutative.

Several authors have studied this kind of Engel type identities with derivation in
different ways. In [4], Herstein proved that if char R/= 2 and [d(x), d(y)] = 0 for all x, y ∈ R,
then R is commutative. In [5], Filippis showed that if R is of characteristic different from 2
and ρ a non-zero right ideal of R such that [ρ, ρ]ρ /= 0 and [[d(x), x], [d(y), y]] = 0 for all
x, y ∈ ρ, then d(ρ)ρ = 0.
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In continuation of these previous results, it is natural to consider the situation when
[[d(x), x]n, [y, d(y)]m]

t = 0 for all x, y ∈ ρ, n,m ≥ 0, t ≥ 1 are fixed integers. We have studied
this identity in the present paper.

It is well known that any derivation of a prime ring R can be uniquely extended to a
derivation of Q, and so any derivation of R can be defined on the whole of Q. Moreover Q is
a prime ring as well as R and the extended centroid C of R coincides with the center ofQ. We
refer to [6, 7] for more details.

Denote by Q∗CC{X,Y} the free product of the C-algebra Q and C{X,Y}, the free C-
algebra in noncommuting indeterminates X,Y .

2. The Case: R Prime Ring

We need the following lemma.

Lemma 2.1. Let ρ be a non-zero right ideal ofR and d a derivation ofR. Then the following conditions
are equivalent: (i) d is an inner derivation induced by some b ∈ Q such that bρ = 0; (ii) d(ρ)ρ = 0
(for its proof refer to [8, Lemma]).

We mention an important result which will be used quite frequently as follows.

Theorem 2.2 (see Kharchenko [9]). Let R be a prime ring, d a derivation on R and I a non-
zero ideal of R. If I satisfies the differential identity f(r1, r2, . . . , rn, d(r1), d(r2), . . . , d(rn)) =
0 for any r1, r2, . . . , rn ∈ I, then either (i) I satisfies the generalized polynomial identity

f(r1, r2, . . . , rn, x1, x2, . . . , xn) = 0, (2.1)

or (ii) d is Q-inner, that is, for some q ∈ Q,d(x) = [q, x] and I satisfies the generalized polynomial
identity

f
(
r1, r2, . . . , rn,

[
q, r1
]
,
[
q, r2
]
, . . . ,

[
q, rn

])
= 0. (2.2)

Theorem 2.3. Let R be a prime ring of char R/= 2 and d a derivation of R such that
[[d(x), x]n, [[y, d(y)]m]

t = 0 for all x, y ∈ R, where n ≥ 0, m ≥ 0, t ≥ 1 are fixed integers.
Then R is commutative or d = 0.

Proof. Let R be noncommutative. If d is not Q-inner, then by Kharchenko’s Theorem [9]

g
(
x, y, u, v

)
=
[
[u, x]n,

[
y, v
]
m

]t = 0, (2.3)

for all x, y, u, v ∈ R. This is a polynomial identity and hence there exists a field F such that
R ⊆ Mk(F) with k > 1, and R and Mk(F) satisfy the same polynomial identity [10, Lemma
1]. But by choosing u = e12, x = e11, v = e11 and y = e21, we get

0 =
[
[u, x]n,

[
y, v
]
m

]t = (−1)tn
(
e11 + (−)te22

)
, (2.4)

which is a contradiction.
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Now, let d be Q-inner derivation, say d = ad(a) for some a ∈ Q, that is, d(x) = [a, x]
for all x ∈ R, then we have

[
[a, x]n+1,

[
y,
[
a, y
]]

m

]t = 0, (2.5)

for all x, y ∈ R. Since d /= 0, a/∈C and hence R satisfies a nontrivial generalized polynomial
identity (GPI). By [11], it follows that RC is a primitive ring withH = Soc(RC)/= 0, and eHe
is finite dimensional over C for any minimal idempotent e ∈ RC. Moreover we may assume
that H is noncommutative; otherwise, R must be commutative which is a contradiction.

Notice that H satisfies [[a, x]n+1, [y, [a, y]]m]
t = 0 (see [10, Proof of Theorem 1]). For

any idempotent e ∈ H and x ∈ H, we have

0 = [[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
t. (2.6)

Right multiplying by e, we get

0 = [[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
te

= [[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
t−1

· {[a, e]n+1([ex(1 − e), [a, ex(1 − e)]]m)e − ([ex(1 − e), [a, ex(1 − e)]]m)[a, e]n+1e}

= [[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
t−1

·
⎧
⎨

⎩
[a, e]n+1

⎛

⎝
m∑

j=0
(−1)j

(
m

j

)

[a, ex(1 − e)]jex(1 − e)[a, ex(1 − e)]m−j
⎞

⎠e

−
⎛

⎝
m∑

j=0
(−1)j

(
m

j

)

[a, ex(1 − e)]jex(1 − e)[a, ex(1 − e)]m−j
⎞

⎠[a, e]n+1e

⎫
⎬

⎭

= [[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
t−1

·
⎧
⎨

⎩
0 −
⎛

⎝
m∑

j=0
(−1)j

(
m

j

)

(−ex(1 − e) a)jex(1 − e)(aex(1 − e))m−j
⎞

⎠ae

⎫
⎬

⎭

= −[[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
t−1
⎛

⎝
m∑

j=0

(
m

j

)

(ex(1 − e)a)m+1

⎞

⎠e

= −2m[[a, e]n+1, [ex(1 − e), [a, ex(1 − e)]]m]
t−1(ex(1 − e)a)m+1e

= (−)t2mt(ex(1 − e)a)(m+1)te.

(2.7)

This implies that 0 = (−)t2mt((1 − e)aex)(m+1)t+1. Since char R/= 2, ((1 − e)aex)(m+1)t+1 =
0. By Levitzki’s lemma [12, Lemma 1.1], (1 − e)aex = 0 for all x ∈ H. Since H is prime ring,
(1 − e)ae = 0, that is, eae = ae for any idempotent e ∈ H. Now replacing e with 1 − e, we get
that ea(1 − e) = 0, that is, eae = ea. Therefore for any idempotent e ∈ H, we have [a, e] = 0.
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So a commutes with all idempotents in H. Since H is a simple ring, either H is generated
by its idempotents or H does not contain any nontrivial idempotents. The first case gives
a ∈ C contradicting d /= 0. In the last case, H is a finite dimensional division algebra over C.
This implies that H = RC = Q and a ∈ H. By [10, Lemma 2], there exists a field F such
that H ⊆ Mk(F) and Mk(F) satisfies [[a, x]n+1, [y, [a, y]]m]

t. Then by the same argument as
earlier, a commutes with all idempotents inMk(F), again giving the contradiction a ∈ C, that
is, d = 0. This completes the proof of the theorem.

Theorem 2.4. Let R be a prime ring of char R/= 2, d a non-zero derivation of R and ρ a non-zero right
ideal of R such that [[d(x), x]n, [y, d(y)]m]

t = 0 for all x, y ∈ ρ, where n ≥ 0, m ≥ 0, t ≥ 1 are fixed
integers. If [ρ, ρ]ρ /= 0, then d(ρ)ρ = 0.

We begin the proof by proving the following lemma.

Lemma 2.5. If d(ρ)ρ /= 0 and [[d(x), x]n, [y, d(y)]m]
t = 0 for all x, y ∈ ρ, m, n ≥ 0, t ≥ 1 are fixed

integers, then R satisfies nontrivial generalized polynomial identity (GPI).

Proof. Suppose on the contrary that R does not satisfy any nontrivial GPI. We may assume
that R is noncommutative; otherwise, R satisfies trivially a nontrivial GPI. We consider two
cases.

Case 1. Suppose that d is Q-inner derivation induced by an element a ∈ Q. Then for any
x ∈ ρ,

[[a, xX]n+1, [xY, [a, xY ]]m]
t (2.8)

is a GPI for R, so it is the zero element in Q∗CC{X,Y}. Expanding this, we get

⎛

⎝[a, xX]n+1
m∑

j=0
(−1)j

(
m

j

)

[a, xY ]jxY [a, xY ]m−j

−
m∑

j=0
(−1)j

(
m

j

)

[a, xY ]jxY [a, xY ]m−j[a, xX]n+1

⎞

⎠A(X,Y ) = 0,

(2.9)

where A(X,Y ) = [[a, xX]n+1, [xY, [a, xY ]]m]
t−1. If ax and x are linearly C-independent for

some x ∈ ρ, then

⎛

⎝(axX)n+1
m∑

j=0
(−1)j

(
m

j

)

[a, xY ]jxY [a, xY ]m−j

−
m∑

j=0
(−1)j

(
m

j

)

(axY )jxY [a, xY ]m−j[a, xX]n+1

⎞

⎠A(X,Y ) = 0.

(2.10)
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Again, since ax and x are linearly C-independent, above relation implies that

(−xY [a, xY ]m[a, xX]n+1
)
A(X,Y ) = 0, (2.11)

and so

(
−xY (axY )m(axX)n+1

)
A(X,Y ) = 0. (2.12)

Repeating the same process yields

(
−xY (axY )m(axX)n+1

)t
= 0 (2.13)

in Q∗CC{X,Y}. This implies that ax = 0, a contradiction. Thus for any x ∈ ρ, ax and x are
C-dependent. Then (a − α)ρ = 0 for some α ∈ C. Replacing awith a − α, we may assume that
aρ = 0. Then by Lemma 2.1, d(ρ)ρ = 0, contradiction.

Case 2. Suppose that d is not Q-inner derivation. If for all x ∈ ρ, d(x) ∈ xC, then [d(x), x] =
0 which implies that R is commutative (see [13]). Therefore there exists x ∈ ρ such that
d(x)/∈ xC, that is, x and d(x) are linearly C-independent.

By our assumption, we have that R satisfies

[[d(xX), xX]n, [xY, d(xY )]m]
t = 0. (2.14)

By Kharchenko’s Theorem [9],

[[d(x)X + xr1, xX]n, [xY, d(x)Y + xr2]m]
t = 0, (2.15)

for all X,Y, r1, r2 ∈ R. In particular for r1 = r2 = 0,

[[d(x)X, xX]n, [xY, d(x)Y ]m]
t = 0, (2.16)

which is a nontrivial GPI for R, because x and d(x) are linearly C-independent, a
contradiction.

We are now ready to prove our main theorem.

Proof of Theorem 2.4. Suppose that d(ρ)ρ /= 0, then we derive a contradiction. By Lemma 2.5, R
is a prime GPI ring, so is also Q by [14]. Since Q is centrally closed over C, it follows from
[11] that Q is a primitive ring withH = Soc(Q)/= 0.

By our assumption and by [7], we may assume that

[
[d(x), x]n,

[
y, d
(
y
)]

m

]t = 0 (2.17)
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is satisfied by ρQ and hence by ρH. Let e = e2 ∈ ρH and y ∈ H. Then replacing x with e and
y with ey(1 − e) in (2.17), then right multiplying it by e,we obtain that

0 =
[
[d(e), e]n,

[
ey(1 − e), d

(
ey(1 − e)

)]
m

]t
e

=
[
[d(e), e]n,

[
ey(1 − e), d

(
ey(1 − e)

)]
m

]t−1

·
⎧
⎨

⎩
[d(e), e]n

m∑

j=0
(−1)j

(
m

j

)

d
(
ey(1 − e)

)j
ey(1 − e)d

(
ey(1 − e)

)m−j
e

−
m∑

j=0
(−1)j

(
m

j

)

d
(
ey(1 − e)

)j
ey(1 − e)d

(
ey(1 − e)

)m−j[d(e), e]ne

⎫
⎬

⎭
.

(2.18)

Nowwe have the fact that for any idempotent e, d(y(1−e))e = −y(1−e)d(e), ed(e)e = 0
and so

0 =
[
[d(e), e]n,

[
ey(1 − e), d

(
ey(1 − e)

)]
m

]t−1

·
⎧
⎨

⎩
0 −

m∑

j=0
(−1)j

(
m

j

)

e
(−y(1 − e)d(e)

)j
y(1 − e)d

(
ey(1 − e)

)m−j
d(e)e

⎫
⎬

⎭
.

(2.19)

Now since for any idempotent e and for any y ∈ R, (1−e)d(ey) = (1−e)d(e)y, above relation
gives

0 =
[
[d(e), e]n,

[
ey(1 − e), d

(
ey(1 − e)

)]
m

]t−1

·
⎧
⎨

⎩
−e

m∑

j=0

(
m

j

)
(
y(1 − e)d(e)

)j
y(1 − e)

(
d(e)y(1 − e)

)m−j
d(e)e

⎫
⎬

⎭

=
[
[d(e), e]n,

[
ey(1 − e), d

(
ey(1 − e)

)]
m

]t−1
⎧
⎨

⎩
−e

m∑

j=0

(
m

j

)
(
y(1 − e)d(e)

)m+1
e

⎫
⎬

⎭

=
[
[d(e), e]n,

[
ey(1 − e), d

(
ey(1 − e)

)]
m

]t−1{−2me(y(1 − e)d(e)
)m+1

e
}

=
{
−2me(y(1 − e)d(e)

)m+1
}t
e.

(2.20)

This implies that 0 = (−1)t2mt((1 − e)d(e)ey)(m+1)t+1 for all y ∈ H. Since char R/= 2, we have
by Levitzki’s lemma [12, Lemma 1.1] that (1 − e)d(e)ey = 0 for all y ∈ H. By primeness
of H, (1 − e)d(e)e = 0. By [15, Lemma 1], since H is a regular ring, for each r ∈ ρH, there
exists an idempotent e ∈ ρH such that r = er and e ∈ rH. Hence (1 − e)d(e)e = 0 gives
(1−e)d(e) = (1−e)d(e2) = (1−e)d(e)e = 0 and so d(e) = ed(e) ∈ eH ⊆ ρH and d(r) = d(er) =
d(e)er + ed(er) ∈ ρH. Hence for each r ∈ ρH, d(r) ∈ ρH. Thus d(ρH) ⊆ ρH. Set J = ρH.
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Then J = J/(J ∩ lH(J)), a prime C-algebra with the derivation d such that d(x) = d(x), for all
x ∈ J . By assumption, we have that

[[
d(x), x

]

n
,
[
y, d
(
y
)]

m

]t
= 0, (2.21)

for all x, y ∈ J . By Theorem 2.3, we have either d = 0 or ρH is commutative. Therefore
we have that either d(ρH)ρH = 0 or [ρH, ρH]ρH = 0. Now d(ρH)ρH = 0 implies
that 0 = d(ρρH)ρH = d(ρ)ρHρH and so d(ρ)ρ = 0. [ρH, ρH]ρH = 0 implies that
0 = [ρρH, ρH]ρH = [ρ, ρH]ρHρH and so [ρ, ρH]ρ = 0, then 0 = [ρ, ρρH]ρ = [ρ, ρ]ρHρ
implying that [ρ, ρ]ρ = 0. Thus in all the cases we have contradiction. This completes the
proof of the theorem.

3. The Case: R Semiprime Ring

In this section we extend Theorem 2.3 to the semiprime case. Let R be a semiprime ring and
U be its right Utumi quotient ring. It is well known that any derivation of a semiprime ring
R can be uniquely extended to a derivation of its right Utumi quotient ring U and so any
derivation of R can be defined on the whole of U [7, Lemma 2].

By the standard theory of orthogonal completions for semiprime rings, we have the
following lemma.

Lemma 3.1 (see [16, Lemma 1 and Theorem 1] or [7, pages 31-32]). Let R be a 2-torsion free
semiprime ring and P a maximal ideal of C. Then PU is a prime ideal of U invariant under all
derivations of U. Moreover,

⋂{PU | P is a maximal ideal of C with U/PU 2-torsion free} = 0.

Theorem 3.2. Let R be a 2-torsion free semiprime ring and d a non-zero derivation of R such that
[[d(x), x]n, [y, d(y)]m]

t = 0 for all x, y ∈ R, n,m ≥ 0, t ≥ 1 fixed are integers. Then d maps R into
its center.

Proof. Since any derivation d can be uniquely extended to a derivation in U, and R and U
satisfy the same differential identities [7, Theorem 3], we have

[
[d(x), x]n,

[
y, d
(
y
)]

m

]t = 0, (3.1)

for all x, y ∈ U. Let P be any maximal ideal of C such that U/PU is 2-torsion free. Then by
Lemma 3.1, PU is a prime ideal of U invariant under d. Set U = U/PU. Then derivation d

canonically induces a derivation d on U defined by d(x) = d(x) for all x ∈ U. Therefore,

[[
d(x), x

]

n
,
[
y, d
(
y
)]

m

]t
= 0, (3.2)

for all x, y ∈ U. By Theorem 2.3, either d = 0 or [U,U] = 0, that is, d(U) ⊆ PU or
[U,U] ⊆ PU. In any case d(U)[U,U] ⊆ PU for any maximal ideal P of C. By Lemma 3.1,
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⋂{PU | P is a maximal ideal of C with U/PU 2-torsion free} = 0. Thus d(U)[U,U] = 0.
Without loss of generality, we have d(R)[R,R] = 0. This implies that

0 = d
(
R2
)
[R,R] = d(R)R[R,R] + Rd(R)[R,R] = d(R)R[R,R]. (3.3)

Therefore [R, d(R)]R[R, d(R)] = 0. By semiprimeness of R, we have [R, d(R)] = 0, that is,
d(R) ⊆ Z(R). This completes the proof of the theorem.
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