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The author continues to study series transformations for the Euler-Mascheroni constant y. Here,
we discuss in detail recently published results of A. I. Aptekarev and T. Rivoal who found
rational approximations to y and y + logq (g € Q.¢) defined by linear recurrence formulae. The
main purpose of this paper is to adapt the concept of linear series transformations with integral
coefficients such that rationals are given by explicit formulae which approximate y and y + logg.
It is shown that for every g € Q9 and every integer d > 42 there are infinitely many rationals
/by form =1,2,... such that |y + log g — a,,/bm| < ((1 - 1/d)?/(d-1)4%" and b,, | Z,, with
log Z,, ~ 12d*m? for m tending to infinity.
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1. Introduction
Let

1 1 1 1
S - >2). .
Sn <1+2+3+ +n—1) logn (n>2) (1.1)
It is well known that the sequence (s,),; converges to Euler’s constant y = 0,577 ..., where
1
sn=y+(9<ﬁ> (n>1). (1.2)

Nothing is known on the algebraic background of such mathematical constants like Euler’s
constant y. So we are interested in better diophantine approximations of these numbers,
particularly in rational approximations.

In 1995 the author [1] introduced a linear transformation for the series (s,),,; with
integer coefficients which improves the rate of convergence. Let T be an additional positive
integer parameter.
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Proposition 1.1 (see [1]). For any integers n > 1 and T > 2 one has

n " n+k+7t-1 n (t-1)!
Z(_1)< n ><k>'s"”_y'§2n(n+1)(n+2)---(n+r)' (1.3)

k=0

Particularly, by choosing T = n > 2, one gets the following result.

Corollary 1.2. For any integer n > 2one has

n ek 2n+k-1 n ' ~
kz::,)( 1) < , ><k> Suik =Y

Some authors have generalized the result of Proposition 1.1 under various aspects. At
first one cites a result due to Rivoal [2].

1 1
< < . 1.4
= 2n2<2n> = p3/2.4n (14)

n

Proposition 1.3 (see [2]). For n tending to infinity, one has

1 & L[ 2n+2k\ /n B 1
g (7)) (| -7 -

Kh. Hessami Pilehrood and T. Hessami Pilehrood have found some approximation
formulas for the logarithms of some infinite products including Euler’s constant y. These
results are obtained by using Euler-type integrals, hypergeometric series, and the Laplace
method [3].

Proposition 1.4 ([3]). For n tending to infinity the following asymptotic formula holds:

~ n \nek n+k n
‘Y %( 1) < . ><k>5k+n+1

Recently the author has found series transformations involving three parameters n, 71
and 7, [4]. In Propositions 1.5 and 1.6 certain integral representations of the (discrete) series
transformations are given, which exhibit important (analytical) tools to estimate the error
terms of the transformations.

1
= W' (16)

Proposition 1.5 (see [4]). Let n > 1, 7y > 1, and 1, > 1 be integers. Additionally one assumes that

1+7 < 1. (17)
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Then one has

n [N TIH k n
Z(_l) “Skimy, =Y
k=0 n k
VAR 1 o /w1 -u)"
_ (_1\n+1 - s S T S AR St A
= (1) fo<1—u+logu> " 6u"< n! >du.

Proposition 1.6 (see [4]). Let n > 1, 71 > 1 and T, > 1 be integers. Additionally one assumes that

(1.8)

1+ < < l+n+m. (1.9)

Then one has

n wp M1tk /n
Z(_l) *Skim, =Y
k=0 n k

(1.10)
1 (1 o\ 1\ T Lntm -1+
— (_1)n+Tszq J‘ J‘ w(t) . (1 u) u (1 t) . t dudt,
0Jo (1-ut)™
with
1
w(t) = - . (1.11)
t- <7r2 +logz<? - 1))
Setting
n=m=dm, 1=d-1)ym-1, (d>2), (1.12)

one gets an explicit upper bound from Proposition 1.6

Corollary 1.7. For integers m >2,d > 3, one has

dm 2d-1)ym+k-1\ /d 174 \"?
%(-1)dm+k< d’:j ><Z1>-sk+dm—y'< Cd~<%> , (1.13)

where 0 < Cyq < 1/162 is some constant depending only on d. For d = 2 one gets

2’”_ G f3m+k-1 2m ‘ ~ 16 \2 1
%( 1) ( o ><k> Sk+2m — Y| < < > (m=>1). (1.14)

7w ) 64m
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For an application of Corollary 1.7 let the integers By, and A,, be defined by

B, :=lcm. (1,2,3,...,4m),
2m 3m+k-1\ /2m 1 1 (1.15)
o _1)k . e
Am._Bmkgo( 1)< o ><k> <1+2+ +k+2m_1>.

A(k) denotes the von Mangoldt function. By [5, Theorem 434] one has

g(m) = D' A(k) ~m. (1.16)

k<m
Then, for € := (log 55)/4 — 1 > 0.0018, there is some integer mq such that

B, = ¥ < M —55m (11 > ). (1.17)

Multiplying (1.14) by B,,, we deduce the following corollary.

Corollary 1.8. There is an integer my such that one has for all integers m > myg that

am 3m+k-1\ /2m 16 \% / 55 \™
— k . —_— — . —
Bmé( 1) < - ><k> log(k +2m) + yBy, — Ap| < <7ﬂ> (64> . (1.18)

2. Results on Rational Approximations to y

In 2007, Aptekarev and his collaborators [6] found rational approximations to y, which are
based on a linear third-order recurrence. For the sake of brevity, let D(n) = lLem. (1,2,...,n).

Proposition 2.1 (see [6]). Let (pu),50 and (qn) >0 be two solutions of the linear recurrence

(161 - 15) (11 + D)ty = (128n3 +40n? - 82n — 45) Uy
(2.1)
- 11(256113 - 240n° + 64n — 7>un_1 +n(n-1)(16n+ 1)u,

withpy=0,p1 =2, pp =31/2and g0 =1, g1 = 3, g2 = 25. Then, one has g, € Z, D(n)p, € Z, and

Nor C1 (211)! Nor
]~ e, 22)

Pn' -2
- —| ~ Cp€
-5

with two positive constants cy, .
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It seems interesting to replace the fraction p, /g, by

A, _ Dn)pn

B, = D(n)g,’

(2.3)

and to estimate the remainder in terms of B,,.

Corollary 2.2. Let 0 < € < 1. Then there are two positive constants c,, c3, such that for all sufficiently
large integers n one has

coexp (—2(1 + E)\ﬁ\/log B,/ log log Bn>
(2.4)

<

Y- % < c3 exp<—2(1 - g)\@\/log B,/ log log Bn>.

Recently, Rivoal [7] presented a related approach to the theory of rational approxi-
mations to Euler’s constant y, and, more generally, to rational approximations for values of
derivatives of the Gamma function. He studied simultaneous Padé approximants to Euler’s
functions, from which he constructed a third-order recurrence formula that can be applied to
construct a sequence in Q(z) that converges subexponentially to log(z) + y for any complex
number z € C \ (-oo,0]. Here, log is defined by its principal branch. We cite a corollary from

[7].
Proposition 2.3 (see [7]). (i) The recurrence
(n+3)*(8n +11)(8n + 19)U .43
= <24n2 +145n + 215) (81 + 11) U s
(2.5)
- <24n3 +105n2 + 124n + 25) (81 + 27U 11

+(n+2)%8n+19)(8n+27)U,,

provides two sequences of rational numbers (p,) >0 and (qn) 50 With po = =1, p1 =4, p2 =77 /4 and
qo=1,q1=7,92 = 65/2 such that (p,/ qn) .50 converges toy.
(ii) The recurrence

(n+1)(n+2)(n+3)U,,;
- (3n2 +19n + 29) (n+ D)U,2 (2.6)

- (3n3 + 61— 7n - 13) Uy + (n+2)°U,,

provides two sequences of rational numbers (p,),>o and (qn),o With po = =1, p1 = 11, po = 71 and
q0 =0, g1 =8, g2 = 56 such that (p,/qn),»o converges to log(2) +y.
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The goal of this paper is to construct rational approximations to y + log(a/b) without
using recurrences by a new application of series transformations. The transformed sequences
of rationals are constructed as simple as possible, only with few concessions to the rate of
convergence (see Theorems 2.4 and 6.2 below).

In the following we denote by B,, the Bernoulli numbers, thatis, B, = 1/6, B, = -1/30,
Bg = 1/42, and so on (In Sections 3-6 the Bernoulli numbers cannot be confused with the
integers B, from Corollary 2.2.) In this paper we will prove the following result.

Theorem 2.4. Let a>1,b>1,d > 42 and m > 1 be positive integers, and

an-1 bn-1 n-1 21
Sni= T 42 - - - 2
j=1 J j=1 J ,‘:1] i1 ] 2n
d (2.7)
< BZ] 1 1 1 1
A A A 1 .
' = ( n’ < a¥l b ) n¥i > (n21)

Then,

dm Qd-Dm+k-1\ /dm a
_1dm+k S m— _10_
e A [

where ¢4 is some positive constant depending only on d.

a-1/d)* \"
<C4'<W> , (2.8)

3. Proof of Theorem 2.4

Lemma 3.1. One has for positive integers d and m

d-1ym+k-1 dm im
g(k) = <16 (0L k <dm). (3.1)
dm k
Proof. Applying the well known inequality (i) <28, we get
(Zd - 1)m +k-1 dm < 2(2d—l)m+dm—12dm — 24dm—m—l < 16dm (32)
dm k
This proves the lemma. O

g(k) takes its maximum value for k = ko with

_ Vhd?-4d+1-d+1
- 2

ko m+0(1), (3.3)
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which leads to a better bound than 16% in Lemma 3.1. But we are satisfied with Lemma 3.1.
A main tool in proving Theorem 2.4 is Euler’s summation formula in the form

f) +f(n) Zle

£ = [ f ax+ L0 o (e s m) er, a4
_ 2.

where r € N is a suitable chosen parameter, and the remainder R, is defined by a periodic
Bernoulli polynomial P,.1(x), namely

1

Re= i f Poria (x) f*D () dx, (3.5)

with

Poi(x) = (1)1 2r + 1)!§M

. 3.6
= (2.71'j)2r+1 ( )

Applying the summation formula to the function f(x) = 1/x, we get (see [8, equation (5)] )

n-1 " By: n
1 logn+%—2l+ 2 (1—L.>—J‘ Pzr;léx)dx, (n,r €N). (3.7)
el no 534 1 X

It follows that

n%-1 r n?
1 11 By /1 1 Py (x)
%;—lOgn—zn—ﬁ‘f’;—, <—.——. >—jn x27+2 dx, (n,rEN). (38)

We prove Theorem 2.4 for a > b. The case a < b is treated similarly. So we have again by the
above summation formula that

an-lq a 1 1\1 & By 1 1
——1 - = - - - T — T =
.Zi %87 <b a>2n+]§2jnzl (bZJ a21>

an

P

_ J‘ 2’;1 (x) dx, (n,r €N).
n X r+2

(3.9)
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First, we estimate the integral on the right-hand side of (3.8). We have

U P2r+l(x) ‘<fn2|P2’+1(x)|dx<fwlp2r+1(x)|dx
n n

2r+2 x2r+2 x2r+2

IN

2(2r +1)! f X2r+2 Z<2 )2r+1
(3.10)
_20r+1)!

(2]2' 2r+1 [ (21’ + 1)x2r+1] ]Zl]ZrJrl

2(2r)!

- (2)2 1 pg2r+1

3(2r)!

(272.)27+1n2r+1 !

¢2r+1) <

since 2¢(2r + 1) < 2¢(3) < 3. Next, we assume that n > a. Hence [bn,an] C [n,n?], and
therefore we estimate the integral on the right-hand side in (3.9) by

x2r+2

J p2r+1(x) dx <jan|P2r+1(x)| x
b

- bn x2r+2

(3.11)

. I"Z|P2H1<x>| e < 300!

x2T+2 - (zﬂ)2r+1n2r+1 :

In the sequel we put r = dm. Moreover, in the above formula we now replace n by dm + k
with 0 < k < dm. In order to estimate (2r)! we use Stirling’s formula

m

27rm<g>m<m!<\/27r(mi+l)<§> . (m>0). (3.12)

Then, it follows that

(dm+k)? | '
j Py (x) 3(27‘). < 3(27‘).
dmk x2r+2 - (2‘72_)2r+1 (dm + k)27+1 - (2‘72_)2r+1 (dm)2r+1

3(2dm)!

(2”)2dm+1 (dm)de+1

. 3v7(2dm+1) < 2dm )2‘*’"

(2]2_ dm)ZdWHl e

(3.13)

3vV3rdm

T Qurdm)(me)X ™’
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and similarly we have

(dm > a). (3.14)

J‘ aldm+k) p, . (x) ‘ < 3v/3ardm

b(dmsk) X772 T Qurdm)(re)X ™’

By using the definition of S, in Theorem 2.4, the formula (1.1) for s,, and the identities (3.8),
(3.9), it follows that

Sn—y—logg

" By; 1 1 1
— _ ) _ T = = -= _
=(sn—7)+ (sn sn> + (San = Spn) = 5= + D ; ( 5 ( i 1 ) v )

j=1

2
1 1 " Pori1(x) “ Pays1(x)
=(sn-7) * 5 < 772" 1 > + In ;Hz dx — N ;Hz dx,

(3.15)

where r is specified to ¥ = dm and n to n = dm + k. Moreover, we know from [4, Lemma 2]
that

dm
> (-)gk) =1, (m=>1). (3.16)
k=0

By setting n = dm + k, the above formula for the series transformation of Sy simplifies to

dm

(D)) Samer - Y—logg’

& dme 1/1 1 o (-1 g (k)
= kZ:O(_l)d kg(k)(sdm+k_}’)+§<E___1>ZT+;‘Z

k=0

2
(dm+k) P2r+1 (x)

dm
+Z(_1)dm+kg(k)f 2r+2 dx
k=0 k X

dm+

dm a(dm+k)P (x)
dm+k 2r+1
_%(_1) g(k)fb(dm+k) e dx (3.17)
dm (dm+k)2Pr x
kg (0) (sam )| + S| [ D
k=0 dm+k X

admk) p) 1 (x) 4
x2r+2 x

dm
+ > g(k)
k=0

b(dm-+k)

(1-1/d)* \"7 3v3x
c, [ 1 —7%)
= < (d - 1)4 > kzog( )erm(yr )Zd’"
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where dm > a, m > 2, and d > 3. Here, we have used the results from Corollary 1.7, (3.13),
and (3.14). The sum

dm (_1)dm+kg(k)

(3.18)
o dm+k
vanishes, since for every real number x > —dm we have
dm+k [ 2d-1)m+k-1 dm
dm (-1) ( dm )(k) _(I-(d-1)ym+x)---(m+x) (3.19)

= dm+k+x B (dm + %) 401

where on the right-hand side for an integer x with —m < x < (d — 1)m — 1 one term in the
numerator equals to zero.
The inequality

d
64 (1-1/d)*
< reP > < E (3.20)

holds for all integers d > 42. Now, using Lemma 3.1, we estimate the right-hand side in (3.17)
for dm > a and d > 42 as follows:

dm dmik a
> (1), g (k) Samik — y —log -
k=0 b

<Cd-

<(1—1/d % >'"2 dn 3 Ardm 160

(d-1)44 " kZ:(:) R

) (1-1/d)"
=Ca Td-1)ad

dmf 4dm (.7['6)2

, 3(dm+1)V3dm 1 < 64 >d’"

C
<\ T@-na dm2mJ (d-1)ad

\/7 (-1 \"_ _( (-vda)y\"
T (d-1)4d =T\ T@d-1ad ‘

(3.21)

(1-1/d)*
T@d-1)ad

(320) <(1 1/d)* > 3(dm +1)v/3dm <(1—1/d)d >"’

The last but one estimate holds for all integers m > 2, d > 42, and c4 is a suitable positive real
constant depending on d. This completes the proof of Theorem 2.4.
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4. On the Denominators of S,

In this section we will investigate the size of the denominators b,, of our series
transformations

Z( 1) ¢ (k) Sk dm, (4.1)

m k=0

for m tending to infinity, where a,, € Z and b,, € N are coprime integers.

Theorem 4.1. For every m > 1 there is an integer Z,, with Z,, > 0, b,y|Z,,, and

log Z,, ~12d*m?, (m — o). (4.2)

Proof. We will need some basic facts on the arithmetical functions d(x) and ¢(x). Let

8(x)= Ylogp, (x>1),

psx

p(x) =) gxllogn (x>1),

o (4.3)
sl logp

where p is restricted on primes. Moreover, let D,, := lL.c.m (1,2,...,n) for positive integers n.
Then,

g(n)=log D,, (n>1), (4.4)

p(x) ~ 3x)~ x(x)log x ~ x, (x — o0), (4.5)

where (4.5) follows from [5, Theorem 420] and the prime number theorem. By [5, Theorem
118] (von Staudt’s theorem) we know how to obtain the prime divisors of the denominators
of Bernoulli numbers Byi: The denominators of By, are squarefree, and they are divisible
exactly by those primes p with (p — 1) | 2k. Hence,

Bi [[p ez (k=12..). (4.6)

p<2k+1

Next, let max{a, b} < dm <n <2dm (n = k + dm are the subscripts of Si.4, in Theorem 2.4).
First, we consider the following terms from the series transformation in S,,:

anfll bnfl n— 1 n2— 1 n? 16

PIEEDILE) I

== (4.7)
=1 ] =1 ] :1] i=1 ] ]
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with

1, if1<j<n-1

-1, ifn<j<bn-1

ej = 1 (a>D),
0, ifbn<j<an-1

-1, ifan<j<n®-1

(4.8)
(1, if1<j<n-1
-1, ifn<j<an-1
ej = 3 (a<Db).
-2, ifan<j<bn-1
k—l, ifbnSanZ—l.
For every m > 1 there is a rational x,,/y,, defined by
X dm (k+dm)*~1 .
=N (DT Y (4.9)
Ym k=0 j=1 ]
where x,, € Z, Y €N, (X, ym) =1, and
Ym | Ym = Dagpe, (dm >max{a,b}). (4.10)
Similarly, we define rationals u,,/v,, by
Um & dm+k
o 3D e ()
mo k=0
(4.11)
dm B>
(ot (2 (2 te) 1)
2(k + dm) ]-=12] (k+dm)” \ a” b (k + dm)™
where u,, € Z, v,, € Nand (u,, v;,) = 1. We have
(k +dm) | (k +dm)*™, (0<k<dm, 1<j<dm). (4.12)
Therefore, using the conclusion (4.6) from von Staudt’s theorem, we get
O | Vi = 2(ab)2dedm< IT» > (Daam)*™™,  (dm > max{a,b}). (4.13)
p<2dm+1

Note that D2y, = lcm. (dm,...,2dm), since every integer n; with 1 < n; < dm divides at
least one integer n, with dm < n, < 2dm.
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From (4.10) and (4.13) we conclude on

b | Zi = 2(ab)2d'"deD4d2mz(Dzd,,,)‘*dm< IT» > (4.14)

p<2dm+1
Hence we have from (4.4) and (4.5) that

10g Zy = log 2 + 2dm log (ab) + ¢(dm) + (p<4d2m2> + ddmy (2dm) + ©Q2dm + 1)

~ log 2 +2dm log (ab) + dm + 4d*m? + 8d°m* + 2dm + 1)

(4.15)
=1+log 2+ (3 +2log (ab))dm + 12d*m?
~12d*m*  (m — o).
The theorem is proved. O

Remark 4.2. On the one side we have shown that log Y,, ~ 4d*m? and log V,,, ~ 84*m?. On the
other side, every prime p dividing V,, satisfies p < max{a, b,dm,2dm+1,2dm} = 2dm+1 and
therefore p divides Y;, = Dygp,2. Conversely, all primes p with 2dm + 1 < p < 4d*m? divide
Y., but not V,,. That means: V,, is much bigger than Y,,,, but V,, is formed by powers of small
primes, whereas Y, is divisible by many big primes.

5. Simplification of the Transformed Series

Let
1 By /1,71 1 1
R, '__ﬁ-’_j;z_j (E(E_ﬁ-i_l)_E)/ (51)
such that

Sn=z—,—z—,+2 _’_Z_'+Rn' (52)

In Theorem 2.4 the sequence S, is transformed. In view of a simplified process we now
investigate the transformation of the series S, — R,. Therefore we have to estimate the
contribution of Ry, 4, to the series transformation in Theorem 2.4. For this purpose, we define

dm d-1)ym+k-1\ /dm 1 dm (_1ydm+k o (g
Ep = Z(_l)dm+k Ryvdm = __Z g( )
k=0 k 2k:0 d

dm m+ k)? 53
S B (L 1 1) SOOI <—1>dm+"g<k>> '
= 2) \\a’ b & dm+k)? 5 (dm+k)Y )

A major step in estimating E,, is to express the sums on the right-hand side by integrals.
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Lemma 5.1. For positive integers d, j and m one has

dn (—1)"* g (k) G 1 o9m Ay m
& (dm+1;g)2j = a2 —1)!fo” (log 1) 2 (WD A= ™) du. - (54)

Proof. For integers k, r and a real number p with k + p > 0 the identity

Gy " i, 5

holds, which we apply with r = 2j and p = dm to substitute the fraction 1/(dm + k).
Introducing the new variable u := e, we then get

2m (_q dm+k k -1 dm dm 1 .

dm dm
= —%J‘:< (—1)kg(k)uk+(d1)m1>um(log W)™ du.
: k=0

(5.6)

The sum inside the brackets of the integrand can be expressed by using the equation

n K n+rt+k n ik o un+1-(1_u)n
%(—1) < ; ><k> W= <T ) (n,T € NU{0)), (5.7)

in which we put n = dm and 7 = (d - 1)m — 1. This gives the identity stated in the lemma. [

The following result deals with the case j = 1, in which we express the finite sum by a double
integral on a rational function.

Corollary 5.2. For every positive integer m one has

dm (_1)dm+kg(k) _ (_1)(d1)mJ<1 J<1 (1 _ u)dﬂ’l(l _ w)mu(Zd—l)m—lw(d—l)m—l du dw. (58)
= (dm+k)? 0Jo (1-(1-u)w)im

Proof. Set j =1in Lemma 5.1, and note that

1
log u = —(1 - u)J'Ol_(f—zfu)w. (5.9)
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Hence,

dm dm+k dm 1 p
S " 0™ ( ed-m-1 dm
2 amr @y L” log 1 3 (1 (1-w)™) du

(_1)dm 1 41 (1_ )m adm - .
=t} | T g (1 00 d e

(5.10)

Let s be any positive integer. Then we have the following decomposition of a rational
function, in which u is considered as variable and w as parameter:

us Sw-1)" w-11\° 1
= v . 5.11
1-(1-uw)w ; ot +< w ) 1-(1-uww (5.11)

We additionally assume that s — 1 < dm. Then, differentiating this identity dm-times with
respect to u, the polynomial in u# on the right-hand side vanishes identically:

o < e >=<w_1>s Cym o (5.12)

oudm \ 1-(1-u)w w (1= (1 - wyw)?m’

Therefore, we get from (5.10) by iterated integrations by parts:

dm (_q dm+k 1 A1 dm m o
( ) g(k) _ 1 J. I u(zd_l)m_l(l _ u)dm 0 u u du dw
= (dm+k)? (dm)!)oJo oudm \ 1-(1-u)w

_ @J’l J‘:u(2d—1)m—1(1 B u)dm<<w7_1>m B <w7—1>"”1> (5.13)

y (1) (dm)! w™ du dw
(1 _ (1 _ u)w)dm+1

The corollary is proved by noting that

( w-1 )m _< -1 >m+1 _ (cpym A= (5.14)
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6. Estimating E,,

In this section we estimate E,, defined in (5.3). Substituting 1 — u for u into the integral in
Lemma 5.1 and applying iterated integration by parts, we get

dm (_1)dm+kg(k)
= (dm+ k)Y

(6.1)
_q1\dm 1 Adm .
o (dm()!gj -1t g (01107051 0) ™ ) (1= 0™V Y
Set
F) = (1-uw)"(log(1-u))”™", (6.2)

where m and j are kept fixed. We have f(0) = 0. For an integer k > 0 we use Cauchy’s formula

K[ B

27i) ¢ (z - a)**! (6.3)

f®(a) =

to estimate |f®(0)|. Let C denote the circle in the complex plane centered around 0 with
radius R := 1-1/2k. With a = 0 and f(z) defined above, Cauchy’s formula yields the identity

k! T . o\ m . .
(k) - -ik¢ (1 _ Re'® 2j-1(1 _ Rei®
f (o)_szkf e (1= Re'?) "log® ™ (1 - Re) dg. (6.4)

—=Jr

For the complex logarithm function occurring in (6.4) we cut the complex plane along the
negative real axis and exclude the origin by a small circle. All arguments ¢ of a complex
number z ¢ (—co, 0] are taken from the interval (-zr, r). Therefore, using 1-Re’® = 1-R cos ¢—
iR sin ¢, we get

|1-Re®| = 4/1+ R -2Rcosp = \/A(R§),

; (6.5)
i Rsin ¢
_Re?) = —
arg<1 Re ) arctan< T-Rcosg )
Hence,
) Rsi
log<1 - Rel‘i’) =1In \/1 +R?>—-2Rcos¢p—i arctan< T-Reosd ;120i¢ )
(6.6)

B _ Rsin¢
= 5 In (AR ¢)) - i arcta“( 1-Rcos¢ )
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Thus, it follows from (6.4) that

CIES

|1 Rel¢| |log<1 Re'¢)| de¢

k(T mi2 (1 Rsi (27-1)72
= SR J‘_” (A(R,9)) /2<Zln2 (A(R, $)) +arctan2< % > > d¢

§ Rsi @2j-1)/2

(6.7)
From 0 < R < 1 we conclude on
0<(1-R)?*=1+R*-2R<1+R*-2Rcos¢ = A(R, ) <4, (0<p<u),
o< g I 0<pem) o

Since arctan is a strictly increasing function, we get

( Rsin¢ > < sin > ( ¢ >
arctan{ ———— < arctan = arctancot|{ —
1-Rcos ¢ 1-cos¢ 2

= arctan (tan( JFT_d) )) (6.9)

=”T_(i), (0<¢<ur).

For 0 < R < 1, this upper bound also holds for ¢ = 0. Finally, we note that R = (1 - 1/2k)* >
1/2. Altogether, we conclude from (6.7) on

. 2j-1)/2
In?4 sin ¢
(k) 4m/2 - 2
| (0)| f < 1 + arctan < T cosd ~cosg > > d¢
(2j-1)/2
2m g (7 T-¢\
< In“2 —
ST ,[0 ( " +< 2 ) 9
m+l1. (o 2 j-1/2
<2 k‘f <1n22+”—> dp
xJo 4

1 I
< ﬂf 372 ¢ < 2m13ikl.
T 0

(6.10)
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It follows that the Taylor series expansion of f(u)

(k
f(u)—Zf '© u, (6.11)

|
k=0 k!

converges at least for -1 < u < 1. Then,

© (k) w0 £(k+dm)
£ () = Z (,{ dgi), i - 310 0) . © s, (6.12)
k=0 :

and the estimate given by (6.10) implies for 0 < u < 1 that

ke+dm)
[ )| < Z |f (O)I W < gmiy 3 Uerdm)! dm)'
k=0
(6.13)
) » /k+dm m+1aj |
= 213 (dm)! Z< > uk = 23 (jﬂ;
k=0 k 1-u)
Combining (6.13) with the result from (6.1), we get for m > 1
dm (_q dm+k k m+1aj 1
(-1 gg) < 2. 3 J' (1_u)(d—1)m—2udm du
ko (dm+k)” (2j-1)!
_2m131 T(dm+1)I((d-1)m—1)
S (2 -1)! T((2d - 1)m) (6.14)
_2d-1 om+13j 1
T d-T @M me1) (B
dm

We estimate the binomial coefficient by Stirling’s formula (3.12). For this purpose we
additionally assume that m > 2d - 1:

(2d -1)m\ 2d - 1)m @d-1)*1\"
dm TV 2r(dm+1)((d-1)m+1) \ gd(d-1)*"

(6.15)
Jyj2d-1 [ @d-1*"" "
TV 2rd2m \ gd(d - 1)*! '
We now assume m > 2d — 1 and substitute the above inequality into (6.14):
3": (-1)*k ¢ (k) < d(2d - 1)2"13/\/2rm ddd-1)4\" (6.16)
& dm+k)? | T Qj-DWd-1)(d-1)m-1)v2d-1 \ @d-1)*"' ) =




International Journal of Mathematics and Mathematical Sciences 19

For all integers m > 1 and d > 1 we have

(2d\;¥217r_m <2Vwdm, (d-1)(d-1)ym-1)> (d-1)(d-2)m. (6.17)

Thus we have proven the following result.

Lemma 6.1. For all integers d, m with d > 3 and m > 2d — 1 one has

dm (_1)dm+kg(k) § 2m+23j\/77d3 dd(d _ 1)d71 m (6 18)
= (dm+k)? Qj-Dd-1)(d-2)ym \ 2d-1)¥1 )~ :
Next, we need an upper bound for the Bernoulli numbers By; (cf. [9, 23.1.15]):
2(2j)! 4(27)!
|Bajl < ) < 28 (21). (6.19)

@r)¥(1-212) ~ @x)¥’

Let d > 3 and m > max{2d —1,a/2}. Using this and Lemma 6.1, we estimate E,, in (5.3):

|Em| <

3 md 2 <dd<d—1>“>'“+ VdB 2m? <dd<d_1>“>'”
2 ([d-D(d-2)vm \ (2d-1)*" (d-D(d-2)ym \ (2d- 17

deZj
£ (

j=1

i—i+1' 3 + 37
a2 b (j-1) (4 -1)!

< N ord3 2m+2 <dd(d_1)d—1>m
T d-Dd-2)ym \ (2d-1)*"

(3 dma(2j-1)! 2.3i 32j
wad (2= (3 &l (va\T 3\
S @D < <2d—1>2d‘1> <§+8§<<E> “(3x)

. 19ad <2dd(d ~-1)*! >’"
(d-1)(d-2)vm \ d-1)**1 )

(6.20)
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Now, let

n—1 n?-1 n2-1

i; NESY :2? (n>1), (6.21)
217 "% .

j=1

an—
j=1

\.|H

with the numbers e; introduced in the proof of Theorem 4.1. By definition of R, and S, we
then have T, = S, — R,, and therefore we can estimate the series transformation of T, by
applying the results from Theorem 2.4 and (6.20). Again, let m > max{2d-1,a/2} and d > 42.

%( )d L d-1ym+k-1 dm os &
-1)“m* Txram =y —log —
= dm k T8

dm d
< | D" g (k) Sieim —y ~log 7 | +
k=0 -

dm+kg(k) Rk+dm

(6.22)

dm

m+ a
= [ D(=1)""* (k) Skram — Y — log -
k=0 b

. (1-1/d)* '"+ 19vVrd? 2d4(d - 1)*1\"
@\ @ ) "@na-oavm \ @1 )

By similar arguments we get the same bound when b > a. For d > 3 it can easily be seen that

+|Enml

2d(d - 1)+ _202d-1) (1-1/d o1 18
(Zd = 1)2d_1 B d-1 ( 1- ]./Zd )Zd 4d < 4d+1 . (623)

Thus, we finally have proven the following theorem.

Theorem 6.2. Let

an-1 1 bn—l n— 1 n?-1 1
T,= 3 - ; Z Z; -3 (n>1), (6.24)
SR SV

where a,b are positive integers. Let d > 42 be an integer. Then, there is a positive constant cs
depending at most on a, b and d such that

dzm( 1 d-1)ym+k-1 dm T log 2
- m—Y —log —| <
2 dm K k+d Y gb
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7. Concluding Remarks
It seems that in Theorem 6.2 a smaller bound holds.

Conjecture 7.1. Let a, b be positive integers. Let d > 2 be an integer. Then there is a positive constant
c¢ depending at most on a, b and d such that for all integers m > 1 one has

@d-1)ym+k-1\ /dm a
dm+k T+m_ —log —
< dm g )RV T8
(1-1/4)*\"
<cp | ——— ) .
(d—1)44

A proof of this conjecture would be implied by suitable bounds for the integral stated
in Lemma 5.1. For j = 1 such a bound follows from the double integral given in Corollary 5.2:

(7.1)

dm ( 1)dm+kg(k) ’[ ’[ (1 u)dm(l _ w)mu(2d—l)m—lw(d—l)m—l
= (dm+k)? (1 - (1-uyw)™!

(M (A-wA-wnd (1 -wiiw a2
‘IO 0o I-(1-ww? \1-(1-ww

N < (1-u)?(1 - w)ud 1w >m_1dudw 72)

dudw

(1-01-uw)?
1 /(1-1/d)\"" (' (1 (1 - w)2(1 - w)
S401_—2< (d—1)4 > ,[0 I

_ o 2d-1) [/ (1-1/d)"\"
“31-1/d) < @- D > o m= b

where the double integral in the last but one line equals to 1/24.
Note that the rational functions

(1 -uw)u*w (1 - )4 (1 - w)u2d 1!
1-(1-ww’ 1-(1-ww)

(7.3)

take their maximum values 424 and (1 - 1/d)?/((d—1)4%) inside the unit square [0,1] x [0, 1]
at (u,w) = (1/2,1) and (u,w) = (1/2,(2d - 2)/(2d - 1)), respectively. Finally, we compare
the bound for the series transformation given by Theorem 2.4 with the bound proven for
Theorem 6.2. In Theorem 2.4 the bound is

(1-1/a)*\"
Ti(d, m) := C4.<W> , (d>42, m>1), (7.4)
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whereas we have in Theorem 6.2 that

18
4d+1

To(d, m) = j—% (

>m, (d>42, m>1). (7.5)

For fixed d > 42 and sufficiently large m it is clear on the one hand that T1(d, m) < T»(d, m),
but on the other hand we have

. . log T (d, m) . . log T1(d, m)
W, Tog To(dm) ' T % Tog To(d, m)’ 70
Conversely, for d tending to infinity, one gets
—log|T1(d, m)| > dm log4, —log|Tz2(d, m)| > dm log4, (7.7)

with implicit constants depending at most on m. For the denominators b, of the transformed
series Skidm in Theorem 2.4 we have the bound logb,, « d*m? from Theorem 4.1, and a
similar inequality holds for the denominators of the transformed series Tk, 4, in Theorem 6.2.

References

[1] C.Elsner, “On a sequence transformation with integral coefficients for Euler’s constant,” Proceedings of
the American Mathematical Society, vol. 123, no. 5, pp. 1537-1541, 1995.

[2] T. Rivoal, “Polynémes de type Legendre et approximations de la constante d’Euler,” notes, 2005,
http:/ /www-fourier.ujf-grenoble.fr/~rivoal/ articles /euler.pdf.

[3] K. H. Pilehrood and T. H. Pilehrood, “Arithmetical properties of some series with logarithmic
coefficients,” Mathematische Zeitschrift, vol. 255, no. 1, pp. 117-131, 2007.

[4] C. Elsner, “On a sequence transformation with integral coefficients for Euler’s constant. II,” Journal of
Number Theory, vol. 124, no. 2, pp. 442-453, 2007.

[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, UK,
1984.

[6] A. I Aptekarev, Ed., Rational Approximation of Euler’s Constant and Recurrence Relations, Sovremennye
Problemy Matematiki, Vol. 9, MIAN (Steklov Institute), Moscow, Russia, 2007.

[7] T. Rivoal, “Rational approximations for values of derivatives of the Gamma function,”
http:/ /www-fourier.ujf-grenoble.fr/~rivoal / articles / eulerconstant.pdf.

[8] D.E. Knuth, “Euler’s constant to 1271 places,” Mathematics of Computation, vol. 16, no. 79, pp. 275-281,
1962.

[9] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1970.



