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1. Introduction

In probability theory, conditional expectations play a fundamental role. Conditional expecta-
tions for von Neumann algebra have been studied in noncommutative probability theory. In
particular, Takesaki [1] characterized the existence of conditional expectation using Tomita’s
modular theory. Thus a conditional expectation does not necessarily exist for a general von
Neumann algebra. The study of conditional expectations for O*-algebras was begun by
Gudder and Hudson [2]. After that, in [3, 4] we have investigated an unbounded conditional
expectation which is a positive linear map £ of an O*-algebra  onto a given O*-subalgebra
N of M. In this paper we will consider conditional expectations for partial O*-algebras.
Suppose that  is a self-adjoint partial O*-algebra containing identity I on dense subspace ®
of Hilbert space <# with a strongly cyclic vector ¢, and A is a partial O*-subalgebra of _# such
that (/U N RY(M))¢p is dense in H_y = ,/U_go, where RY () is the set of all right multiplier of
M. The definitions of (self-adjoint) partial O*-algebra and a strongly cyclic vector are stated
in Section 2. A map & of M onto N is said to be a weak conditional-expectation of (M, &) with
respect to, A if it satisfies (AX&y | Yéo) = (E(A)X& | Y&), forall A € M, forall X,Y €
SN RY(M); but, the range £(A) of the weak conditional-expectation & is not necessarily
contained in WV, and so we have considered a map £ of M onto N satisfying the following;:

(i) the domain D(€&) of £ is a t-invariant subspace of M containing ;

(ii) &€ is a projection; that is, it is hermitian (E(A)T = &(AY, forall A € D(¢)) and
E(X) =X, forall X e W,
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(iii) E(AOX) = &(A)DX, forall A € D(&), forall X € NN RY(UM), E(XOA) =
XOE(A), for all A€ D(E)NRY(N), for all X € A;

(iv) wg (E(A)) = wy(A), forall A € D(&), where wg, is a state on M defined by
wy, (A) = (Ado | &), A€ M;

and call it an unbounded conditional expectation of (U, &) with respect to, . In particular, if
D(&) = M, then & is said to be a conditional expectation of (M, ¢y) with respect to, .

Finally, we will investigate the scale of the domain of unbounded conditional
expectations of partial GW*-algebra which is unbounded generalizations of von Neumann
algebras.

2. Preliminaries

In this section we review the definitions and the basic theory of partial O*-algebras, partial
GW*-algebras and partial EW*-algebras. For more details, refer to [5].

A partial *-algebra is a complex vector space 2 with an involution x — x* and a subset
I' ¢ A x A such that

(i) (x,y) €I implies (y*, x*) € T;
(ii) (x,y1), (x,y2) € I'implies (x, A\y1 + py,) €I, forall A, u € C;
(iii) whenever (x,y) € I, there exists a product x - y € 2 with the usual properties of the

multiplication: x - (y + Az) = x-y+A(x-z) and (x - y)* = y* - x* for (x,y), (x,2z) €T
and A € C.

The element e of the 2 is called a unitif e* =¢,(e,x) el forallx €A, ande-x = x- e = x, for
all x € 2. Notice that the partial multiplication is not required to be associative. Whenever
(x,y) €T, x is called a left multiplier of y and y is called a right multiplier of x, and we write
x € L(y) and y € R(x). For a subset B C 2, we write

L(B) = [\ L(x), R(B) = [ R(x). (2.1)

xeB x€eB

Let # be a Hilbert space with inner product (- | -) and @ a dense subspace of #. We
denote by L1 (D, #) the set of all closable linear operators X such that ®(X) = ®, 9(X*) 2 D.
The set £1(D, H) is a partial *-algebra with respect to the following operations: the usual sum
X +Y, the scalar multiplication AX, the involution X — XT(= X*[®), and the weak partial
multiplication XOY = X™Y, defined whenever Y is a weak right multiplier of X (X € L¥(Y)
or Y € RV (X)), that is, if and only if Y® C ®(X™) and X*® C D(Y*). A partial x-subalgebra
of £1(D, H) is called a partial O*-algebra on D.

Let /M be a partial O*-algebra on 9. The locally convex topology on @ defined by the
family {|| - |lx; X € M} of seminorms ||¢]|x = ||&]| + [|X¢|l, ¢ € D is called the graph topology
on D and denoted by t 4. The completion of D[t 4] is denoted by D[t ]. If the locally convex
space D[t »] is complete, then M is called closed. We also define the following domains:

o) = 2X), DUm)= )X,
Xem Xem

(M) = () D(X*[D*())Y),
Xem

(2.2)
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and then

D CD(M) CD(M) C D™ (M) C D*(M). (2.3)

The partial O*-algebra  is called fully closed if ® = D(M), self-adjoint if D = D* (M), essentially
self-adjoint if D*(M) = @(_/Ii), and algebraically self-adjoint if D* (M) = D**(M).

We defined two weak commutants of M. The weak bounded commutant M., of M is the
set

M, = {C e B(H); (CXE | 1) = (C& | Xyp) for every X € M, &1 € D); (24)

but the partial multiplication is not required to be associative, so we define the quasi-weak
bounded commutant M, of M as the set

M = {C e My; (CXR | Xon) = (C¢ | (XaOXo)n) VXy € L(Xa), ¢,n €D} (2.5)

In general, M, C M.

A x-representation of a partial *-algebra 2| is a *-homomorphism of 2 into £7(®, #),
satisfying or(e) = I whenever e € 2, that is,

(i) or is linear;

(ii) x € LY (y) in A implies o (x) € LY (or(y)) and o (x)Or (y) = 7w (xy);

(iii) or(x*) = ar(x)" for every x € 2.

Let 7 be a *-representation of a partial *-algebra 2 into £T(®, #). Then we define

D(r): the completion of D with respect to the graph topology t ),

F(x) = x(x)[D(7), x€Y;

() = (7 (x)),
xeA

_ (2.6)
7 (x) = (%) [D(r), x€EU;

() = (27 (%)),

xeA

a*(x) = r(x*)* [D*(r), xeU

We say that o is closed if ® = D(r); fully closed if © = D(r); essentially self-adjoint if
D(or) = D*(or); and self-adjoint if D = D* (o).
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We introduce the weak and the quasi-weak commutants of a *-representaion s of a
partial x-algebra 2 as follows:

), = {CeB(H); (C¢ | m(x)n) = (Cxr(x*)é| 1), Vx e, §neD(r)},

Cqw(r) = {C € (W) (Cr(x)E | 7 (x2)1) = (C& | 7w (x122)1), (2.7)

Vx1,x, € 2 such that x; € L(x,), and all ¢, € S(r)},

respectively.
We define the notion of strongly cyclic vector for a partial O*-algebra /M on @ in K.
A vector &y in D is said to be strongly cyclic if RV ()¢ is dense in D[t 4], and ¢ is said to be

separating if M,¢& = H, where R¥ (M) = {Y € M; XOY is well-defined, for all X € #}.
We introduce the notion of partial GW*-algebras and partial EW*-algebras which are
unbounded generalizations of von Neumann algebras. A fully closed partial O*-algebra

on D is called a partial GW*-algebra if there exists a von Neumann algebra #, on < such that
MyD C Dand M = [My[D]° . A partial O*-algebra M on D is said to be a partial EW*-algebra

if M, ={AeB(H); A[D € M} is a von Neumann algebra, M,® C D and E/Q C.

3. Weak Conditional Expectations

In this section, let / be a self-adjoint partial O*-algebra containing the identity I on @ in #
with a strongly cyclic vector ¢, and let /U be a partial O*-subalgebra of # such that

(N) (VN RY ())& is dense in H_y = NEp.
The following is easily shown.

Lemma 3.1. Put

D(7 ) = (NN RY(M))So, -
3.1
xa(X)YE = (XOY)E, VX €M, VY € ANRY(M).

Then vy is a x-representations of NV in the Hilbert space H_y = D (o ).

We denote by P the projection of  onto H_y = D(or ). This projection P, plays an
important role in this reserch. First we have the following.

Lemma 3.2. [t holds that P4® C D" () and 775 (X)Paé = PyX¢, for all X € N and for all § €
D.

Proof. Take arbitrary X € NV and ¢ € ®. Forany Y € /AN RY (M), we have
(XY | Pag) = (XTOY)éo | Pag) = (XTY& [ &) = (Yéo | XE) = (Y& | PaXE), (3.2)

and so P4® C " (o) and a7 (X) Paé = PaX§. O
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Definition 3.3. Amap & of Minto LT(D(rr y), H _4) is said to be a weak conditional-expectation
of (UM, &) with respect to, /N if it satisfies

(AXE | Y&o) = (E(A)XE& | Y&), YA€ M, ¥X,Y € ANRY(M). (3.3)

For weak conditional-expectation we have the following.

Theorem 3.4. There exists a unique weak conditional-expectation £(- | N) of (M, &) with respect
to, N, and

E(A|N) = PyA[D(r ), VYA€ M. (3.4)

The weak conditional-expectation E(- | W) of (M, &) with respect to, N satisfies the following:

(1) &E(- | N) is linear,
(ii) &(- | M) is hermitian, that is, E(A | )T = E(AT| A, for all A€ A,
(i) E(X | M) = X[D(x0), for all X € N,
(iv) E(ATOA | N) >0, forall A€ M s.t. ATOA is well-defined,
)

(V) E(A| M)TOEA | W) < E(ATTA | W), forall A € Mst. ATOA and E(A | N)'O
E(A | N) are well-defined,
(vi) E(A | MO (X) is well-defined for any A € Mand X € NN RY(M), and E(A |
MO 4(X) = E(AOX | N),
(vil) mu(X)OE(A | N) is well-defined for any A € M N RY(N) and for all X € N, and
ay(X)OE(A | N) = E(XTA | N),

(viii) wg, (E(A | N)) = we, (A), forall A€ M.

Proof. We put
E(A|N) =PyA[D(rp), VAeE M. (3.5)

By Lemma 3.2, £(A | W) is a linear map of D(ry) into D*(ry) for any A € M, and
furthermore we have £(A | M = gAt | W), forall A € M, so &E(- | N) is a map of M
into £7(D(or 4), H ).

Since

(E(A | M)XE | Yé&) = (PaAXE0 | Y&) = (AXéo | YE0) (3.6)

foreach A € M, X,Y € NANRY(M), E(- | N) is a weak conditional-expectation of (M, &)
with respect to, . It is easily shown that if £ is a weak conditional-expectation of (U, &)
with respect to, /W, £(A) = E(A | N) for each A € M. Thus the existence and uniqueness of
weak conditional-expectations is shown. The statements (iii)—(viii) follow since (A | N) =
PyA[D (), for all A € M. This completes the proof. O
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4. Unbounded Conditional Expectations for Partial O*-Algebras

Let /M be a self-adjoint partial O*-algebra containing I on ® in # and let ¢) € D be a strongly
cyclic and separating vector for M and suppose that A > I is a partial O*-subalgebra of
M satisfying (N): (N N RY(M))¢o is dense in H 4. We introduce unbounded conditional
expectations of (M, &) with respect to, V.

Definition 4.1. A map & of M onto N is said to be an unbounded conditional expectation of
(M, &) with respect to, N if

(i) the domain D(€) of £ is a t-invariant subspace of M containing ;
(ii) & is a projection; that is, it is hermitian (E(A)T = &(AY, forall A € D(€)) and
EX)=X, forall X e A;

(iii) E(ADX) = &(A)DX, forall A € D(&), forall X € NN RV (M), E(XOA) =
XOE(A), for all A€ D(E)NRY(N), for all X € A;

(iv) wg (E(A)) = we, (A), for all A€ D(€).

In particular, if D(€) = M, then & is said to be a conditional expectation of (M, &y) with respect
to, N.

For unbounded conditional expectations we have the following.

Lemma 4.2. Let & be an unbounded conditional expectation of (M, &) with respect to, N. Then,
E(A)X¢) = PyAXEy = E(A| M) Xé, VYAeD(E), VX e NNRY(UN). (4.1)
Proof. Forall A e D(é) and X, Y € /N RY( M), we have

(E(A)Xéo | YE&o) = (E(ADX)&0 | Yéo) = (EYTOAOX)E | &) = ((YTOAOX)E | o)

— (AX2 | Y&) = (AX | PaYts) = (PaAXE | Y2). “.2)

Hence, £(A)X{o = PyAXéy = E(A | N) X, for all A€ D(E), for all X € AN RY(M). O

Let € be the set of all unbounded conditional expectations of (L, &) with respect to,
N. Then € is an ordered set with the following order C:

E1C& iff D(&) CD(&),  &1(A) =& (A), YAeD(&). (4.3)

Theorem 4.3. There exists a maximal unbounded conditional expectation of (M, &) with respect to,
N, and it is denoted by & y.

Proof. We put
D(&) = {A € M; PaAl inre 0 € N ke o - (4.4)
Then, for any A € D(&y), there exists a unique map & such that

E0(A)XE) = PyAXE = E(A | N)XEy, VX e NNRY(M). (4.5)



International Journal of Mathematics and Mathematical Sciences 7

It is easily shown that & is an unbounded conditional expectation of (_#, &) with respect to,
N. Furthermore, &j is maximal in €. Indeed, let & € €. Take an arbitrary A € D(&). Then by
Lemma 4.2 we have

E(A)Xé = PyAXg = E(A| N)Xé, X e NNRY(M), (4.6)

which implies £(A)X&y € N[ yngv(ny)e0- Hence € C &g and &g is maximal in €. This completes
the proof. O

5. Existence of Conditional Expectations for Partial O*-Algebras

Let M be a self-adjoint partial O*-algebra containing I on @ in #, & € D be a strongly cyclic
and separating vector for M and N > I a partial O*-subalgebra of # such that

(N) (N RY ())& is dense in <€ 4,
(N1) A, (M) € D(N),
(N2) (NN RY(UM))&o is essentially self-adjoint for A,
(N3) Agoit(_/l!;,)'AgO*it = (M,), for all t € R, where A} is the modular operator for the
full Hilbert algebra ()’ &.

Lemma 5.1. It holds that D(& 4) = {A € M; Py A&y € N}

Proof. We put
D(&) = {A € M; PyAly € Néo). (5.1)
By Lemma 4.2, we have
PuAd = & (A € N (5.2)

for each A € D(& ). Hence, D(€ 4) € D(€). We show the converse inclusion. Since ¢y is
separating vector for , it follows that for any A € D(€), there exists a unique element £(A)
of N such that Py A¢y = £(A)é. Indeed, since € 4 is maximal in &, it is sufficient to show that
¢ is an unbounded conditional expectation of (U, &) with respect to, /. By assumption (Nj)
and [5, Proposition 2.3.5], we have

X is affiliated with von Neumann algebra ()" for each X € A, (5.3)
Ny = Ny (5.4)

Since M is self-adjoint and (W N RY (M))¢& is dense in H 4, it follows that (N N RY(M))¢ is
a reducing subspace for W, that is,

N(NNRY ())& C (NNRY(M))E = N, (5.5)
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which implies by assumption (N,) and [5, Theorem 7.4.4] that
PyeN,,  Pud(N)CDN). (5.6)

Furthermore, by (5.3) and (5.6), we have

Néo = (Ny)'éo, thatis, D= Doy, (5.7)
Let Sgo and Sy be the closures of the maps:

S Ao = Algy, A€M,

(5.8)
Sy B =By, Be (M),
By (5.3) we have
S, C Sgo. (5.9)
Takesaki proved in [1] that assumtion (N3 ) implies
P(Jvrw)rsgo C SgOP(ﬂ,/W)r (5.10)

and there exists a conditional expectation &” of the von Neumann algebra ((#,)’, &) with
respect to, (,,)".
By (5.6), (5.9), and (5.10), we have

E(AN = PuAtéy = PaSy, Ado = PaSy Ado
(5.11)
= S} PyAl = S} £(A)& = Spé(A)dy = £(A)

for each A € D(&), which implies by the separateness of ¢ that & is hermitian.
It is clear that £(X) = X, for all X € . Take arbitrary A € D(&) and X € /N LY ().
Since

(PA(XOA) | Yéo) = (PaAdo | XTY&) = (E(A) | XTY&) = (XOE(A)& | Y&o)  (5.12)

foreach Y € /N RY (M), it follows that XA € D(&) and E(XOA) = XOE(A). Furthermore,
since £ is hermitian, it follows that ACIX € D(€) and £(ADX) = E(A)OX foreach A € D(€)
and X € NN RY(UM). It is clear that we (E(A)) = we (A) for each A € D(&). Thus
¢ is an unbounded conditional expectation of (,¢y) with respect to, /. This completes
that proof. O
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By Lemma 5.1, we have the following.

Theorem 5.2. Let M be a self-adjoint partial O*-algebra containing I on D in H and let & € D be
a strongly cyclic and separating vector for M and suppose that A 3 I is a partial O*-subalgebra of
M satisfying (N), (N1), (N2), and (N3). Then there exists a conditional expectation of (M, &) with
respect to, NV if and only if P y_M& = Néo.

It is important to investigate the scale of the domain of an unbounded conditional
expectation. We consider the case of partial GW*-algebras.

Theorem 5.3. Let M be a partial GW*-algebra on D in H and let & € D be a strongly cyclic and
separating vector for M and suppose that N be a partial GW*-subalgebra of M satisfying (N), (N1),
(N2), and (N3).

Then, D(& 4) D linear span of {XOA; X € N, A € (M) s.t. XOA and XOE"(A) are
well defined} > linear span of (M,,)" and N.

In particular, if Np, is a partial GW*-algebra on P 4D, then & 4 is a conditional expectation
of (M, &) with respect to, N.

Proof. Let X € M, and A € (M) s.t. XOA and XOE"(A) are all defined. Then, it follows
since M is a partial GW*-subalgebra of _ that

Py (XOA)g = PaX™ Ay = XTPyAd = (XOE"(A))éo € N, (5.13)

which implies by Lemma 5.1 that XOA € D(& 4) and P4 (XOA)¢ = (XOE"(A))é. Suppose
that /p , is a partial GW*-algebra on ) 4.

By the result of Takesaki [1] there exists a unique conditional expectation £” of the von
Neumann algebra ()" such that & (A4)p ., = PyAPy for each A € (). Since M is a
partial GW*-algebra, for any X € / there is a net {A,} € (M) which converges strongly”
to X. Then

&"(Aap, € (M))p, = (W), (5.14)

and &"(A,)p, converges strongly” to P4 X[P4®. Therefore, we have P4 X[P,4® € . Hence,
X € D(& ) and & 4 is a conditional expectation of (M, ¢y) with respect to, /. This completes
the proof. O

Corollary 5.4. Let M be a partial EW*-algebra on D in H and let & € D be a strongly cyclic and
separating vector for M and suppose that N be a partial EW*-subalgebra of M satisfying (N,) and
(N3). Then,

D(& n) D linear span of My N and NMy. (5.15)

Proof. Since M, C R¥(h), it follows that AU/ N RY(M) DO Np, and so clearly (N) holds.
Furthermore, (N7) holds since /U;,@(,/U) = ,/Ubi(,/l!) C @(,/U).This completes the proof. O
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We consider the case of the well-known Segal LP-space defined by 7.

Example 5.5. Let My be a von Neumann algebra on a Hilbert space # with a faithful finite
trace 7. We denote by L”(7) the Banach space completion of #, with respect to, the norm

IAll, = (1AP)'?, A€ Mo (5.16)
Then
Mo=L"(t) CLP(t) c L*(t) c Li(r) c L(1), 1<q<2<p<co. (5.17)
Let 2 < p < oo. Here we define a *-representation o of L”(7) by
r(X)A=XA, XelP(r), AeL*®(1). (5.18)
Then t = r(LP(1)) is a partial EW*-algebra on L*(7) in L?(7) with M}, = or(L* (7)) which is
integrable, that is, o (Xt) = o (X)* for each X € LP(r). Furthremore, or(LP (7)) has a strongly

cyclic and separating vector ¢y = A (I), where I is an identity operator on . Let /Ny be a von
Neumann subalgebra of _#y. We put

N ={x(X); X € IP(r), #(X)A(I) € LP(T[Mp)}, 2<p<oo. (5.19)

Then _V is an integrable partial EW*-subalgebra of / satisfying (N>) and (N3) and P y_f¢) =
N&p. By Theorem 5.2, there exists a conditional expectation of (, &).
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