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Introduction

A planar harmonic mapping in a simply connected domain D ⊂ C is a complex-valued
function f = u + iv defined in D for which both u and v are real harmonic in D, that is,
Δf = 4fzz = 0, where Δ represents the Laplacian operator. The mapping f can be written as a
sum of an analytic and antianalytic functions, that is, f = h + g. We refer to [1] and the book
of Duren [2] for many interesting results on planar harmonic mappings.

We note that the composition f ◦φ of a harmonic function f with an analytic function φ
is harmonic, but this is not true for the function φ◦f , that is, an analytic function of a harmonic
function need not be harmonic. It is known that [2, Theorem 2.4] the only univalent harmonic
mappings of C onto C are the affine mappings g(z) = βz + γz + η(|β|/= |γ |). Motivated by the
work of [3], we say that F is an affine harmonic mapping of a harmonic mapping of f if and
only if F has the form

F := Fα
(
f
)
= f + αf (1)
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for some α ∈ C with |α| < 1. Obviously, an affine transformation applied to a harmonic
mapping is again harmonic. The affine harmonic mappings Fα(f) and f share many
properties in common (see [4]).

LetH denote the class of analytic functions in the unit disk D = {z ∈ C : |z| < 1}, and
A0 = {h ∈ H : h(0) = 0}. Also, let S0 be the subclass of A0 consisting of functions that are
univalent in D. For a given φ ∈ S0, we will denote by A0(φ) and S0(φ) the subsets defined
by {h ∈ A0 : h ≺ φ} and {h ∈ S0 : h ≺ φ} ∪ {0}, respectively. From now onwards, we use
the notation f ≺ g, or, f(z) ≺ g(z) in D for analytic functions f and g on D to mean the
subordination, namely there exists ω ∈ B0 such that f(z) = g(ω(z)). Here B0 denotes the
class of analytic maps ψ of the unit disk D into itself with the normalization ψ(0) = 0. We
remark that if g is univalent in D, then the subordination f ≺ g is equivalent to the condition
that f(0) = g(0) and f(D) ⊂ g(D). This fact will be used in our investigation. Moreover, the
special choices of φ have been the subjects of extensive studies; we suggest that the reader to
consult the books of Pommerenke [5], Duren [6] and of Miller and Mocanu [7] for general
back ground material.

We denote by Aa,b the class of functions f ∈ H with f(0) = (b − a)/2, and −a <
Re f(z) < b for z ∈ D. We note that if a > 0, then each function f ∈ Aa,a obviously satisfy the
normalization condition f(0) = 0. A function f ∈ H is called a Bloch function if

∥∥f
∥∥
B = sup

z∈D

(
1 − |z|2

)∣∣f ′(z)
∣∣ <∞. (2)

Then the set of all Bloch functions forms a complex Banach space Bwith the norm ‖ · ‖ given
by

∥∥f
∥∥ =
∣∣f(0)

∣∣ +
∥∥f
∥∥
B, (3)

see [8]. Every bounded function inH is Bloch, but there are unbounded Bloch functions, as
can be seen also from the following result which shows thatAa,b ⊂ B.

Proposition 1. If f ∈ Aa,b, then ‖f‖B ≤ 2(b+a)/π. The constant 2(b+a)/π is sharp. In particular,
if f ∈ Aa,a then ‖f‖B ≤ 4a/π and the constant 4a/π is sharp.

Proof. Let

P(z) =
b + a
iπ

log
(

1 + z
1 − z

)
+
b − a

2
, z ∈ D. (4)

Then P(0) = (b − a)/2,

P ′(z) =
2(b + a)
iπ(1 − z2)

(5)

and P maps D univalently onto the vertical strip {w : −a < Re w < b}, and ‖P‖B = 2(b+a)/π .
Consequently, if f ∈ Aa,b, then we have f ≺ P and so, there exists a Schwarz function ω ∈ B0
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such that f(z) = P(ω(z)). Thus, as ω(0) = 0, the Schwarz-Pick lemma gives that

(
1 − |z|2

)∣
∣f ′(z)

∣
∣ =
(

1 − |z|2
)∣
∣ω′(z)

∣
∣
∣
∣P ′(ω(z))

∣
∣ ≤
(

1 − |ω|2
)∣
∣P ′(ω)

∣
∣ ≤ ‖P‖B (6)

so that ‖f‖B ≤ 2(b + a)/π, with equality for f(z) = Pα(z), where

Pα(z) =
b + a
iπ

log

(
1 + zeiα

1 − zeiα

)

+
b − a

2
, α ∈ R. (7)

It may be interesting to remark that the function f(z) =
∑∞

n=1 z
2n belongs to B [9,

Theorem 1] is a good example of a Bloch function which is not in Hp-space for any p. Bloch
functions are intimately close with univalent functions (see [5]).

In order to state our main results, we introduce some basics. For given a, b > 0, let Sa,b
be the class of functions f ∈ A0 and −a < Re f(z) < b for z ∈ D. Now, we define

Sa,b,u =
{
f : f ∈ Sa,b and f is univalent

}
∪ {0}. (8)

We note that each function in Sa,b has the normalization f(0) = 0. For any fixed z0 ∈ D \ {0}
and λ ∈ C with 0 < |λ| < 1, we consider the following sets:

Vφ,H(z0) =
{
Fα
(
f
)
(z0) : f ∈ S0

(
φ
)}
,

Vφ,H(z0, λ) =
{
Fα
(
f
)
(z0) : f ∈ A0

(
φ
)
, f ′(0) = λφ′(0)

}
,

VH,Sa,b,u(z0) =
{
Fα
(
f
)
(z0) : f ∈ Sa,b,u

}
,

VH,Sa,b(z0, λ) =
{
Fα
(
f
)
(z0) : f ′(0) = λ

b + a
iπ

(
1 − e−2πai/(b+a)

)
, f ∈ Sa,b

}
.

(9)

We now recall the definition of subordination for the harmonic case from [10, page
162]. Let f and F be two harmonic functions defined on D. We say f is subordinate to F,
denoted by f ≺ F, if f(z) = F(ω(z)), where ω ∈ B0. Obviously, if f1 and f2 are two harmonic
functions in D, then

f1 ≺ f2 ⇐⇒ Fα
(
f1
)
≺ Fα

(
f2
)
. (10)

Here we see that α is the analytic dilatation for both Fα(f1) and Fα(f2).
For each fixed z0 ∈ D, using extreme function theory, it has been shown by Grunsky

(see, e. g., Duren [6, Theorem 10.6]) that the region of variability of

VS(z0) =
{

log
f(z0)
z0

: f ∈ S
}

(11)

is precisely a closed disk, where S = {f ∈ S0:f ′(0) = 1}. Recently, by using the
Herglotz representation formula for analytic functions, many authors have discussed region
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of variability problems for a number of classical subclasses of univalent and analytic functions
in the unit disk D (see [11, 12] and the references therein). Because the class of harmonic
univalent mappings includes the class of conformal mappings, it is natural to study the
class of harmonic mappings. In the following, we will use the method of subordination and
determine the regions of variability for Vφ,H(z0), Vφ,H(z0, λ), VH,Sa,b,u(z0) and VH,Sa,b(z0, λ),
respectively.

Theorem 1. The boundary ∂Vφ,H(z0) of Vφ,H(z0) is the Jordan curve given by

(−π,π] 
 θ �−→ φ
(
eiθz0

)
+ αφ

(
eiθz0

)
. (12)

Proof. We define Vφ(z0) = {f(z0):f ∈ S0(φ)}. In order to determine the set Vφ(z0), we first
recall that each f ∈ S0(φ) \ {0} can be written as f(z) = φ(ω(z)) for some ω ∈ B0 \ {0}. By
the Riemann mapping theorem, ω = φ−1 ◦ f is univalent and analytic in D with ω(0) = 0.
It follows from the classical Schwarz lemma that for any ω ∈ B0, we have |ω(z)| ≤ |z| in D.
Because, in our situation ω is also univalent in D, we easily show that the region of variability

V B(z0) = {ω(z0) : ω ∈ (B0 ∩ S0) ∪ {0}} (13)

coincides with the set {z:|z| ≤ |z0|}. Hence the region of variability Vφ(z0) is precisely the
set {φ(z):|z| ≤ |z0|}. We remark that Vφ(z0) depends only on |z0|, because S0 is preserved
under rotation and therefore, we may assume that 0 < z0 < 1. Finally, the region of variability
Vφ,H(z0) follows from Vφ(z0). The proof of this theorem is complete.

There are many choices for φ for which Theorem 1 is applicable. For example, if we
choose φ to be

φ(z) =
(

1 + z
1 − z

)β
− 1, (14)

for some 0 < β ≤ 2, then we have following result from Theorem 1.

Corollary 1. The boundary ∂Vφ0,H(z0) of Vφ0,H(z0) is the Jordan curve given by

(−π,π] 
 θ �−→
(

1 + eiθz0

1 − eiθz0

)β

+ α

(
1 + eiθz0

1 − eiθz0

)β

− 1 − α. (15)

Theorem 2. The boundary ∂Vφ,H(z0, λ) of Vφ,H(z0, λ) is the Jordan curve given by

(−π,π] 
 θ �−→ φ
(
z0δ
(
eiθz0, λ

))
+ α φ(z0δ(eiθz0, λ)), (16)

where

δ(cz, λ) =
cz + λ

1 + czλ

(
c ∈ D

)
. (17)
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Proof. Let f ∈ A0 such that f ≺ φ for some φ ∈ S0. Because f ≺ φ, there exists a Schwarz
function ω = φ−1 ◦ f ∈ B0 with ω′(0) = f ′(0)/φ′(0) = λ, where |λ| ≤ 1. Therefore, for any fixed
z0 ∈ D \ {0} and λ ∈ C with 0 < |λ| ≤ 1, it is natural to consider the set

Vφ(z0, λ) =
{
f(z0) : f ∈ A0

(
φ
)
, f ′(0) = λφ′(0)

}
. (18)

First, we determine Vφ(z0, λ). Then the determination of the set Vφ,H(z0, λ) follows from
Vφ(z0, λ). Now, we define

Fω(z) =
ω(z)/z − λ

1 −
(
λω(z)/z

) , i.e., ω(z) =
z(Fω(z) + λ)

1 + Fω(z)λ
. (19)

We observe that Fω ∈ B0. By the Schwarz lemma, we have |Fω(z)| ≤ |z|. If we set

Bλ0 =
{
Fω : ω ∈ B0, ω

′(0) = λ
}

(20)

then the region of variability {ω(z0):ω ∈ Bλ0} coincides with the set {z:|z| ≤ |z0|}. It follows
from the two expressions in (19) that Vφ(z0, λ) coincides with the set

{
φ(z0δ(z, λ)) : |z| ≤ |z0|, where δ(z, λ) =

z + λ

1 + zλ

}
. (21)

The proof of this theorem is complete.

The case λ = 0 of Theorem 2 gives the following result.

Corollary 2. The boundary ∂Vφ,H(z0, 0) of Vφ,H(z0, 0) is the Jordan curve given by

(−π,π] 
 θ �−→ φ
(
z2

0e
iθ
)
+ α φ(z2

0e
iθz0). (22)

If φ0(z) is given by (14) for some 0 < β ≤ 2, then φ′0(0) = 2β and Vφ0,H(z0, λ) reduces to

Vφ0,H(z0, λ) =
{
Fα
(
f
)
(z0) : f ∈ A0

(
φ0
)
, f ′(0) = 2βλ

}
(23)

and the corresponding ω(z) in the proof of the theorem will be precisely of the form

ω(z) =

(
1 + f(z)

)1/β − 1
(
1 + f(z)

)1/β + 1
. (24)

This observation gives the following corollary.
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Figure 1

Corollary 3. The boundary ∂Vφ0,H(z0, λ) of Vφ0,H(z0, λ) is the Jordan curve given by

(−π,π] 
 θ �−→
(

1 + z0δ(eiθz0, λ)
1 − z0δ(eiθz0, λ)

)β

+ α

(
1 + z0δ(eiθz0, λ)
1 − z0δ(eiθz0, λ)

)β

− 1 − α, (25)

where φ0(z) and δ(cz, λ) are given by (14) and (17), respectively.

The boundary ∂Vφ0,H(z0, 0) of Vφ0,H(z0, 0) is the Jordan curve given by

(−π,π] 
 θ �−→
(

1 + z2
0e

iθ

1 − z2
0e

iθ

)β

+ α

(
1 + z2

0e
iθ

1 − z2
0e

iθ

)β

− 1 − α. (26)

Theorem 3. The boundary ∂VH,Sa,b,u(z0) of VH,Sa,b,u(z0) is the Jordan curve given by

(−π,π] 
 θ �−→ a + b
iπ

⎡

⎣log

(
1 − z0e

iθe−2πai/(a+b)

1 − z0eiθ

)

− α log

(
1 − z0e

iθe−2πai/(a+b)

1 − z0eiθ

)⎤

⎦. (27)

Proof. We define VSa,b,u(z0) = {f(z0) : f ∈ Sa,b,u}. It suffices to determine VSa,b,u(z0) as the
region of variability VH,Sa,b,u(z0) follows from VSa,b,u(z0). In order to do this, first we consider

T(z) =
a + b
iπ

logw(z), w(z) =
1 − ze−2πai/(a+b)

1 − z . (28)



International Journal of Mathematics and Mathematical Sciences 7

−1

1

2

3

2 4 6 8

(a)

−0.5

0.5

1

−1 1 2 3

(b)

−60

−40

−20

20

40

60

−75 −50 −25 25 50 75

(c)

Figure 2

−0.6

−0.4

−0.2

0.2

0.4

−0.5 −0.25 0.25 0.5 0.75 1

(a)

−0.3

−0.2

−0.1

0.1

0.2

−0.2 0.2 0.4

(b)

−30

−20

−10

10

20

30

−30 −20 −10 10 20 30

(c)

Figure 3



8 International Journal of Mathematics and Mathematical Sciences

−1.5

−1

−0.5

0.5

1

1.5

−0.5 0.5 1 1.5

(a)

−0.4

−0.2

0.2

0.4

−0.2 −0.1 0.1 0.2 0.3

(b)

−10

−5

5

10

−7.5 −5 −2.5 2.5 5 7.5

(c)

Figure 4

Then T(0) = 0. We see that the Möbius transformation w(z) maps the open unit disk D

conformally onto the half-plane

{
w = u + iv : u sin

( πa

a + b

)
+ v cos

( πa

a + b

)
> 0
}

(29)

and so, we easily obtain that T maps D conformally onto the vertical strip {w : −a <
Re w < b}. This observation shows that T ∈ Sa,b,u and is in fact an extremal function for this
class.

Next, we choose an arbitrary f ∈ Sa,b,u \ {0}. Then we have f ≺ T and so, there exists a
Schwarz function ω ∈ B0 \{0} such that f(z) = T(ω(z)). Note that both f and T are univalent
in D and so, ω = T−1 ◦ f is univalent in D with ω(0) = 0. It follows from the classical Schwarz
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lemma that |ω(z)| ≤ |z| in D. Because ω is also univalent in D, we obtain that the region of
variability of

Vω,u(z0) = {ω(z0) : ω ∈ (B0 ∩ S0) ∪ {0}} (30)

coincides with the set {z : |z| ≤ |z0|}. Hence the region of variability VSa,b,u(z0) coincides with
the set

{
a + b
iπ

log

(
1 − ze−2πai/(a+b)

1 − z

)

: |z| ≤ |z0|
}

. (31)

The proof of Theorem 3 is complete.
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Theorem 4. The boundary ∂VH,Sa,b(z0, λ) of VH,Sa,b(z0, λ) is the Jordan curve given by

(−π,π] 
 θ �−→ a+b
iπ

[

log

(
1−z0δ

(
z0e

iθ, λ
)
e−2πai/(a+b)

1−z0δ
(
z0eiθ, λ

)

)

−α log

(
1 − z0δ

(
z0e

iθ, λ
)
e−2πai/(a+b)

1 − z0δ
(
z0eiθ, λ

)

)⎤

⎦,

(32)

where δ(cz, λ) is given by (17).
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Proof. For convenience, we let p = (a + b)/(iπ) and q = e−2πai/(a+b) and consider

VSa,b(z0, λ) =
{
f(z0) : f ∈ Sa,b, f ′(0) = p

(
1 − q

)
λ
}
. (33)

As before, it suffices to prove the theorem for VSa,b(z0, λ). Let f ∈ Sa,b with f ′(0) = p(1 − q)λ.
Define

g(z) =
f(z)
p

, h(z) = ez, φ(z) =
z − 1
z − q . (34)

Then, by the mapping properties of these functions, it can be easily seen that the composed
mapping

ωf(z) =
(
φ ◦ h ◦ g

)
(z) =

ef(z)/p − 1
ef(z)/p − q

(35)
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is analytic in D and maps unit disk D into D such that ωf(0) = 0 and ω′
f
(0) = λ. Next, we

introduce Qf : D → D by

Qf(z) =
ωf(z)/z − λ

1 − λ
(
ωf(z)/z

) . (36)

Clearly, Qf ∈ B0. If we let

Sa,b,ωf ,λ =
{
Qf : ωf ∈ B0, ω

′
f(0) = λ

}
,

VQf (z0) =
{
ωf(z0) : ωf ∈ Sa,b,ωf ,λ

}
,

(37)
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Table 1: Subordination of harmonic mappings.

Figure z0 α β a = b
1 0.0928916 + 0.0656754i 0.343308 + 0.551846i 1.25961 58.9326

2 −0.495149 − 0.48309i 0.377474 + 0.363979i 1.14901 81.0473

3 −0.210195 − 0.485306i 0.126883 − 0.247013i 0.57185 45.4015

4 −0.117278 + 0.329628i −0.183041 + 0.337725i 1.44013 21.5077

5 0.0370762 + 0.00949962i 0.0147993 − 0.00392657i 1.42167 59.4649

6 0.312303 + 0.721208i −0.524227 + 0.716229i 0.187546 82.7409

7 0.315822 − 0.788402i 0.0532365 − 0.057638i 0.276943 71.5991

8 −0.660899 + 0.013848i −0.0571237 − 0.691304i 0.234536 31.2565

then, by the Schwarz lemma, we have |Qf(z)| ≤ |z|. The region of variability VQf (z0) coincides
with the set {z : |z| ≤ |z0|}. Equation (36) implies that

ωf(z) =
z
(
Qf(z) + λ

)

1 +Qf(z)λ
. (38)

It follows from (35) and (38) that VSa,b(z0, λ) coincides with the set

{
p log

1 − z0δ(z, λ)q
1 − z0δ(z, λ)

: |z| ≤ |z0|, where δ(z, λ) =
z + λ

1 + zλ

}
. (39)

The proof of Theorem 4 is complete.

Geometric View of the Jordan Curves: (15), (26), and (27)

Table 1 gives the list of these parameter values corresponding to Figures 1–8 which concern
the regions of variability for ∂Vφ0,H(z0), ∂Vφ0,H(z0, 0), and ∂VH,Sa,a,u(z0), respectively.

Using Mathematica (see [13]), we describe the boundary sets ∂Vφ0,H(z0), ∂Vφ0,H(z0, 0),
and ∂VH,Sa,a,u(z0) described by the Jordan curve given by (15), (26), and (27), respectively. In
the program below, “z0 stands for z0,” “[Alpha] for α,” and “[Beta] for β.’’

In Table 1, the parameter values of z0 and α are common for all the three cases, namely,
∂Vφ0,H(z0), ∂Vφ0,H(z0, 0), and ∂VH,Sa,a,u(z0), whereas the β value is applicable only for the first
two cases and the a = b values listed in the last column is meant only for the last case.
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(∗ Geometric view the main Theorem.... ∗)
Remove["Global‘∗"];
z0 = Random [] Exp[I Random[Real, {-Pi, Pi}]]
\[Alpha] = Random[]Exp[I Random[Real, {-Pi, Pi}]]
\[Beta] = Random[Real, {0, 2}]
a = Random[Real, {0,100}]
Print["z0=", z0]
Print["\[Alpha]=", \[Alpha]]
Print["\[Beta]=", \[Beta]]
Print["a", a]

myf1[the , \[Alpha] , \[Beta] , z0 ]:=
((1+Exp[I∗the]∗z0)/(1-Exp[I∗the]∗z0))̂ \[Beta] +
\[Alpha]∗Conjugate[((1+Exp[I∗the]∗z0)/(1-Exp[I∗the]∗z0))̂ \[Beta]]
- 1-\[Alpha];

myf2[the , \[Alpha] , \[Beta] ,z0 ]:=
((1+Exp[I∗the]∗z0∗z0)/(1-Exp[I∗the]∗z0∗z0))̂ \[Beta]+
\[Alpha]∗Conjugate[((1+Exp[I∗the]∗z0∗z0)/(1-Exp[I∗the]∗z0∗z0))̂ \[Beta]]
-1-\[Alpha];

myf3[the , \[Alpha] , a ,z0 ]:=
(2a)/(I∗Pi)(Log((1-Exp[I∗the]∗Exp[-I∗Pi]∗z0)/(1-Exp[I∗the]∗z0))-
\[Alpha]∗Conjugate[Log((1-Exp[I∗the]∗Exp[-I∗Pi]∗z0)/(1-Exp[I∗the]∗z0))])

image1 = ParametricPlot[{Re[myf1[the, \[Alpha], \[Beta], z0]],
Im[myf1[the, \[Alpha], \[Beta], z0]]}, {the, -Pi, Pi},
AspectRatio -> Automatic,DisplayFunction -> $DisplayFunction,
TextStyle -> {FontFamily -> "Times", FontSize -> 14},
AxesStyle -> {Thickness[0.0035]}];

image2 =ParametricPlot[{Re[myf2[the, \[Alpha], \[Beta], z0]],
Im[myf2[the, \[Alpha], \[Beta], z0]]}, {the, -Pi, Pi},
AspectRatio -> Automatic,DisplayFunction -> $DisplayFunction,
TextStyle -> {FontFamily -> "Times", FontSize -> 14},
AxesStyle -> {Thickness[0.0035]}];

image3 =ParametricPlot[{Re[myf3[the, \[Alpha], a, z0]],
Im[myf3[the, \[Alpha], a, z0]]}, {the, -Pi, Pi},
AspectRatio -> Automatic,DisplayFunction -> $DisplayFunction,
TextStyle -> {FontFamily -> "Times", FontSize -> 14},
AxesStyle -> {Thickness[0.0035]}];

Clear[the, z0, \[Alpha], \[Beta], a, myf1, myf2, myf3];
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