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1. Introduction

It is well known that Caristi’s fixed point theorem [1] is equivalent to Ekland variational
principle [2], which is nowadays is an important tool in nonlinear analysis. Most recently,
many authors studied and generalized Caristi’s fixed point theorem to various directions.
For example, see [3-6] and references therein.

Using the concept of Hausdorff metric, Nadler Jr. [7] has proved multivalued version
of the Banach contraction principle which states that each closed bounded valued contraction
map on a complete metric space, has a fixed point. Recently, Bae [4] introduced a notion
of multivalued weakly contractive maps and applying generalized Caristi’s fixed point
theorems he proved several fixed point results for such maps in the setting of metric and
Banach spaces. Many authors have been using the Hausdorff metric to obtain fixed point
results for multivalued maps on metric spaces, but, in fact for most cases the existence part
of the results can be proved without using the concept of Hausdorff metric.

Recently, using the concept of w-distance [8], Suzuki and Takahashi [9] introduced a
notion of multivalued weakly contractive(in short, w-contractive) maps and improved the
Nadler’s fixed point result without using the concept of Hausdorff metric. Most recently,
Latif [10] generalized the fixed point result of Suzuki and Takahashi [9, Theorem 1]. Some
interesting examples and fixed point results concerning w-distance can be found in [6, 11-15]
and references therein.

In this paper, introducing a notion of multivalued weakly w-contractive maps, we
prove some fixed point results for self and nonself multivalued maps. Our results either
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improve or generalize the corresponding results due to Latif [10], Bae [4], Mizoguchi and
Takahashi [16], Suzuki and Takahashi [9], Husain and Latif [17], Kaneko [18] and many
others.

2. Preliminaries

Let X be a metric space with metric d. We use 2X to denote the collection of all nonempty
subsets of X and CI(X) for the collection of all nonempty closed subsets of X. Recall that
a real-valued function ¢ defined on X is said to be lower (upper) semicontinuous if for any
sequence {x,} C X with x, — x € X imply that ¢(x) < liminf,_ @(x,) (p(x) >
limsup, _, _ ¢(xx)).

Introducing the following notion of w—distance, Kada et al. [8] improved the Caristi’s
fixed point theorem, Ekland variational principle, and Takahashi existence theorem.

A function w : X x X — [0, 00) is called a w-distance on X if it satisfies the following
forany x, y, z € X:

(w1) w(x, z) Sw(x,y) + w(y, z);
(w7) amap w(x,-) : X — [0, o) is lower semicontinuous;
(ws) for any € > 0, there exists 6 > 0 such that w(z,x) < 6 and w(z,y) <6

imply d(x,y) <e.

Note that, in general for x,y € X, w(x,y) #w(y, x) and not either of the implications
w(x,y) =0 © x = y necessarily hold. Clearly, the metric d is a w-distance on X. Let (Y, || - ||)
be a normed space. Then the functions wy,w; : ¥ x Y — [0, 00) defined by wi(x,v) = ||yl
and wy(x,y) = ||x|| + ||ly|| for all x, y € Y are w-distances [8].

Let M be a nonempty subset of X. A multivalued map T : M — 2X is called w-
contractive [9] if there exist a w-distance w on X and a constant h € (0,1) such that for any
x,y € X and u € T(x) there is v € T(y) satisfying

w(u,v) <hw(x,y). (2.1)

In particular, if we take w = d, then w-contractive map is a contractive type map [17].
We say T is weakly w-contractive if there exists a w-distance w on X such that for any
x,y € X and u € T(x) there is v € T(y) with

w(u, U) < (U(.X', ]/) - (P(w(x/ ]/))/ (22)

where ¢ is a function from [0, 00) to [0, o0) such that ¢ is positive on (0, o0) and ¢(0) = 0.

In particular, if we take ¢(t) = (1 — h)t for a constant h with 0 < k < 1, then a weakly
w-contractive map is w-contractive. If we define k(t) =1 — ¢(t)/t for t > 0 and k(0) = 0, then
k is a function from (0, o) to [0,1) with limsup, _, ,.k(r) <1, for every t € [0, o). Also we get

w(u,v) <k(wx,y))w(x,y), (2.3)

that is, the weakly w-contractive map is generalized w-contraction [10].
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We say a multivalued map T : M — 2% is w-inward if for each x € M, T(x) C
w-Ip(x), where w-Ip;(x) is the w-inward set of M at x, which consists all the elements z € X
such that either z = x or there exists y € M with y #x and w(x, z) = w(x,y) + w(y, z).

In particular, if we take w = d, then w-inward set is known as metrically inward
set [4].

A point x € M is called a fixed point of T : M — 2% if x € T(x) and the set of all fixed
points of T is denoted by Fix(T).

In the sequel, otherwise specified, we will assume that ¢ : X — [0,00) is lower
semicontinuous function, ¢ : [0,00) — [0, 0) is positive function on (0, o0) and ¢(0) = 0
and w is a w-distance on X.

Using the concept of w-distance, Kada et al. [8] have generalized Caristi’s fixed point
theorem as follows.

Theorem 2.1. Let (X, d) be a complete metric space. Let f : X — X be a map such that for each
x€eX,

p(f(x) +w(x, f(x)) < g(x). (2.4)

Then, there exists x, € X such that f(x,) = x, and w(x,, x,) = 0.

Now, we state generalized Caristi’s fixed point theorems which are variant to the
results of Bae [4, Theorem 2.1 and Corollary 2.5].

Theorem 2.2. Let (X, d) be a complete metric space. Let f : X — X be a map such that for each
x € X,

w(x, f(x)) <max {c(¢(x)), c(¢(f(x)) Hgx) -¢(f(x))), (2.5)

where ¢ : [0,00) — (0, 00) is an upper semicontinuous function from the right. Then, f has a fixed
point xo € X such that w(xy, x) = 0.

Theorem 2.3. Let (X,d) be a complete metric space. Let ¢ : [0,00) — [0, 00) be lower semicon-
tinuous function such that ¢(t) > 0 for t > 0 and

t
lim sup—— < co. 2.6
" (D 20

Let f : X — X be a map such that for each x € X, w(x, f(x)) < ¢(x) and
p(w(x, f(x))) < g(x) = g(f(x)). (2.7)

Then, f has a fixed point xo € X such that w(xg, xg) = 0.

Suzuki and Takahashi [9] have proved the following fixed point result which is an
improved version of the multivalued contraction principle due to Nadler Jr. [7].

Theorem 2.4. Let (X, d) be a complete metric space. Then each multivalued w-contractive map T :
X — CI(X) has a fixed point.
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3. Main Results

Without using the Hausdorff metricc we prove the following fixed point result for
multivalued self map.

Theorem 3.1. Let (X,d) be a complete metric space and let T : X — CU(X) be a weakly w-
contractive map for which ¢ is lower semicontinuous from the right and limsup, _, . (t/¢(t)) < oo.
Then T has a fixed point.

Proof. Let G = {(x,y) : x € X,y € T(x)} be the graph of T. Clearly, G is a closed subset of
X x X. Define a metric p on G by

p((x,y), (u,v)) = max {d(x,u),d(y,v)}. (3.1)

Then (G, p) is a complete metric space and p is w-distance on G. Now, define ¢ : G — [0, o)
by ¢(x,y) = w(x,y) =d(x,y) forall (x,y) € Gand ¢ : [0,00) — [0, ) by

%, ift >0,
imsup( — ), ift=0.
o (D)

Then ¢ is lower semicontinuous and c is upper semicontinuous from the right because ¢ is
lower semicontinuous from the right. Definep : G x G — [0, o) by

p((x,y), (u,v)) = max {¢(x,y),p((x, ), (u,0))}. (3.3)

Then p is a w-distance on G (see [14, page 47]. Now, suppose Fix(T)=2. Then for each (x, y) €
G, we have x #y. Since y € T(x) there is z € T(y) such that

w(y,z) Sw(x,y) —p(w(x,y)). (3.4)

Since (x,y), (y,z) € G, we have

p((x,y),(y,2) =p((x,y),(y,2) =w(x,y) =¢xy), (3.5)
also, note that
(), (4,2)) = w(x, ) < % [w(x,y) - w(y,2)]. (3.6)

Define a function f : G — Gby f(x,y) = (y, z), then we get

p((x,y), f(x,y) < c(px ) [wlxy) —¢(flxy))] (3.7)
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Thus, by Theorem 2.2, f has a fixed point, which is impossible. Hence, T must has a fixed
point. This completes the proof. O

As a consequence, we obtain the following recent fixed point result of Latif [10,
Theorem 2.2].

Corollary 3.2. Let (X, d) be a complete metric space. Let T : X — CI(X) be a map such that for any
x,y € X and u € T(x) there is v € T(y) with

w(u,v) <k(wx,y))w(x,y), (3.8)

where k is function from [0, o) to [0,1) with limsup, _ ,.k(r) < 1, for every t € [0, c0). Then T has
a fixed point.

Proof. Define ¢ : [0,00) — [0, 00) by

p(t) = min {¢(1 - k()), liminfr(1-k(r))} V0. (3.9)

Then ¢(t) > 0 for all t > 0, ¢ is lower semicontinuous from the right (see [19]). Also note that

t

lirtrlsz)?pm < oo, (3.10)
and for each x,y € X, we have
p(w(x,) < wxy)(1-k(w(x ). (3.11)
It follows from (3.8) and (3.11) that
w(u,v) < w(x,y) - p(wlx,y)). (3.12)

Thus T is weakly w-contractive map for which ¢ is lower semicontinuous from the right and
limsup,_, . (t/¢(t)) < co. Therefore, by Theorem 3.1, T has a fixed point. O

Remark 3.3. (a) Theorem 3.1 generalizes Theorem 2.4 of Suzuki and Takahashi [9]. Indeed,
consider ¢p(w(x,y)) = (1 - h)w(x,y) for a constant h with 0 < h < 1. Theorem 3.1 also
generalizes and improves the fixed point result of Bae [4, Theorem 3.1] .
(b) Corollary 3.2 generalizes fixed point result of Husain and Latif [17, Theorem 2.3]
and improves [16, Theorem 5]. Moreover, it improves and generalizes [18, Theorem 1].
Without using the Hausdorff metric, we prove the following fixed point result for
nonself multivalued maps with respect to w-distance.

Theorem 3.4. Let M be a closed subset of a complete metric space (X, d) and let T : M — CI(X)
be a weakly w-contractive map for which ¢ is lower semicontinuous and limsup, _ . (t/¢(t)) < oo.
Then T has a fixed point provided T is w-inward on M.
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Proof. Let G, p, p, and ¢ be the same as in the proof of Theorem 3.1. Suppose Fix(T) = @.
Then, for each (x,y) € G we have x #y. Since y € T(x) C w-Ip(x) there exists u € M with
u#x and

w(x,y) =w(x,u) +w(,y). (3.13)
Since the map T is weakly w-contractive, there exists v € T(u) such that
w(y,v) <w(x,u) - p(w(x,u), (3.14)

where ¢ is lower semicontinuous and limsup, _, . (t/¢(t)) < co. From (3.13) and (3.14), we
get

p(w(x,u) < wlx,u) - w(y,v) =wxy) - [wwy) +wly,0)]. (3.15)
Thus,
p(w(x,u) < w(x,y) - w(,0). (3.16)
Since (x,y), (u,v) € G, we have
p((x,y), (,0)) = max {w(x,u),w(y,v)}, (3.17)
and hence, we get
p((x,y), (u,v)) = w(x,u) <w(x,y) = ¢x,y). (3.18)
Now, define a function f : G — G by f(x,y) = (1,v). Then from (3.18) we get
p((x, ), f(x,y) <¢xy), (3.19)
and using (3.16), we obtain

p(p((x,y), f(x,y)) <p(xy) —¢(fx,y)). (3.20)

Thus by Theorem 2.3, f has a fixed point, which is impossible. Hence, it follows that T must
has a fixed point. O

Using the same method as in the proof of Corollary 3.2, we can obtain the following
fixed point result for nonself generalized w-contractions.

Corollary 3.5. Let M be a closed subset of a complete metric space (X,d) and let T : M — CI(X)
be a map satisfying inequality (3.8) for which k : [0,00) — [0, 1) is upper semicontinuous. Then T
has a fixed point provided T is w-inward on M.
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Remark 3.6. (a) Our Theorem 3.4 and Corollary 3.5 improve the results of Bae [4, Theorem 3.3
and Corollary 3.4], respectively.

(b) The analogue of all the results of this section can be established with respect to
T-distance [20].
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