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1. Preliminaries and Main Results

A planar harmonic mapping in a simply connected domain D ⊂ C is a complex-valued
function f = u + iv defined inD such that u and v are real harmonic inD, that is, Δu = 0 and
Δv = 0. Here Δ represents the complex Laplacian operator

Δ = 4
∂2

∂z∂z
:=

∂2

∂x2
+

∂2

∂y2
. (1.1)

The mapping f has a canonical decomposition f = h + g, where h and g are analytic
(holomorphic) in D [1, 2]. Lewy’s theorem tells us that a harmonic mapping f is locally
univalent in D if and only if its Jacobian Jf(z)/= 0 for each z ∈ D [3].

A four-time continuously differentiable complex-valued function F = u + iv in D is
biharmonic if and only if the Laplacian of F is harmonic. Note that ΔF is harmonic in D if F
satisfies the biharmonic equation Δ(ΔF) = 0.
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It is a simple exercise to see that every biharmonic mapping F in a simply connected
domain D has the representation

F = |z|2G +K, (1.2)

where G and K are some complex-valued harmonic functions in D. Recently, the class of
biharmonic mappings has been studied by a number of authors [4–8]. It is known that a
harmonic function of an analytic function is harmonic, but an analytic function of a harmonic
function needs not be harmonic. Moreover, the only univalent harmonic mappings of C onto
C are the affine mappings g(z) = βz + γz + η, where |β|/= |γ | (see [2, Section 2.4]).

We denote the class of analytic functions in the unit disk D = {z ∈ C : |z| < 1} by
H, and we think of H as a topological vector space endowed with the topology of uniform
convergence over compact subsets of D.

Definition 1.1. A function F is said to be an affine harmonic mapping of f ∈ H if and only if

F := Fα

(
f
)
= f + αf (1.3)

for some α ∈ C with |α| < 1. If f is biharmonic, then Fα(f) is called the affine biharmonic
mapping of f .

It follows easily that every affine harmonic mapping is harmonic. Also, every affine
biharmonic mapping is biharmonic. Definition 1.1 is motivated by the following result.

Theorem A (see [9, Theorem ]). For a harmonic mapping f , the following are equivalent:

(1) The Schwarzian derivative S(f) = 0;

(2) f = Fα(h) for some (analytic) Möbius transformation h;

(3) f takes circles to ellipses.

Here S(f) denotes the Schwarzian derivative of the harmonic mapping f = h + g
defined by

S
(
f
)
= 2

{
(log ρ)zz −

(
(log ρ)z

)2}
, ρ =

∣∣h′∣∣ +
∣∣g ′∣∣. (1.4)

A domainD ⊂ C is said to beM-linearly connected if there exists a positive constantM
such that any two points w1, w2 ∈ D are joined by a path γ ⊂ D with

�
(
γ
) ≤ M|w1 −w2| (1.5)

or equivalently

diam
(
γ
) ≤ M|w1 −w2|, (1.6)

where �(γ) denotes the Euclidean length of γ (cf. [10]). A complex-valued function f is M-
linearly connected if f(D) is an M-linearly connected domain.
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In a recent paper, Chuaqui and Hernández [11] investigated the relation between
the univalency of planar harmonic mappings f and the linear connectedness of f(D). They
proved the following theorem.

Theorem B (see [11, Theorem 1]). Let h : D → C be a holomorphic univalent map. Then there
exists a constant c > 0 such that every harmonic mapping f = h+g with dilation |ω| < c is univalent
in D if and only if h(D) is an M-linearly connected domain, whereM can be taken to be 1/c.

We say that a complex-valued function g defined on D is said to be convex in D if and
only if g(D) is a convex domain. A well-known analytic characterization gives that if f is
analytic in D, then f is convex in D if and only if

Re
(
1 + z

f ′′(z)
f ′(z)

)
> 0, z ∈ D. (1.7)

The main of this paper is twofold. We first discuss the close relationships that exist
among the local univalency, convexity, and linear connectedness of f and its corresponding
Fα(f). One of our main results follows.

Lemma 1.2. Let f ∈ H. Then

(1) Fα(f) is locally univalent if and only if f is locally univalent;

(2) Fα(f) is convex if and only if f is convex, where f is locally univalent;

(3) Fα(f) is M2-linearly connected if and only if f is M1-linearly connected, where f is
univalent and the constants M1 and M2 depend only on each other and α.

Let S0 denote the class of analytic functions f in D with f(0) = 0, and

S0
1 =

{
f ∈ S0 :

∣∣Re
(
f
)∣∣ < 1

}
. (1.8)

A function f ∈ H is called a Bloch function if

∥∥f
∥∥
B = sup

z∈D

(
1 − |z|2

)∣∣f ′(z)
∣∣ < ∞. (1.9)

Then the set of all Bloch functions form a complex Banach space B with the norm

∣∣f(0)
∣∣ +

∥∥f
∥∥
B; (1.10)

see [12]. The following result shows that S0
1 ⊂ B.

Proposition 1.3. If f ∈ S0
1 , then ‖f‖B ≤ 4/π . The constant 4/π is sharp.

Proof. Let f ∈ S0
1 and let P be defined by P = g ◦ h ◦ f , where

g(z) =
1 − z

1 + z
, h(z) = exp

((
iπ

2

)
z

)
. (1.11)
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It follows that P(z) = i tan((π/4)f(z)) and P is analytic mapping of the unit disk D to D with

P ′(z) =
iπ

4

(
1 − P 2(z)

)
f ′(z), z ∈ D. (1.12)

Also, by the classical Schwarz-Pick lemma, we have

(
1 − |z|2

)∣
∣P ′(z)

∣
∣ ≤ 1 − |P(z)|2, z ∈ D, (1.13)

which gives

π

4

(
1 − |z|2

) ∣
∣
∣1 − P 2(z)

∣
∣
∣
∣
∣f ′(z)

∣
∣ ≤ 1 − |P(z)|2, (1.14)

whence

(
1 − |z|2

)∣∣f ′(z)
∣∣ ≤ 4

π

1 − |P(z)|2
∣∣∣1 − P(z)2

∣∣∣
≤ 4

π
. (1.15)

Thus, we have ‖f‖B ≤ 4/π .
For the proof of sharpness part, we consider

f(z) = −2i
π

log

(
1 + eiαz

1 − eiαz

)

, α ∈ R. (1.16)

Then f ∈ S0 with |Re(f(z))| < 1 for z ∈ D and

f ′(z) = −i 4
π

(
eiα

1 − e2iαz2

)

, (1.17)

which gives ‖f‖B = 4/π . The proof is complete.

Let Su = {f : f ∈ S0
1 and f is univalent} ∪ {0}.

For any fixed z0 ∈ D \ {0} and λ ∈ C with 0 < |λ| < 1, we define

V (z0) =
{
f(z0) : f ∈ Su

}
,

VH(z0) =
{
Fα

(
f
)
(z0) : f ∈ Su

}
,

V (z0, λ) =
{
f(z0) : f ∈ S0

1 , f
′(0) =

4λ
π

}
,

VH(z0, λ) =
{
Fα

(
f
)
(z0) : f ∈ S0

1 , f
′(0) =

4λ
π

}
.

(1.18)
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Let BH denote the class of all functions f that are biharmonic but not harmonic in D

with the normalization fz(0) = 1 and |f(z)| ≤ 1. For any fixed z0 ∈ D, let

VBH(z0) =
{
Fα

(
f
)
(z0) : f ∈ BH}

. (1.19)

Recently, by using the Herglotz representation formula for analytic functions,
Yanagihara [13], and later in a number of papers Ponnusamy and Vasudevarao (see, e.g.,
[14]), discussed region of variability problems for a number of classical subclasses of
univalent and analytic functions in the unit disk D. Because the class of harmonic univalent
mappings includes the class of conformal mappings, it is natural to study the class of
harmonic mappings and the class of biharmonic mappings. In this paper, we also discuss
the region of variability problems for the class of affine harmonic mappings and affine
biharmonic mappings, respectively. By a different method of proof, we will also determine
the regions of variability for VH(z0), VH(z0, λ), and VBH(z0). The following are our results.

Theorem 1.4. The boundary ∂VH(z0) of VH(z0) is the Jordan curve given by

(−π,π] � θ �−→ −i 2
π

(

log
1 + eiθz0
1 − eiθz0

+ α log
1 + eiθz0
1 − eiθz0

)

. (1.20)

Theorem 1.5. The boundary ∂VH(z0, λ) of VH(z0, λ) is the Jordan curve given by

(−π,π] � θ �−→ −i 2
π

(

log
1 + z0iδ

(
eiθz0, λ

)

1 − z0iδ
(
eiθz0, λ

) + α log
1 + z0iδ(eiθz0, λ)
1 − z0iδ(eiθz0, λ)

)

, (1.21)

where

δ
(
eiθz, λ

)
=

eiθz + λ

1 + eiθzλ
. (1.22)

The following two lemmas are useful for the proofs of Theorems 1.4 and 1.5.

Lemma 1.6. Both sets V (z0) and VH(z0) are compact and convex.

Proof. Obviously, both sets V (z0) and VH(z0) are convex. Since Su is closed, the compactness
of sets V (z0) and VH(z0) easily follows from Proposition 1.3.

The argument as in the proof of Lemma 1.6 yields the following.

Lemma 1.7. Both sets V (z0, λ) and VH(z0, λ) are compact and convex.

Finally, we have

Theorem 1.8. The boundary ∂VBH(z0) of VBH(z0) is an ellipse.

Proofs of Lemma 1.2, and Theorems 1.4, 1.5, and 1.8 will be presented in Section 2.
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2. Proofs of Main Results

Proof of Lemma 1.2. (1) We see that JF = (1 − |α|2)Jf and the proof of Lemma 1.2(1) follows.
(2) Let f be analytic and locally univalent in D, and z = reit, where r ∈ (0, 1) and

t ∈ [0, 2π). Then for any fixed r ∈ (0, 1),

dFα

(
f
)(
reit

)

dt
= ireitf ′

(
reit

)
− iαre−itf ′(reit)

= i
(
zf ′(z) − αzf ′(z)

)
.

(2.1)

Since the curvature of Fα(f) is defined by

KFα(f) =
d
(
arg

(
dFα

(
f
)
/dt

))

ds
=

d
(
arg

(
dFα

(
f
)
/dt

))

dt

/
ds

dt
, (2.2)

we see that

∣∣∣∣∣
dFα

(
f
)

dt

∣∣∣∣∣
KFα(f) =

d

dt

(

arg
dFα

(
f
)(
reit

)

dt

)

= Re

(
zf ′ + z2f ′′ + αzf ′ + αz2f ′′

zf ′ − αzf ′

)

.

(2.3)

Multiplying both sides by

∣∣∣zf ′(z) − αzf ′(z)
∣∣∣
2
=
(
zf ′(z) − αzf ′(z)

)(
zf ′(z) − αzf ′(z)

)
, (2.4)

and then simplifying the resulting expression on the right give

1

|z|2
∣∣∣∣
dFα(f)

dt

∣∣∣∣

3

KFα(f) =
∣∣f ′(z)

∣∣2
(
1 − |α|2

)
Re

(
1 +

zf ′′(z)
f ′(z)

)
. (2.5)

The proof of Lemma Lemma 1.2(2) follows from (1.7).
(3) For the proof of the sufficiency, let f(D) beM1-linearly connected and

H(w) = Fα

(
f
)(

f−1(w)
)
= w + αw, (2.6)

where w ∈ f(D). For any distinct points w1, w2 ∈ f(D), there exists a path γ ⊂ f(D) joining
w1 and w2 such that

�
(
γ
) ≤ M1|w1 −w2|. (2.7)
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Let Γ = Fα(f)(γ). Then we have

�(Γ) =
∫

Γ
|dH(w)|

=
∫

γ

|Hwdw +Hwdw|

≤ �
(
γ
)
(1 + |α|)

≤ (1 + |α|)M1|w1 −w2|.

(2.8)

On the other hand,

|H(w1) −H(w2)| = |w1 + αw1 −w2 − αw2| ≥ (1 − |α|)|w1 −w2|. (2.9)

Hence

�(Γ) ≤ M1(1 + |α|)
1 − |α| |H(w1) −H(w2)|. (2.10)

For the proof of necessity, since Fα(f) is univalent, we define

G = f ◦ Fα(f)
−1. (2.11)

By the chain rule, we have

Gw = f ′ ·
(
Fα

(
f
)−1)

w
, Gw = f ′ ·

(
Fα

(
f
)−1)

w
. (2.12)

Differentiating both sides of the equation, Fα(f)
−1(Fα(f)(z)) = z yields the following

relations:

(
Fα

(
f
)−1)

w
· f ′ + α

(
Fα

(
f
)−1)

w
· f ′ = 1,

α
(
Fα

(
f
)−1)

w
· f ′ +

(
Fα

(
f
)−1)

w
· f ′ = 0.

(2.13)

Solving these two equations yields

(
Fα

(
f
)−1)

w
=

1
(
1 − |α|2

)
f ′
,

(
Fα

(
f
)−1)

w
= − α

(
1 − |α|2

)
f ′
. (2.14)

It follows from (2.12) that

|Gw| + |Gw| = 1
1 − |α| . (2.15)
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For any two distinct points w1, w2 ∈ Fα(f)(D), since Fα(f)(D) is M2-linearly
connected, there exists a path γ ⊂ Fα(f)(D) joining w1 and w2 such that

�
(
γ
) ≤ M2|w1 −w2|. (2.16)

Now, we let Γ = G(γ). Then we see that

�(Γ) =
∫

Γ
|dG(w)|

=
∫

γ

|Gwdw +Gw dw|

≤ M2|w1 −w2|
1 − |α| .

(2.17)

On the other hand, by the definition of G, we have

w1 −w2 = G(w1) −G(w2) + α
(
G(w1) −G(w2)

)
(2.18)

from which we obtain

|w1 −w2| ≤ |G(w1) −G(w2)|(1 + |α|) (2.19)

and therefore,

�(Γ) ≤ M2(1 + |α|)|G(w1) −G(w2)|
1 − |α| . (2.20)

The proof of the theorem is complete.

Before we indicate the proof of Theorem 1.4, we need to determine the region of
variability V (z0).

Lemma 2.1. The boundary ∂V (z0) of V (z0) is the Jordan curve given by

(−π,π] � θ �−→ −2i
π

log

(
1 + eiθz0
1 − eiθz0

)

. (2.21)

Proof. For f ∈ Su, let P = i tan((π/4)f). Then P(D) ⊂ D. Using the Schwarz lemma, we have
|P(z)| ≤ |z|. That is,

∣∣∣exp
(π
2
if(z)

)
− 1

∣∣∣ ≤ |z|
∣∣∣exp

(π
2
if(z)

)
+ 1

∣∣∣ (2.22)
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or equivalently

∣
∣
∣
∣
∣
exp

(π
2
if(z)

)
− 1 + |z|2
1 − |z|2

∣
∣
∣
∣
∣
≤ 2|z|

1 − |z|2
. (2.23)

This yields that for each z0 ∈ D,

exp
(π
2
if(z0)

)
∈ D(C(z0), R(z0)) = {w ∈ C : |w − C(z0)| ≤ R(z0)}, (2.24)

where

C(z0) =
1 + |z0|2
1 − |z0|2

, R(z0) =
2|z0|

1 − |z0|2
. (2.25)

Consider

fz0(z) = −2i
π

log
1 + z0z

1 − z0z
. (2.26)

Then fz0 ∈ Su and, for z0 ∈ D \ {0}, the function fz0 is a nonconstant analytic function in D.
Hence it is an open mapping. Thus fz0(D) ⊂ V (z0). Next we will show that fz0(z) ∈ ∂V (z0)
for all z ∈ ∂D. An elementary computation shows that

exp
(π
2
ifz0(z)

)
− 1 + |z0|2
1 − |z0|2

=
1 + zz0
1 − zz0

− 1 + |z0|2
1 − |z0|2

=
1
z

(
z − z0
z − z0

)
2z0

1 − |z0|2
,

(2.27)

where |z| = 1. Hence

exp
(π
2
ifz0(z)

)
∈ ∂D(C(z0), R(z0)). (2.28)

Since

exp
(π
2
ifz0(z)

)
∈ exp

(
iπ

2
V (z0)

)
⊂ D(C(z0), R(z0)),

exp
(π
2
iV (z0)

)
=
{
exp

(π
2
iξ
)
: ξ ∈ V (z0)

}
,

(2.29)

we have

exp
(π
2
ifz0(z)

)
∈ ∂ exp

(
iπ

2
V (z0)

)
, (2.30)
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provided z ∈ ∂D. Obviously, G = exp((π/2)ifz0) is univalent in ∂D. By Lemma 1.6, we
know that ∂ exp((iπ/2)V (z0)) is a simple closed curve. Therefore, the boundary ∂V (z0) is
the Jordan curve given by (2.21). The proof of the lemma is complete.

Proof of Theorem 1.4. The proof of Theorem 1.4 is an immediate consequence of Lemmas 1.2,
1.6, and 2.1.

Clearly, for the proof of Theorem 1.5, it suffices to describe the region of variability
V (z0, λ).

Lemma 2.2. The boundary ∂V (z0, λ) of V (z0, λ) is the Jordan curve given by

(−π,π] � θ �−→ −2i
π

log

(
1 + z0iδ

(
eiθz0, λ

)

1 − z0iδ
(
eiθz0, λ

)

)

, (2.31)

where

δ(cz, λ) =
cz + λ

1 + czλ
. (2.32)

Proof. Let f ∈ S0
1 with f ′(0) = 4λ/π . It follows from the classical Schwarz lemma for analytic

functions that

∣∣∣∣∣
tan

(
(π/4)f(z)

)
/z − λ

1 − λ
(
tan

(
(π/4)f(z)

)
/z

)

∣∣∣∣∣
≤ |z|, (2.33)

which, after some computation, is equivalent to

∣∣∣∣∣
e(π/2)if(z) −A(z, λ)
e(π/2)if(z) + B(z, λ)

∣∣∣∣∣
≤ |z||T(z, λ)|, (2.34)

where

A(z, λ) =
1 + iλz

1 − iλz
, B(z, λ) =

λ + iz

iz − λ
, T(z, λ) =

iz − λ

1 − iλz
. (2.35)

According to the Schwarz lemma, we see that the equality sign occurs in (2.33) if and only if
f = Qeiθ,λ for some θ ∈ R, where

Qc,λ(z) = −2i
π

log
1 + ziδ(cz, λ)
1 − ziδ(cz, λ)

. (2.36)

Further calculations show that the inequality (2.34) is equivalent to

∣∣∣exp
(π
2
if(z)

)
− C(z, λ)

∣∣∣ ≤ r(z, λ), (2.37)



International Journal of Mathematics and Mathematical Sciences 11

where

C(z, λ) =
A(z, λ) + |z|2|T(z, λ)|2B(z, λ)

1 − |z|2|T(z, λ)|2
,

r(z, λ) =
|z||T(z, λ)||A(z, λ) + B(z, λ)|

1 − |z|2|T(z, λ)|2
.

(2.38)

It follows from (2.35) that

1 − |z|2|T(z, λ)|2 =

(
1 − |z|2

)[
1 + |z|2 − 2Re(iλz)

]

|1 − iλz|2
, (2.39)

A(z, λ) + B(z, λ) =
2iz

(
1 − |λ|2

)

(1 − iλz)
(
iz − λ

) , (2.40)

so that r(z, λ) simplifies to the form

r(z, λ) =
2|z|2

(
1 − |λ|2

)

|1 − iλz|2
(
1 − |z|2|T(z, λ)|2

) . (2.41)

Further,

A(z, λ) + |z|2|T(z, λ)|2B(z, λ) =
|z|4 − 2|λz|2 + 1 + 2i

(
1 − |z|2

)
Re(λz)

|1 − iλz|2
. (2.42)

From (2.37), we have

exp
(
iπ

2
V (z0, λ)

)
⊂ D(C(λ, z0), r(λ, z0)) � {w ∈ C : |w − C(λ, z0)| ≤ r(λ, z0)}. (2.43)

Equation (2.36) gives

exp
(π
2
iQc,λ(z)

)
=

1 + z
(
λc + iλ

)
+ ciz2

1 + z
(
λc − iλ

)
− ciz2

, (2.44)
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and so, we infer from (2.35) that

exp
(π
2
iQc,λ(z)

)
−A(z, λ) =

2icz2
(
1 − |λ|2

)

(1 − ziλ)
[
1 + z

(
λc − iλ

)
− ciz2

] ,

exp
(π
2
iQc,λ(z)

)
+ B(z, λ) =

2iz
(
1 − |λ|2

)

(
zi − λ

)[
1 + z

(
λc − iλ

)
− ciz2

] .

(2.45)

As

w − C(z, λ) =
1

1 − |z|2|T(z, λ)|2
{
(w −A(z, λ)) − |z|2|T(z, λ)|2(w + B(z, λ))

}
, (2.46)

the above equalities together with (2.39), (2.40), and (2.42) yield that

exp
(π
2
iQc,λ(z)

)
− C(z, λ) =

2iz
(
1 − |λ|2

)[
cz + icλ|z|2 + λ|z|2 + iz|z|2

]

[
1 + z

(
cλ − iλ

)
− icz2

]
|1 − ziλ|2

(
1 − |z|2|T(z, λ)|2

) .
(2.47)

Substituting c by eiθ in the last equality, we see from (2.41) that

∣∣∣exp
(π
2
iQeiθ,λ(z)

)
− C(z, λ)

∣∣∣ = r(z, λ)

∣∣∣1 + z
(
e−iθλ + iλ

)
+ ie−iθz2

∣∣∣
∣∣∣1 + z

(
eiθλ − iλ

)
− ieiθz2

∣∣∣
(2.48)

which implies that

exp
(π
2
iQeiθ,λ(z0)

)
∈ exp

(
iπ

2
V (z0, λ)

)
⊂ D(C(λ, z0), r(λ, z0)), (2.49)

whence

exp
(π
2
iQeiθ,λ(z0)

)
∈ ∂ exp

(
iπ

2
V (z0, λ)

)
. (2.50)

We claim that the closed curve

(−π,π] � θ �−→ exp
(π
2
iQeiθ,λ(z0)

)
(2.51)

is simple.
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For the proof of this claim, we suppose that there are θ1, θ2 ∈ (−π,π]with θ1 /= θ2 such
that

exp
(π
2
iQeiθ1 ,λ(z0)

)
= exp

(π
2
iQeiθ2 ,λ(z0)

)
. (2.52)

By (2.36), we obtain that θ1 = θ2 which is a contradiction and this completes the proof of our
claim.

Since V (z0, λ) is a compact convex subset of C and its interior is nonempty, we see that
its boundary ∂V (z0, λ) is a simple closed curve. It follows from (2.40) that the curve

(−π,π] � θ �−→ exp
(π
2
iQeiθ,λ(z0)

)
(2.53)

is a subcurve of ∂ exp((iπ/2)V (z0, λ)).
The fact that a simple closed curve cannot contain any simple closed curve other than

itself yields that ∂V (z0, λ) is given by

(−π,π] � θ �−→ Qeiθ,λ(z0). (2.54)

The proof of Lemma 2.2 is complete.

Proof of Theorem 1.5. The proof of Theorem 1.5 follows from Lemmas 1.2, 1.7, and 2.2.

Proof of Theorem 1.8 is a consequence of Theorem A and the following lemma.

Lemma 2.3. For any fixed a ∈ D, let φa : D → D be defined by

φa(z) =
z − a

1 − az
, z ∈ D,

M =
{
φa : a ∈ D

}
,

(2.55)

and V0(z0) = {φa(z0) : φa ∈ M}. ThenM ⊂ BH and V0(z0) = D.

Proof. We write

φa(z) =
z − a

1 − az
= |z|2G(z, a) +H(z, a), (2.56)

and so, we have φz(0) = 1, where

G(z, a) = a
∞∑

n=0
(az)n, H(z, a) = z − a

∞∑

n=0

(az)n. (2.57)

Obviously, φa(z) = (z − a)/(1 − az) is a biharmonic mapping and φa(D) ⊂ D, from which the
first assertion in Lemma 2.3 follows.
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Since z0 ∈ D\{0}, we see that gz0(w) = (z0−w)/(1−z0w) is a conformal automorphism
of the unit disk D and the range gz0(D) is D itself. By hypotheses, we know that for any q ∈ M,
q(z0) ∈ D. Hence V0(z0) coincides with D.
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