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1. Introduction and Motivation

Let A be the class of functions f normalized by

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C, |z| < 1}. (1.2)

As usual, we denote by S the subclass of A consisting of functions which are also univalent
in U. A function f ∈ A is said to be starlike of order α in U (0 ≤ α < 1), if and only if

R

(
zf ′(z)
f(z)

)
> α (z ∈ U; 0 ≤ α < 1). (1.3)

This function class is denoted by S∗(α). We also write S∗(0) =: S∗, where S∗ denotes
the class of functions f ∈ A that are starlike in U with respect to the origin.
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A function f ∈ A is said to be convex of order α in U (0 ≤ α < 1) if and only if

R

(
1 +

zf ′′(z)
f ′(z)

)
> α (z ∈ U; 0 ≤ α < 1). (1.4)

The class of convex functions is denoted by the class K(α). Further, K = K(0), the
well-known standard class of convex functions. It is an established fact that

f ∈ K(α) ⇐⇒ zf ′ ∈ S∗(α). (1.5)

A function f ∈ A is said to be in the class UCV of uniformly convex functions in U

if f is a normalized convex function in U and has the property that, for every circular arc δ
contained in the unit disk U, with center ζ also in U, the image curve f(δ) is a convex arc. The
function class UCV was introduced by Goodman [1].

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z+
∑∞

n=2 bnz
n,we define

the Hadamard product (or Convolution) of f and g by

(
f ∗ g)(z) = z +

∞∑

n=2

anbnz
n, z ∈ U. (1.6)

Furthermore, we denote by k − UCV and k − ST two interesting subclasses of S
consisting, respectively, of functions which are k-uniformly convex and k-starlike in U. Thus,
we have

k −UCV :=
{
f ∈ S : R

(
1 +

zf ′′(z)
f ′(z)

)
> k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ U; 0 ≤ k < ∞)
}
,

k − ST :=
{
f ∈ S : R

(
zf ′(z)
f(z)

)
> k

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ (z ∈ U; 0 ≤ k < ∞)

}
.

(1.7)

The class k − UCV was introduced by Kanas and Wiśniowska [2], where its geometric
definition and connections with the conic domains were considered. The class k − ST was
investigated in [3]. In fact, it is related to the class k − UCV by means of the well-known
Alexander equivalence between the usual classes of convex and starlike functions; see also
the work of Kanas and Srivastava [4] for further developments involving each of the classes
k −UCV and k − ST . In particular, when k = 1, we obtain

1 −UCV ≡ UCV, 1 − ST = SP, (1.8)

where UCV and SP are the familiar classes of uniformly convex functions and parabolic
starlike functions in U, respectively (see for details, [1, 5]). In fact, by making use of a certain
fractional calculus operator, Srivastava and Mishra [6] presented a systematic and unified
study of the classes UCV and SP .
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A function f ∈ A is said to be in the class Pτ
γ (A,B) ⊂ A if it satisfies the inequality

∣∣∣∣∣
f ′(z) + γzf ′′(z) − 1

(A − B)τ − B
[
f ′(z) + γzf ′′(z) − 1

]

∣∣∣∣∣ < 1
(
z ∈ U; τ ∈ C \ {0}, −1 ≤ B < A ≤ 1, 0 ≤ γ < 1

)
.

(1.9)

The class Pτ
0 (A,B) was introduced earlier by Dixit and Pal [7]. Two of the many

interesting subclasses of the class Pτ
γ (A,B) are worthy of mention here. First of all, by setting

γ = 0, τ = eiη cosη
(
−π
2

< η <
π

2

)
, A = 1 − 2β

(
0 ≤ β < 1

)
, B = −1, (1.10)

the class Pτ
γ (A,B) reduces essentially to the class Rη(β) introduced and studied by

Ponnusamy and Rønning [8], where

Rη

(
β
)
=
{
f ∈ A : R

(
eiη
(
f ′(z) − β

))
> 0
(
z ∈ U; −π

2
< η <

π

2
, 0 ≤ β < 1

)}
. (1.11)

Secondly, if we put

γ = 0, τ = 1, A = β, B = −β (
0 < β ≤ 1

)
, (1.12)

we obtain the class of functions f ∈ A satisfying the inequality

∣∣∣∣
f ′(z) − 1
f ′(z) + 1

∣∣∣∣ < β
(
z ∈ U; 0 < β ≤ 1

)
(1.13)

which was studied by (among others) Padmanabhan [9] and Caplinger and Causey [10].
Finally, many of the authors have also studied the class P 1

γ (A,B). For details of these
works one can refer to the works of Ding Gong [11], R. Singh and S. Singh [12], Owa andWu
[13], and also the references cited by them. Although, many mapping properties of the class
P 1
γ (A,B) have been studied by these authors, they did not study any mapping properties

involving the hypergeometric functions.
The Gaussian hypergeometric function F(a, b; c, z), z ∈ U is given by

F(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n(1)n

zn, (1.14)

is the solution of the homogeneous hypergeometric differential equation

z(1 − z)w′′(z) + [c − (a + b + 1)z]w′(z) − abw(z) = 0 (1.15)

and has rich applications in various fields such as conformal mappings, quasiconformal
theory, and continued fractions.
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Here, a, b, c are complex numbers such that c /= 0,−1,−2,−3, . . ., (a)0 = 1 for a/= 0, and
for each positive integer n, (a)n = a(a + 1)(a + 2) · · · (a + n − 1) is the Pochhammer symbol. In
the case of c = −k, k = 0, 1, 2, . . ., F(a, b; c; z) is defined if a = −j or b = −j, where j ≤ k. In this
situation, F(a, b; c; z) becomes a polynomial of degree j in z. Results regarding F(a, b; c; z)
when R (c − a − b) is positive, zero, or negative are abundant in the literature. In particular
when R (c − a − b) > 0, the function is bounded. This and the zero balanced case R (c − a −
b) = 0 are discussed in detail by many authors (see [14, 15]). The hypergeometric function
F(a, b; c; z) has been studied extensively by various authors and it plays an important role in
Geometric Function Theory. It is useful in unifying various functions by giving appropriate
values to the parameters a, b, and c. We refer to [8, 16–19] and references therein for some
important results.

In particular, the close-to-convexity (in turn the univalency), convexity, starlikeness,
(for details on these technical terms we refer to [5]), and various other properties of these
hypergeometric functions were examined based on the conditions on a, b, and c in [8]. For
more interesting properties of hypergeometric functions, one can also refer to [20, 21].

Let f(z) and g(z) be analytic in U and g(z) univalent. Then we say that f(z) is
subordinate to g(z)written as f(z) ≺ g(z) if f(0) = g(0) and f(U) ⊂ g(U).

For f ∈ A, we recall that the operator Ia,b,c(f) of Hohlov [22]which mapsA into itself
defined by

Ia,b,c
(
f
)
(z) = zF(a, b; c; z) ∗ f(z), (1.16)

where ∗ denotes usual Hadamard product of power series. Therefore, for a function f defined
by (1.1), we have

Ia,b,c
(
f
)
(z) = z +

∞∑

n=2

(a)n−1(b)n−1
(c)n−1(1)n−1

anz
n. (1.17)

Using the integral representation,

F(a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫1

0
tb−1(1 − t)c−b−1

dt

(1 − tz)a
, R(c) > R(b) > 0, (1.18)

we can write

[
Ia,b,c

(
f
)]
(z) =

Γ(c)
Γ(b)Γ(c − b)

∫1

0
tb−1(1 − t)c−b−1

f(tz)
t

dt ∗ z

(1 − tz)a
. (1.19)

When f(z) equals the convex function z/(1− z), then the operator Ia,b,c(f) in this case
becomes zF(a, b; c; z). For a = 1, b = 1 + δ, c = 2 + δ with R(δ) > −1 then the convolution
operator Ia,b,c(f) turns into Bernardi operator

Bf(z) =
[
Ia,b,c

(
f
)]
(z) =

1 + δ

zδ

∫1

0
tδ−1f(t)dt. (1.20)

Indeed, I1,1,2(f) and I1,2,3(f) are known as Alexander and Libera operators, respectively.
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Let 0 ≤ k < ∞, and let f ∈ A be of the form (1.1). If f ∈ k −UCV , then the following
coefficient inequalities hold true (cf. [2]):

|an| ≤
(P1)n−1
(1)n

, n ∈ N \ {1}, (1.21)

where P1 = P1(k) is the coefficient of z in the function

pk(z) = 1 +
∞∑

n=1

Pn(k)zn, (1.22)

which is the extremal function for the class P(pk) related to the class k −UCV by the range of
the expression

1 +
zf ′′(z)
f ′(z)

(z ∈ U), (1.23)

where P1 = P1(k) is given, as above, by (1.22).
Similarly, if f of the form (1.1) belong to the class k − ST , then (cf. [3])

|an| ≤
(P1)n−1
(1)n−1

, n ∈ N \ {1}, (1.24)

where P1 = P1(k) is given, as above by (1.22).

2. Properties of Pτ
γ (A,B)

Theorem 2.1. Let f ∈ S and be of the form (1.1). If f ∈ Pτ
γ (A,B), then

|an| ≤ (A − B)|τ |
n
(
1 + γ(n − 1)

) . (2.1)

The estimate is sharp.

Proof. Since f ∈ Pτ
γ (A,B), we have

1 +
1
τ

[
f ′(z) + γzf ′′(z) − 1

]
=

1 +Aw(z)
1 + Bw(z)

, (2.2)

where w(z) is analytic in U and satisfies the condition w(0) = 0 and |w(z)| < 1 for z ∈ U.
Hence, we have

1
τ

[
f ′(z) + γzf ′′(z) − 1

]
= w(z)

[
(A − B) − B

τ

(
f ′(z) + γzf ′′(z) − 1

)]
. (2.3)
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Using f(z) = z +
∑∞

n=2 anz
n and w(z) =

∑∞
n=1 bnz

n, we have

{
(A − B) − B

τ

∞∑

n=2

(
1 + γ(n − 1)

)
nanz

n−1
}[ ∞∑

n=1

bnz
n

]
=

1
τ

[ ∞∑

n=2

(
1 + γ(n − 1)

)
nanz

n−1
]
. (2.4)

By equating the coefficients, we observe that the coefficient an in the right-hand side depends
only on a2, a3, . . . , an−1 on the left-hand side of the above expression. This gives

[
(A − B) − B

τ

(
k−1∑

n=2

[
1 + γ(n − 1)

]
nanz

n−1
)]

w(z)

=
1
τ

(
k∑

n=2

[
1 + γ(n − 1)

]
nanz

n−1
)

+
∞∑

n=k+1

dnz
n−1.

(2.5)

By using |w(z)| < 1, we get

∣∣∣∣∣(A − B) − B

τ

(
k−1∑

n=2

[
1 + γ(n − 1)

]
nanz

n−1
)∣∣∣∣∣

≥
∣∣∣∣∣
1
τ

(
k∑

n=2

[
1 + γ(n − 1)

]
nanz

n−1
)

+
∞∑

n=k+1

dnz
n−1
∣∣∣∣∣.

(2.6)

Squaring both sides of (2.6) and integrating around |z| = r, 0 < r < 1,we obtain

(A − B)2 +
B2

|τ |2
(

k−1∑

n=2

[
1 + γ(n − 1)

]2
n2|an|2r2n−2

)

≥ 1

|τ |2
(

k∑

n=2

[
1 + γ(n − 1)

]2
n2|an|2r2n−2

)
+

∞∑

n=k+1

|dn|2r2n−2.
(2.7)

By letting r → 1, we conclude that

(A − B)2 +
B2

|τ |2
(

k−1∑

n=2

[
1 + γ(n − 1)

]2
n2|an|2

)
≥ 1

|τ |2
(

k∑

n=2

[
1 + γ(n − 1)

]2
n2|an|2

)
(2.8)

or

(
k∑

n=2

[
1 + γ(n − 1)

]2
n2|an|2

)
≤ (A − B)2|τ |2 + B2

(
k−1∑

n=2

[
1 + γ(n − 1)

]2
n2|an|2

)
. (2.9)

By making use of the fact that −1 ≤ B < 1, we get

[
1 + γ(n − 1)

]2
n2|an|2 ≤ (A − B)2|τ |2. (2.10)
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This gives

|an| ≤ (A − B)|τ |
n
(
1 + γ(n − 1)

) , n = 2, 3, . . . . (2.11)

The result is sharp for the function

f(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z

τ

∫∫1

0
u1/γ−1 1 +Aτ(uvz)n−1 + B(1 − τ)(uvz)n−1

1 + B(uvz)n−1
dudv, γ > 0,

z

∫1

0

1 +Aτ(uz)n−1 + B(1 − τ)(uz)n−1

1 + B(uz)n−1
du, γ = 0.

(2.12)

Theorem 2.2. Let f(z) = z +
∑∞

n=2 anz
n. Then a sufficient condition for f ∈ Pτ

γ (A,B) is

∞∑

n=2

n(1 + |B|)[1 + γ(n − 1)
]|an| ≤ (A − B)|τ |. (2.13)

The result is sharp for the function

f(z) = z +
(A − B)|τ |

n(1 + |B|)[1 + γ(n − 1)
]zn, n ≥ 2. (2.14)

Proof. In view of (2.13),

∣∣∣∣
1
τ

(
f ′(z) + γzf ′′(z) − 1

)∣∣∣∣ −
∣∣∣∣(A − B) − B

τ

(
f ′(z) + γzf ′′(z) − 1

)∣∣∣∣

=

∣∣∣∣∣
1
τ

(
1 +

∞∑

n=2

nanz
n−1 + γ

∞∑

n=2

n(n − 1)anz
n−1 − 1

)∣∣∣∣∣

−
∣∣∣∣∣(A − B) − B

τ

(
1 +

∞∑

n=2

nanz
n−1 + γ

∞∑

n=2

n(n − 1)anz
n−1 − 1

)∣∣∣∣∣

≤ 1
|τ |

∞∑

n=2

n
(
1 + γ(n − 1)

)|an||z|n−1

−
{
(A − B) − |B|

|τ |

( ∞∑

n=2

n
(
1 + γ(n − 1)

)
)
|an||z|n−1

}

(2.15)

which is clearly less than or equal to zero for all |z| = r, 0 < r < 1. Letting r → 1, we get

∣∣∣∣∣
f ′(z) + γzf ′′(z) − 1

(A − B)τ − B
[
f ′(z) + γzf ′′(z) − 1

]

∣∣∣∣∣ < 1. (2.16)

Thus, f ∈ Pτ
γ (A,B).
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3. Results Involving Gaussian Hypergeometric Function

Theorem 3.1. Let a, b ∈ C \ {0}. Also, let c be a real number such that c > |a| + |b| + 2. Then a
sufficient condition for the function zF(a, b; c; z) to be in the class Pτ

γ (A,B) is that

S ≤ (A − B)|τ |
1 + |B| + 1, (3.1)

where

S =
Γ(c)Γ(c − |a| − |b| − 2)
Γ(c − |a|)Γ(c − |b|)

× [γ |ab|(1 + |a|)(1 + |b|)+ (1 + 2γ
)|ab|(c − |a| − |b| − 2)+ (c − |a| − |b|− 2)(c − |a| − |b| − 1)

]
.

(3.2)

Proof. zF(a, b; c; z) has the series representation given by

zF(a, b; c; z) = z +
∞∑

n=2

(a)n−1(b)n−1
(c)n−1(1)n−1

zn. (3.3)

In view of Theorem 2.2, it suffices to show that

S
(
a, b, c, γ

)
:=

∞∑

n=2

n(1 + |B|)(1 + γ(n − 1)
)∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣ ≤ (A − B)|τ |. (3.4)

From the fact that |(a)n| ≤ (|a|)n, we observe that c is real and positive, under the
hypothesis

S
(
a, b, c, γ

) ≤
∞∑

n=2

n
[
1 + γ(n − 1)

](|a|)n−1(|b|)n−1
(c)n−1(1)n−1

. (3.5)

By writing n[1 + γ(n − 1)] as, γ(n − 1)(n − 2) + (n − 1)(1 + 2γ) + 1, we get

S
(
a, b, c, γ

) ≤ γ
∞∑

n=2
(n − 1)(n − 2)

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+
(
1 + 2γ

) ∞∑

n=2
(n − 1)

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

+
∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

= γ
∞∑

n=3

(|a|)n−1(|b|)n−1
(c)n−1(1)n−3

+
(
1 + 2γ

) ∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−2

+
∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

.

(3.6)

Using the fact that

(a)n = a(a + 1)n−1, (3.7)
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it is easy to see that

S
(
a, b, c, γ

) ≤ γ
|ab|(1 + |a|)(1 + |b|)

c(1 + c)

∞∑

n=3

(2 + |a|)n−3(2 + |b|)n−3
(2 + c)n−3(1)n−3

+
(
1 + 2γ

) |ab|
c

∞∑

n=2

(1 + |a|)n−2(1 + |b|)n−2
(1 + c)n−2(1)n−2

+
∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

.

(3.8)

From (1.14),

S
(
a, b, c, γ

) ≤ γ
|ab|(1 + |a|)(1 + |b|)

c(1 + c)
F(2 + |a|, 2 + |b|; 2 + c; 1)

+
(
1 + 2γ

) |ab|
c

F(1 + |a|, 1 + |b|; 1 + c; 1) + F(|a|, |b|; c; 1) − 1.

(3.9)

By using the Gauss summation theorem

F(a, b; c; 1) =
Γ(c − a − b)Γ(c)
Γ(c − a)Γ(c − b)

, (3.10)

we get

S
(
a, b, c, γ

) ≤ γ
|ab|(1 + |a|)(1 + |b|)

c(1 + c)
Γ(c − |a| − |b| − 2)Γ(c + 2)

Γ(c − |a|)Γ(c − |b|)

+
(
1 + 2γ

) |ab|
c

Γ(c − |a| − |b| − 1)Γ(c + 1)
Γ(c − |a|)Γ(c − |b|) +

Γ(c − |a| − |b|)Γ(c)
Γ(c − |a|)Γ(c − |b|) − 1.

(3.11)

Equation (3.4) now follows by an application of (3.1) and (3.2).

Theorem 3.2. Let a, b ∈ C \ {0}. Also, let c be a real number such that c > |a|+ |b|. If f ∈ Pτ
γ (A,B),

and if the inequality

Γ(c)Γ(c − |a| − |b|)
Γ(c − |a|)Γ(c − |b|) ≤ 1

1 + |B| + 1 (3.12)

is satisfied, then zF(a, b; c; zk) ∗ f(z) ∈ Pτ
γ (A,B), where k ∈ N.

Proof. Let f be of the form (1.1) belong to the class Pτ
γ (A,B). By virtue of Theorem 2.2, it

suffices to show that

S0 :=
∞∑

n=2
(k(n − 1) + 1)(1 + |B|)(1 + γk(n − 1)

)∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

ak(n−1)+1

∣∣∣∣ ≤ (A − B)|τ |. (3.13)
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Taking into account inequality (2.1) and the relation |(a)n−1| ≤ (|a|)n−1,we deduce that

S0 ≤ (1 + |B|)
∞∑

n=2
(k(n − 1) + 1)

(
1 + γk(n − 1)

) (A − B)|τ |
(k(n − 1) + 1)

(
1 + γk(n − 1)

)
∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣

≤ (1 + |B|)(A − B)|τ |
∞∑

n=2

(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

= (1 + |B|)(A − B)|τ |(F(|a|, |b|; c; 1) − 1)
(3.14)

which is bounded previously by (A − B)|τ |, in view of inequality (3.12).

Repeating the previous reasoning for b = a, we can improve the assertion of
Theorem 3.2 as follows.

Theorem 3.3. Let a ∈ C \ {0}. Also, let c be a real number such that c > max{0, 2R(a)}. If
f ∈ Pτ

γ (A,B), and if the inequality

Γ(c)Γ(c − 2R(a))
Γ(c − |a|)Γ(c − |a|) ≤ 1

1 + |B| + 1 (3.15)

is satisfied, then zF(a, a; c; zk) ∗ f(z) ∈ Pτ
γ (A,B), where k ∈ N.

In the special case when b = 1, Theorem 3.2 immediately yields the following new
result.

Theorem 3.4. Let a ∈ C \ {0}. Also, let c be a real number such that c > |a| + 1. If f ∈ Pτ
γ (A,B),

and if the inequality

c − 1
c − |a| − 1

≤ 1
1 + |B| + 1 (3.16)

is satisfied, then zF(a, 1; c; zk) ∗ f(z) ∈ Pτ
γ (A,B), where k ∈ N.

Theorem 3.5. Let a, b ∈ C \ {0}. Also, let c be a real number such that c > |a| + |b| + 3. If f ∈ S,
and if the inequality

|a||b|Γ(c)Γ(c − |a| − |b| − 1)
Γ(c − |a|)Γ(c − |b|)

[
4 +

(1 + |a|)(1 + |b|)
c − |a| − |b| − 2

(
5 +

(2 + |a|)(2 + |b|)
c − |a| − |b| − 3

)]

+
Γ(c)Γ(c − |a| − |b|)
Γ(c − |a|)Γ(c − |b|)

[
1 + 3

|a||b|
c − |a| − |b| − 1

+
|a||b|(1 + |a|)(1 + |b|)

c(1 + c)

]

≤ (A − B)|τ |
1 + |B| + 1

(3.17)

is satisfied, then Ia,b,c(f) ∈ Pτ
γ (A,B).
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Proof. Let f ∈ S.Applying the well-known estimate for the coefficients of the functions f ∈ S,
due to de Branges [23], we need to show that

∞∑

n=2

n2[1 + γ(n − 1)
]∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣ ≤
(A − B)|τ |
1 + |B| . (3.18)

The left-hand side of (3.18) can be written as

∞∑

n=2

n2
∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣ + γ
∞∑

n=2

n2(n − 1)
∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣. (3.19)

The second expression of (3.19), by virtue of the triangle inequality for the pochhammer
symbol |(a)n−1| ≤ (|a|)n−1, is less than or equal to

γ
∞∑

n=2

n2(n − 1)
(|a|)n−1(|b|)n−1
(c)n−1(1)n−1

= γ
∞∑

n=1

(n + 1)2
(|a|)n(|b|)n
(c)n(1)n−1

=: S1. (3.20)

Now, making use of the relation (3.7), we get

S1 = γ
|ab|
c

∞∑

n=1

(n + 1)2
(|a| + 1)n−1(|b| + 1)n−1

(c + 1)n−1(1)n−1

= γ
|ab|
c

∞∑

n=0
(n + 2)2

(|a| + 1)n(|b| + 1)n
(c + 1)n(1)n

= γ
|ab|
c

∞∑

n=0

n(n − 1)
(|a| + 1)n(|b| + 1)n

(c + 1)n(1)n

+ 5γ
|ab|
c

∞∑

n=0

n
(|a| + 1)n(|b| + 1)n

(c + 1)n(1)n

+ 4γ
|ab|
c

∞∑

n=0

(|a| + 1)n(|b| + 1)n
(c + 1)n(1)n

,

(3.21)

where we are writing (n + 2)2 = n(n − 1) + 5n + 4. By repeating the use of (3.7) and the Gauss
summation formula, we have

S1 ≤ |ab|(|a| + 1)(|b| + 1)(|a| + 2)(|b| + 2)Γ(c)Γ(c − |a| − |b| − 3)
Γ(c − |a|)Γ(c − |b|)

+
5|ab|(|a| + 1)(|b| + 1)Γ(c)Γ(c − |a| − |b| − 2)

Γ(c − |a|)Γ(c − |b|) +
4|ab|Γ(c)Γ(c − |a| − |b| − 1)

Γ(c − |a|)Γ(c − |b|)

=
|ab|Γ(c)Γ(c − |a| − |b|)
Γ(c − |a|)Γ(c − |b|)

[
4 +

(1 + |a|)(1 + |b|)
c − |a| − |b| − 2

(
5 +

(2 + |a|)(2 + |b|)
c − |a| − |b| − 3

)]
.

(3.22)
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As a next step, we consider the first expression of equation. By making use of the triangle
inequality for the pochhammer symbol as stated in evaluating S1, we get

∞∑

n=2

n2
∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

∣∣∣∣ =
∞∑

n=0
(n + 2)2

∣∣∣∣
(a)n+1(b)n+1
(c)n+1(1)n+−1

∣∣∣∣

≤
∞∑

n=0
(n + 2)2

(|a|)n+1(|b|)n+1
(c)n+1(1)n+1

:= S2.

(3.23)

Now making use of relation (3.7), we obtain

S2 =
∞∑

n=0
(n + 1)2

(|a|)n+1(|b|)n+1
(c)n+1(1)n+1

+ 2
∞∑

n=0
(n + 1)

(|a|)n+1(|b|)n+1
(c)n+1(1)n+1

+
∞∑

n=0

(|a|)n+1(|b|)n+1
(c)n+1(1)n+1

,

(3.24)

where we write (n + 2)2 = (n + 1)2 + 2(n + 1) + 1. By repeating the use of (3.7) and the Gauss
summation formula, we have

S2 ≤ Γ(c)Γ(c − |a| − |b|)
Γ(c − |a|)Γ(c − |b|)

[ |ab|(|a| + 1)(|b| + 1)
c(1 + c)

+
3|ab|

c − |a| − |b| + 1
]
. (3.25)

The proof of Theorem 3.5 now follows by an application of the inequalities of the terms
dealing with S1, S2 and inequality (3.17).

Repeating the previous reasoning for b = a, we can improve the assertion of
Theorem 3.5 as follows.

Theorem 3.6. Let a, b ∈ C \ {0}. Also, let c be a real number such that c > max{0, 2R(a) + 3)}. If
f ∈ S, and if the inequality

|a|2Γ(c)Γ(c − 2R(a) − 1)
Γ(c − |a|)Γ(c − |a|)

[
4 +

(1 + |a|)(1 + |a|)
c − 2R(a) − 2

(
5 +

(2 + |a|)(2 + |a|)
c − 2R(a) − 3

)]

+
Γ(c)Γ(c − 2R(a))
Γ(c − |a|)Γ(c − |a|)

[
1 + 3

|a|2
c − 2R(a) − 1

+
|a|2(1 + |a|)(1 + |a|)

c(1 + c)

]

≤ (A − B)|τ |
1 + |B| + 1

(3.26)

is satisfied, then Ia,a,c(f) ∈ Pτ
γ (A,B).
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In the special case when b = 1, Theorem 3.2 immediately yields a result concerning the
Carlson-Shaffer operator L(a, c).

Theorem 3.7. Let a ∈ C \ {0}. Also, let c be a real number such that c > |a| + 4. If f ∈ S, and if the
inequality

|a|(c − 1)
(c − |a| − 1)(c − |a| − 2)

[
4 +

2(1 + |a|)
c − |a| − 3

(
5 +

3(2 + |a|)
c − |a| − 4

)]

+
c

(c − |a| − 1)

[
1 +

3|a|
c − |a| − 2

+
2|a|(1 + |a|)
c(1 + c)

]

≤ (A − B)|τ |
1 + |B| + 1

(3.27)

is satisfied, then L(a, c)(f) ∈ Pτ
γ (A,B).

Theorem 3.8. Let a, b ∈ C \ {0}. Also, let c be a real number such that c > |a| + |b| + P1, where
P1 = P1(k) is given with (1.22). If, for some k (0 ≤ k < ∞), f ∈ k −UCV, and the inequality

3F2(|a|, |b|, P1; c, 1; 1) +
P1γ |ab|

c
3F2(|a| + 1, |b| + 1, P1 + 1; c + 1, 2; 1) ≤ (A − B)|τ |

1 + |B| + 1 (3.28)

is satisfied, then Ia,b,c(f) ∈ Pτ
γ (A,B).

Proof. By means of (1.17) and (2.13), the following inequality must be satisfied:

∞∑

n=2

n
[
1 + γ(n − 1)

]∣∣∣∣
(a)n−1(b)n−1
(c)n−1(1)n−1

an

∣∣∣∣ ≤
(A − B)|τ |
1 + |B| . (3.29)

Applying the estimates for the coefficients given by (1.21), and making use of the
relations (3.7) and |(d)n| ≤ (|d|)n, condition (3.29) will be satisfied if

(1 + |B|)[3F2(|a|, |b|, P1; c, 1; 1) − 1]

+ (1 + |B|)P1γ |ab|
c

3F2(|a| + 1, |b| + 1, P1 + 1; c + 1, 2; 1) ≤ (A − B)|τ |
(3.30)

provided c > |a| + |b| + P1. The proof of the Theorem 3.8 is now completed by virtue of
hypothesis (3.28).
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Theorem 3.9. Let a, b ∈ C \ {0}. Also, let c be a real number such that c > |a| + |b| + P1, where
P1 = P1(k) is given with (1.22). If, for some k (0 ≤ k < ∞), f ∈ k − ST, and the inequality

3F2(|a|, |b|, P1; c, 1; 1) +
P1
(
1 + γ

)|ab|
c

3F2(|a| + 1, |b| + 1, P1 + 1; c + 1, 2; 1)

+
P1γ |ab|

c
3F2(|a| + 1, |b| + 1, P1 + 1; c + 1, 1; 1) ≤ (A − B)|τ |

1 + |B| + 1

(3.31)

is satisfied, then Ia,b,c(f) ∈ Pτ
γ (A,B).

Proof. Proceeding as in the proof of Theorem 3.8, and applying the estimates for the
coefficients given by (1.24) instead of (1.21), and making use of relations (3.7) and |(d)n| ≤
(|d|)n, the proof of the theorem by virtue of hypothesis (3.31) is complete.
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