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1. Introduction

Let {pn} and {qn} be the sequences of constants, real or complex, such that

Pn = p0 + p1 + p2 + · · · + pn =
n∑

ν=0

pν −→ ∞, as n −→ ∞,

Qn = q0 + q1 + q2 + · · · + qn =
n∑

ν=0

qν −→ ∞, as n −→ ∞,

Rn = p0qn + p1qn−1 + · · · + pnq0 =
n∑

ν=0

pνqn−ν −→ ∞, as n −→ ∞.

(1.1)

Given two sequences {pn} and {qn} convolution (p ∗ q) is defined as

Rn =
(
p ∗ q)n =

n∑

k=0

pn−kqk. (1.2)

Let
∑∞

n=0un be an infinite series with the sequence of its nth partial sums {sn}.
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We write

t
p,q
n =

1
Rn

n∑

k=0

pn−kqksk. (1.3)

If Rn /= 0, for all n, the generalized Nörlund transform of the sequence {sn} is the sequence
{tp,qn }.

If tp,qn → S, as n → ∞, then the series
∑∞

n=0un or sequence {sn} is summable to S by
generalized Nörlund method (Borwein [1]) and is denoted by

Sn −→ S
(
N,p, q

)
. (1.4)

The necessary and sufficient conditions for (N,p, q)method to be regular are

n∑

k=0

∣∣pn−kqk
∣∣ = O(|Rn|), (1.5)

and pn−k = o(|Rn|), as n → ∞ for every fixed k ≥ 0, for which qk /= 0.
Now

E1
n =

1
2n

n∑

k=0

(
n

k

)
sk. (1.6)

If E1
n → s, as n → ∞, then the series

∑∞
n=0un is said to be (E, 1) summable to s (Hardy [2]):

t
p,q,E
n =

1
Rn

n∑

k=0

pn−kqkE1
k

=
1
Rn

n∑

k=0

pn−kqk · 1
2k

k∑

ν=0

(
k

ν

)
sν.

(1.7)

If tp,q,En → ∞, as n → ∞, then we say that the series
∑∞

n=0un or the sequence {sn} is
summable to S by (N,p, q)(E, 1) summability method.

Particular Cases

(1) (N,p, q)(E, 1)mean reduces to (N,pn)(E, 1) summability mean if qn = 1, ∀n.
(2) (N,p, q)(E, 1)mean reduces to (N, 1/(n+1))(E, 1)mean if pn = 1/(n+1) and qn =

1, ∀n.
(3) (N,p, q)(E, 1)method reduces to (N, qn)(E, 1) if pn = 1, ∀n.
(4) (N,p, q)(E, 1) method reduces to (C, α)(E, 1) if pn =

(
n+α−1
α−1

)
, α > 0, and qn =

1, ∀n.
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Let f(t) be a periodic function with period 2π and integrable in the sense of Lebesgue over
the interval (−π,π).

Let its Fourier series be given by

f(t) ∼ 1
2
a0 +

∞∑

n=1

(an cos nt + bnsinnt). (1.8)

We use the following notations:

φ(t) = f(x + t) − f(x − t) − 2f(x),

Φ(t) =
∫ t

0

∣∣φ(u)
∣∣du,

τ =
[
1
t

]
= the integral part of

1
t
,

R

(
1
t

)
= Rτ, Rn = R(n),

Kn(t) =
1

2πRn

n∑

k=0

pn−kqk
cosk(t/2) cos(k + 1)(t/2)

sin (t/2)
.

(1.9)

2. Theorem

A quite good amount of work is known for Fourier series by ordinary summability method.
The purpose of this paper is to study Fourier series by (N,p, q)(E, 1) summability method in
the following form.

Theorem 2.1. Let {pn} and {qn} be positive monotonic, nonincreasing sequences of real numbers
such that

Rn =
n∑

k=0

pkqn−k −→ ∞, as n −→ ∞. (2.1)

Let α(t) be a positive, nondecreasing function of t. If

Φ(t) =
∫ t

0

∣∣φ(u)
∣∣du = o

(
t

α(1/t)

)
, as t −→ +0, (2.2)

α(n) −→ ∞, as n −→ ∞, (2.3)

then a sufficient condition that the Fourier Series (1.8) be summable (N,p, q)(E, 1) to f(x) at the
point t = x is

∫n

1

R(u)
uα(u)

du = O(Rn), as n −→ ∞. (2.4)



4 International Journal of Mathematics and Mathematical Sciences

3. Lemmas

Proof of the theorem needs some lemmas.

Lemma 3.1. For 0 ≤ t ≤ 1/n,

|Kn(t)| = O(n). (3.1)

Proof.

|Kn(t)| = 1
2πRn

∣∣∣∣∣

n∑

k=0

pn−kqk
cosk(t/2) sin(k + 1)(t/2)

sin (t/2)

∣∣∣∣∣

≤ 1
2πRn

n∑

k=0

pn−kqk
(k + 1)|sin (t/2)|

|sin (t/2)| = O(n)
1
Rn

n∑

k=0

pn−kqk = O(n).

(3.2)

Lemma 3.2. If {pn} and {qn} are nonnegative and nonincreasing, then for 0 ≤ a ≤ b < ∞, 0 ≤ t ≤ π,
and any n we have

1
2πRn

∣∣∣∣∣

b∑

k=a

pn−kqk
cosk(t/2) sin (k + 1)(t/2)

sin(t/2)

∣∣∣∣∣ = O

(
Rτ

tRn

)
. (3.3)

Proof.

1
2πRn

∣∣∣∣∣

b∑

k=a

pn−kqk
cosk(t/2) sin(k + 1)(t/2)

sin (t/2)

∣∣∣∣∣

≤ 1
tπRn

∣∣∣∣∣

b∑

k=a

pn−kqkcosk
(
t

2

)
sin(k + 1)

t

2

∣∣∣∣∣

=
1

tπRn

∣∣∣∣∣Im
{

b∑

k=a

pn−kqkcosk
(
t

2

)
ei(k+1)(t/2)

}∣∣∣∣∣

≤ 1
tπRn

∣∣∣∣∣

b∑

k=a

pn−kqkcosk
(
t

2

)
eikt/2

∣∣∣∣∣

∣∣∣eit/2
∣∣∣

≤ 1
tπRn

∣∣∣∣∣

b∑

k=a

pn−kqkcosk
(
t

2

)
eikt/2

∣∣∣∣∣

≤ 1
tπRn

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣∣∣∣∣

τ−1∑

k=a

pn−kqkcosk
(
t

2

)
e

ikt

2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

b∑

k=τ

pn−kqkcosk
(
t

2

)
e
ik

⎛

⎝
t

2

⎞

⎠

∣∣∣∣∣∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.4)
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Now considering first term of (3.4), we have

1
tπRn

∣∣∣∣∣

τ−1∑

k=a

pn−kqkcosk
(
t

2

)
eik(t/2)

∣∣∣∣∣ ≤
1

tπRn

τ−1∑

k=a

pn−kqk
∣∣∣eik(t/2)

∣∣∣ ≤ 1
tπRn

τ−1∑

k=a

pn−kqk

≤ 1
tπRn

τ−1∑

k=a

pτ−kqk ≤ 1
tπRn

(Rτ) = O

(
Rτ

tRn

)
.

(3.5)

Now considering second term of (3.4) and using Abel’s lemma, we have

1
tπRn

∣∣∣∣∣

b∑

k=τ

pn−kqkcosk
(
t

2

)
eik(t/2)

∣∣∣∣∣ ≤ 1
tπRn

∣∣∣∣∣

b∑

k=τ

pn−kqkeik(t/2)
∣∣∣∣∣

≤ 2pn−bqτ
tπRn

max
τ+1≤k≤b

∣∣∣∣∣
1 − ei(k+1)(t/2)

1 − eit/2

∣∣∣∣∣

≤ 4pn−bqτ
tπRn

∣∣∣∣∣
e−it/4

eit/4 − e−it/4

∣∣∣∣∣

≤ 2qτ
tπRn

(
pn−b
Pτ

)
Pτ

∣∣∣∣
1

sin (t/4)

∣∣∣∣

(
where Pτ =

τ∑

k=0

pτ−k

)

≤ 8qτ
tπRn

(
pn−b
Pτ

)
Pτ

∣∣∣∣
1
t

∣∣∣∣

≤ 8qτPτ

tπRn

≤ 8Rτ

tπRn

(
since Rτ =

τ∑

k=0

pτ−kqk ≥ Pτqτ

)

= O

(
Rτ

tRn

)
.

(3.6)

Using (3.5) and (3.6), we get the required result of Lemma 3.2.

4. Proof of Theorem

Following Zygmund [3], the nth partial sum sn(x) of the series (1.8) at t = x is given by

sn(x) = f(x) +
1
2π

∫π

0
φx(t)

sin(n + 1/2)t
sin (t/2)

dt. (4.1)
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So the (E, 1) mean of the series (1.8) at t = x is given by

E1
n(x) =

1
2n

n∑

k=0

(
n

k

)
sk(x)

= f(x) +
1

2n+1π

∫π

0

φx(t)
sin (t/2)

{
n∑

k=0

(
n

k

)
sin
(
k +

1
2

)
t

}
dt

= f(x) +
1

2n+1π

∫π

0

φx(t)
sin (t/2)

Im
{
eit/2

(
1 + eit

)n}
dt

= f(x) +
1

2n+1π

∫π

0

φx(t)
sin (t/2)

Im
{
eit/2(1 + cos t + i sin t)n

}
dt

= f(x) +
1

2n+1π

∫π

0

φx(t)
sin (t/2)

Im
{
eit/22ncosn

(
t

2

)(
cos

t

2
+ i sin

t

2

)n}
dt

= f(x) +
1

2n+1π

∫π

0

φx(t)
sin (t/2)

Im
{
eit/22ncosn

(
t

2

){(
cos

nt

2
+ i sin

nt

2

)}}
dt

= f(x) +
1
2π

∫π

0
φx(t)

cosn(t/2)sin(n + 1)(t/2)
sin (t/2)

dt.

(4.2)

Therefore (N,p, q) transform of {E1
n(x)} is given by

t
p,q,E
n (x) =

1
Rn

n∑

k=0

pn−kqkE1
k(x) = f(x) +

1
2π

∫π

0

1
Rn

n∑

k=0

pn−kqkφx(t)
cosk(t)sin(k + 1)(t/2)

sin (t/2)

= f(x) +
∫π

0
Kn(t)φx(t)dt,

t
p,q,E
n (x) − f(x) =

[∫1/n

0
+
∫δ

1/n
+
∫π

δ

]
Kn(t)φx(t)dt = I1 + I2 + I3

(
say
)
.

(4.3)

We have

|I1| ≤
∫1/n

0
|Kn(t)|

∣∣φx(t)
∣∣dt

= O(n)
∫1/n

0

∣∣φx(t)
∣∣dt

(
using Lemma 3.1

)

= O(n)o
(

1
nα(n)

) (
by (2.2)

)

= o

(
1

α(n)

)
= o(1) as n −→ ∞ (

by (2.3)
)
.

(4.4)
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Now we consider

|I2| ≤
∫δ

1/n
|Kn(t)|

∣∣φx(t)
∣∣dt (where 0 < δ < 1)

=
∫δ

1/n
O

(
R(1/t)
tRn

)∣∣φx(t)
∣∣dt

(
using Lemma 3.2

)

= O

(
1
Rn

)∫δ

1/n

(
R(1/t)

t

)∣∣φx(t)
∣∣dt

= O

(
1
Rn

)[{(
R(1/t)

t

)
φx(t)

}δ

1/n
−

∫δ

1/n
d

(
R(1/t)

t

)
φx(t)

]

= O

(
1

R(n)

)[{
o

(
R(1/t)
α(1/t)

)}δ

1/n
−

∫δ

1/n
φx(t)d

(
R(1/t)

t

)] (
by (2.1)

)

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o

(
1

R(n)

)[∫δ

1/n
φx(t)

{
d

(
R(1/t)α(1/t)

tα(1/t)

)}]

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o

(
1

R(n)

)

×
[∫δ

1/n
o

(
t

α(1/t)

){
dα(1/t)

(
R(1/t)
tα(1/t)

)}
+ α

(
1
t

)
d

(
R(1/t)
tα(1/t)

)]

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o(1)

[∫δ

1/n

dα(1/t)

{α(1/t)}2
+ o

(
1

R(n)

) ∫δ

1/n
t d

(
R(1/t)
tα(1/t)

)]

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o(1)

{
1

α(1/t)

}δ

1/n

+ o

(
1

R(n)

)[{
tR(1/t)
tα(1/t)

}δ

1/n
−
∫δ

1/n

(
R(1/t)
tα(1/t)

)
dt

]

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o

(
1

α(n)

)
+ o

(
1

R(n)

) ∫1

1/n

(
R(1/t)
tα(1/t)

)
dt

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o

(
1

R(n)

)∫n

1

(
R(u)
uα(u)

)
du

{
∵ 1

t
= u

}

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o

(
1

R(n)

)
O(Rn)

(
by (2.4)

)

= o

(
1

R(n)

)
+ o

(
1

α(n)

)
+ o(1)

= o(1), as n → ∞ (
by virtue of (2.1) and (2.2)

)
.

(4.5)
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Now by Riemann-Lebesgue theorem and by regularity of the method of summability we
have

I3 =
∫π

δ

|kn(t)|
∣∣φx(t)

∣∣dt

= o(1), as n −→ ∞.

(4.6)

This completes the proof of the theorem.

5. Corollaries

Following corollaries can be derived from our main theorem.

Corollary 5.1. If

Φ(t) = o

[
t

log (1/t)

]
, as t −→ +0, (5.1)

then the Fourier series (1.8) is (C, 1)(E, 1) summable to f(x) at the point t = x.

Corollary 5.2. If

Φ(t) = o(t), as t −→ +0, (5.2)

then the Fourier series (1.8) is (N,pn)(E, 1) summable to f(x) at the point t = x, provided that
{pn} be a positive, monotonic, and nonincreasing sequence of real numbers such that

pn = p0 + p1 + · · · + pn −→ ∞, as n −→ ∞. (5.3)
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