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We combine the theory of finite-dimensional lattice subspaces and the theory of regular values for
maps between smoothmanifolds in order to study the completion of real asset markets by options.
The strike asset of the options is supposed to be a nominal asset. The main result of the paper is
like in the case of the completion of a nominal asset market by options that if the strike asset of the
options is the riskless asset, then the completion of a real asset market is generically equal to �S .

1. Introduction

The investigation of the contingent claims’ hedging possibilities arising from a certainmarket
is an old question of study in mathematical finance. It is well known that in his seminal
work, Ross in [1] proved that a primitive market of nominal assets (assets whose payoff is
expressed in the unique-numeraire good) can become complete by implementing call and
put options on the elements of the primitive asset span if there is a portfolio whose payoff
is a contingent claim which separates the states of the world (called efficient fund). Later on,
Arditti and John in [2] proved that if an efficient fund exists, then almost every portfolio
payoff in the sense of the Lebesgue measure is also an efficient fund. John in [3] introduced
the notion of the maximally efficient fund which is a portfolio payoff which actually separates
the subsets of states which can be separated by the specific asset span. John in [3] also
indicated that the span of all the call and put options written on the elements of a specific
asset span is the span of the characteristic functions of these subsets of states. The span of
the call and put options on a maximally efficient fund is the span of the options written on
the asset span and almost every portfolio payoff is a maximally efficient fund. After that
in [4, 5] and recently in [6] the problem of completing a span of primitives with options
when the state space is infinite was studied. The completion of a market especially by options
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(and not by assets in general) is related to the Pareto Optimality properties of the competitive
equilibria in incomplete markets. A detailed study of this topic in the multiperiod model is
contained in [7]. Kountzakis and Polyrakis in [8] proved that if X is an asset span of nominal
assets andU is a span of strike vectors—being also a span of nominal assets—for the call and
put options written on the elements on X, then the span of the call and put options written
onX with strike vectors taken fromU is the sublattice of �S generated by the span Y ofX∪U
(Theorem 3), called completion of X by options with respect to U and denoted by FU(X). By
examining the case where U is one-dimensional, namely, U = [u] and u has an expansion
with positive coefficients with respect to the positive basis of the completion (Proposition 17),
the authors generalize the notion of the efficient fund, by defining the Fu(X)-efficient fund
(Definition 18) and proving that almost every payoff in Y is an Fu(X)-efficient fund (Theorem
21). The results of [8] rely on the theory of finite-dimensional lattice-subspaces in function
spaces, initially developed in [9, 10].

In this paper, we consider the numeraire payoff vectors of the real asset structure as
primitive securities of the asset span. We actually wonder whether such generic results about
taking a complete market through implementing call and put options written on the elements
on an existing real-asset span with respect to a nominal asset. We actually wonder whether
the span of the options written on the numeraire-good (and thus spot price-affected) payoffs
of n real assets with respect to a strike asset whose payoff is also expressed in terms of the
numeraire good is the complete market.

2. Nominal Asset-Markets and Their Completion by Options

We give some essential notions about markets of assets whose payoffs are expressed in
a single (numeraire) good. This is because the asset spans we are going to study are
formulated via real assets (namely, by assets whose payoffs are expressed in several goods)
but they are actually single-good asset spans, being the value asset spans of them.

Suppose that there are two periods of economic activity and S states of the world.
At time-period t = 0, there is uncertainty about the true state of the world, while at time-
period t = 1 this state is revealed. Suppose that there are n primitive assets in the market
which are nonredundant, namely, their payoff vectors x1, x2, . . . , xn ∈ �

S at time period t = 1
are linearly independent. A portfolio in this market is a vector θ = (θ1, θ2, . . . , θn) of �n in
which θi, i = 1, 2, . . . , n, denotes the number of units invested to the asset i. If θi ≥ 0, then
the investment to θi units of the asset i denotes a long position to these units. If θi < 0, then
the investment to θi units of the asset i denotes a short position to −θi units of the asset i. The
payoff of a portfolio θ, if the payoff vectors x1, x2, . . . , xn ∈ �

S are expressed in terms of the
numeraire as well, is the vector T(θ) =

∑n
i=1 θixi. The range of the operator T : �n → �

S

is called asset span of the market consisted by x1, x2, . . . , xn. A contingent claim is any liability
c ∈ �S , while a derivative is a contingent claimwhose payoff is connected through a functional
form to some portfolio payoff for a market of primitive assets. If for some contingent claim
c there is some portfolio θ such that T(θ) = c, then the contingent claim c is called replicated
or hedged. Any portfolio θ ∈ �

n such that T(θ) = c is called a replicating portfolio or hedging
portfolio of c. The most classical examples of derivatives are options, which include call options
and put options. If c ∈ �

S is a replicated contingent claim, then the call option written on c
with exercise price a is understood as a derivative claim written on it and the same holds also
for the put option written on c with exercise price a. The corresponding call option is the
claim (c − a1)+, while the put option is (a1 − c)+. The positive part x+ of a vector x ∈ �

S is
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defined by x ∨ 0, where if x, y ∈ �
S , the lattice operations on �S are defined in the following

way:

x ∨ y = sup
{
x, y

}
=
(
x1 ∨ y1, x2 ∨ y2, . . . , xS ∨ yS

)
,

x ∧ y = inf
{
x, y

}
=
(
x1 ∧ y1, x2 ∧ y2, . . . , xS ∧ yS

)
,

(2.1)

while xi ∨ yi = max{xi, yi}, xi ∧ yi = min{xi, yi} for any i = 1, 2, . . . , n. The negative part x− of
x ∈ �

S is defined as follows: x− = (−x) ∨ 0. The lattice identity x ∨ y + x ∧ y = x + y implies
the well-known put-call parity:

(c − a1)+ + (a1 − c)+ = c − a1. (2.2)

As we see, these lattice operations are established via the usual (component-wise) partial
ordering on �S and they make it a vector lattice. The meaning of the call option as a derivative
asset may be the following: it expresses the payoff of the buyer of the claim c at time-period
1, if she buys the claim c at the price a independently from the state of the world and if we
suppose that the state-payoffs c(s), s = 1, 2, . . . , S of c are the possible-tradable prices of c
at the states of the world. In the same way, the meaning of the put option as a derivative
asset may be the following: it expresses the payoff of the seller of the claim c at time-period
1 if she sells c (short) at the price a independently from the state of the world and if we
suppose that the state-payoffs c(s), s = 1, 2, . . . , S, of c are the possible-tradable prices of c at
the states of the world. The notion of the call and put option written on some asset c can be
generalized and the strike vector can be risky and different from 1. If we denote such a vector
by u, the corresponding call option written on c with exercise price a with respect to u is
the contingent claim whose payoff vector is (c − au)+. In the same way, the corresponding
put option is (au − c)+. The last call option is denoted by cu(c, a), while the put option is
denoted by pu(c, a). The call option cu(c, a) and the put option pu(c, a) are called nontrivial if
cu(c, a) > 0, pu(c, a) > 0, which means that for both of these vectors all of their components
are positive and at least one of them is nonzero. In such a case, the exercise price a is called
nontrivial exercise price for c. Finally, we say that two states s1, s2 ∈ {1, 2, . . . , S}with s1 /= s2 are
separated by the contingent claim (asset) c if c(s1)/= c(s2). Two states s1, s2 ∈ {1, 2, . . . , S} with
s1 /= s2 are separated by the asset span X if they are separated by some x ∈ X, where X is the
range of the payoff operator T .

2.1. The Completion of a Nominal-Asset Market by Options

For the sake of completeness of the present paper, we are going to present in brevity the main
results from [8]. We suppose that the payoff vectors of the primitive assets are x1, x2, . . . , xn
and the strike vector is u. The completion by options of the asset span X = [x1, x2, . . . , xn] with
respect to u is defined as follows: O1 = {cu(x, a) | x ∈ X, a ∈ �} and X1 is the subspace of
�
S generated by O1. For n ≥ 1, On = {cu(x, a) | x ∈ Xn−1, a ∈ �} and Xn is the subspace of

�
S generated by On. The completion by options of X with respect to u is the subspace Fu(X) =

⋃∞
n=1Xn of �S . Consider the setA = {x+1 , x−1 , x+2 , x−2 , . . . , u+, u−}. Any maximal set consisted by

linearly independent vectors of A is called a basic set of the asset span X = [x1, x2, . . . , xn]
with respect to u. A basic set is not necessarily unique, but the cardinality of all the basic sets
of X with respect to u is the same and it is denoted by r. In Theorem 3 of [8], it is proved that
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Fu(X) = S(Y), where S(Y) is the sublattice of �S generated by the subspace Y = [X∪{u}]. The
sublattice S(B) generated by a nonempty set B of vectors of �S is the set of finite suprema
of elements of the subspace [B] generated by it, but S(B) cannot be determined by using
this method. By Definition 10 and Theorem 11 in [8], Fu(X) = S(A). Hence the problem of
the determination of the completion by options of X with respect to u is equivalent to the
determination of the sublattice S(A) of �S . If {y1, y2, . . . , yr} is a basic set of the asset span X
with respect to the strike vector u, then the basic function β of y1, y2, . . . , yr is very important
in the determination of Fu(X). β was defined in [9] and in the case where the set of states of
the world is finite is defined as follows:

β(i) =
(
y1(i)
y(i)

,
y2(i)
y(i)

, . . . ,
yr(i)
y(i)

)

, (2.3)

for each i = 1, 2, . . . , S with y(i) > 0, where y = y1 + y2 + · · · + yr . This function takes values
on the simplex Δr−1 = {d ∈ �r+ | ∑r

j=1 dj = 1} of �r+ . As it is proved in [8], by using Theorem
3.6 in [10], the cardinality of the range of β for a basic set of the asset span X with respect
to u is the dimension of Fu(X) ([8], Theorems 8 and 9). Theorem 9 in [8] is an application in
Euclidean spaces of the Theorem 3.7 in [10] about the determination of the sublattice S(Y).
The last Theorem relies on the specification of a positive basis for S(Y). The usual (component-
wise) partial ordering on the space of the continuous functions C(Ω) = {x | x : Ω → �, x
is continuous}, where Ω is a compact, Hausdorff topological space is defined through the
positive cone C+(Ω) = {x ∈ C(Ω) | x(t) ≥ 0 for any t ∈ Ω} as follows: x ≥ y ⇔ x(t) ≥ y(t)
for any t ∈ Ω, or else x ≥ y ⇔ x − y ∈ C+(Ω). C(Ω) endowed with this partial ordering is a
vector lattice, because for any x, y ∈ C(Ω) the pointwise supremum x ∨ y and the pointwise
infimum x ∧ y exist in C(Ω). If Z is a subspace of C(Ω), the induced partial ordering on the
elements of Z is implied by the cone Z+ = Z ∩ C+(Ω). Z endowed with this partial ordering
is an ordered subspace of C(Ω). If for any x, y ∈ Z, supZ{x, y}, infZ{x, y} exist in Z, then Z is
called a lattice-subspace of C(Ω). It is true that in this case, for any x, y ∈ Z,

sup
Z

{
x, y

} ≥ x ∨ y ≥ x ∧ y ≥ inf
Z

{
x, y

}
. (2.4)

If for any x, y ∈ Z, x ∨ y, x ∧ y ∈ Z then Z, is a sublattice of C(Ω) and this is also the general
definition of a sublattice for an ordered subspace of a vector lattice. A sublattice is a lattice-
subspace but the converse is not always true. If Z is finite-dimensional and its dimension is
equal to r, then a positive basis {b1, b2, . . . , br} is a basis of Z such that Z+ = {x =

∑r
i=1 λibi |

λi ≥ 0 for any i = 1, 2, . . . , r}. If the ordered subspace Z has a positive basis {b1, b2, . . . , br},
then for any x ∈ Z+ the coefficients {λ1, λ2, . . . , λr} of its expansion in terms of this basis are
all positive real numbers, namely, λi ∈ �+ holds for any i = 1, 2, . . . , r. Also, if Z has a positive
basis, then if x, y ∈ Z and x =

∑r
i=1 λibi, y =

∑r
i=1 μibi, x ≥ y ⇔ λi ≥ μi for any i = 1, 2, . . . , r.

This implies

inf
Z

{
x, y

}
=

r∑

i=1

(
λi ∧ μi

)
bi, sup

Z

{
x, y

}
=

r∑

i=1

(
λi ∨ μi

)
bi; (2.5)

hence Z is a lattice-subspace of C(Ω). About the relation between positive bases and finite-
dimensional lattice-subspaces, the following theorems hold.
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(Choquet-Kendall)

A finite-dimensional ordered vector space E whose positive cone E+ is closed and generat-
ing (E = E+ − E+) is a vector lattice if and only if E has a positive basis.

(I. A. Polyrakis)

A finite-dimensional ordered vector space E is a vector lattice if and only if E has a positive
basis.

While a subspace may have several bases, if it has a positive basis this basis is unique
under the multiplication of its elements by positive numbers. If {b1, b2, . . . , br} is a positive
basis of Z, then {k1b1, k2b2, . . . , krbr} is a positive basis of Z too, where ki > 0, i = 1, 2, . . . , r.
If Ω = {1, 2, . . . , S}, then C(Ω) = �

S . The statement of Theorem 3.7 in [10] is the following
(supposing that x1, x2, . . . , xn are positive and linearly independent vectors of C(Ω)).

Theorem 3.7 (I. A. Polyrakis)

Let Z be the sublattice of C(Ω) generated by x1, x2, . . . , xn and let m ∈ �. Then the state-
ments (i) and (ii)are equivalent.

(i) dim(Z) = m.

(ii) R(β) = {P1, P2, . . . , Pm}.
If the statement (ii) is true, then Z is constructed as follows.

(a) Enumerate R(β) so that its first n vectors can be linear independent. Denote again
by Pi, i = 1, 2, . . . , m, the new enumeration and let Ii = β−1(Pi), i = 1, 2, . . . , m.

(b) Define the functions xn+k(t) = ak(t)z(t), t ∈ Ω, k = 1, 2, . . . , m − n, where ak is the
characteristic function of In+k . (z = x1 + x2 + · · · + xn).

(c) Z = [x1, . . . , xn, xn+1, . . . , xm].

As it is indicated in Propositions 6 and 7 in [8], F1(X) has a positive basis which is a partition
of the unit and the vectors of it have disjoint supports. Let us remember their statements.

(Proposition 6, [8])

Suppose that Z is a sublattice of �m . If the constant vector 1 = (1, 1, . . . , 1) is an element
of Z, then Z has a positive basis {b1, b2, . . . , br} which is a partition of the unit, that is, 1 =
∑r

i=1 bi, and for each vector bi we have bi(j) = 1 for each j ∈ sup p(bi).

(Proposition 7, [8])

Suppose that Z is a sublattice of �m with a positive basis

{b1, b2, . . . , br}. (2.6)

Then for each i the vector bi has minimal support in Z, that is, there is no x ∈ Z, x /= 0, such
that sup p(x) ⊂

/=
sup p(bi).

We show that sup p(y) = {i ∈ {1, 2, . . .S} | y(i)/= 0}.
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According to [8], Definition 18, a vector e ∈ Fu(X) is an Fu(X)-efficient fund if Fu(X) is
the linear subspace of �S which is generated by the set of nontrivial call options and the set of
nontrivial put options of e. Also, the statements of [8], Theorem 19, Proposition 20, Theorem
21 are the following.

(Theorem 19, [8])

Suppose that {b1, b2, . . . , bμ} is a positive basis of Fu(X), u =
∑μ

i=1 λibi, and λi > 0 for
each i. Then the vector e =

∑μ

i=1 κibi of Fu(X) is an Fu(X)-efficient fund if and only
if κi/λi /=κj/λj for each i /= j.

(Proposition 20, [8])

Each nonefficient subspace of Fu(X) is a proper sublattice of Fu(X).

(Theorem 21, [8])

Suppose that {b1, b2, . . . , bμ} is a positive basis of Fu(X) and that u =
∑μ

i=1 λibi with λi > 0 for
each i. Then

(i) the nonempty set D = Y \⋃i∈I(Y ∩ Zi), where {Zi | i ∈ I} is the set of nonefficient
subspaces of Fu(X), is the set of Fu(X)-efficient funds of Y and the Lebesgue
measure of Y is supported on D;

(ii) Fu(X) is the subspace of �S generated by the set of the call options {cu(x, a) | x ∈
Y, a ∈ �} written on the elements of Y . If u ∈ X, Fu(X) is the subspace X1 of
�
S generated by the set of call options O1 = {cu(x, a) | x ∈ X, a ∈ �} written

on the elements of X.

Theorem 21 indicates that the completion is attained at the first step of the inductive
procedure described above.

3. Real Assets and Their Importance

Suppose that there are two periods of economic activity and S states of the world. At time-
period t = 0, there is uncertainty about the true state of the world, while at time-period
t = 1 this state is revealed. We also consider L goods being consumed at time-period 1,
independently from the state of the world s faced by the individuals. We also consider
a numeraire good in terms of which all the values are expressed. The spot prices of these L
goods consumed at time-period 1 and if the state s is faced by the individuals are represented
by a vector p(s) ∈ �L++ , each component of which denotes the price of one unit of every such
good in terms of the numeraire. We also suppose that there exist n assets, whose payoffs are
expressed initially in terms of the goods consumed in the economy. We suppose that n < S,
a condition which is directly connected to the incompleteness of the spot markets for the
numeraire good at the time-period 1. The payoff of the i-asset at time-period 1 if the state s
is faced by the individuals is a “consumption” goods’ bundle Ai(s) ∈ �

L
+ for all the assets

i = 1, 2, . . . , n and for all the states of the world s = 1, 2, . . . , S, whether the state s occurs.
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The value of the payoff of the i-asset in terms of the numeraire is

p(s) ·Ai(s), s = 1, 2, . . . , S. (3.1)

The value payoff vector under prices p = (p(1), . . . , p(S)) of the i-asset at time-period 1 is

p •Ai =
(
p(1) ·Ai(1), . . . , p(S) ·Ai(S)

)
. (3.2)

The value payoff matrix under prices p of the n assets is denoted by

p •A (3.3)

and it is actually the matrix whose columns are the vectors p•Ai, i = 1, 2, . . . , n. The prices for
the goods are expressed in terms of the numeraire, or else the vectors p = (p(1), p(2), . . . , p(S))
are normalized and for this reason taken to vary on the interior of the simplex

Δ =

{

p ∈ �SL+ |
S∑

s=1

∥
∥p(s)

∥
∥
1 = 1

}

(3.4)

in terms of the induced topology of the Euclidean space �SL , which is an SL − 1-dimensional
manifold M (the interior of the simplex is consisted by those vectors which have nonzero
components).

Though the real assets’ payoffs are initially expressed in goods of consumption, we
may give a financial interpretation to them. The i-real asset can be viewed as an asset whose
payoff is expressed in L different currencies in every state of the world.Ai(s) can be viewed as
the payoff vector of this asset at time-period 1 if the state s is the true state of the world, where
in this case Aij(s) ≥ 0 denotes the units of the j-currency which delivers to the owner of one
unit of this asset, where j = 1, 2, . . . , L. The prices p(s) ∈ �L++ are related to the exchange rates
of another (“numeraire”) currency with respect to these L payoff currencies. For example,
pj(s) denotes the amount of the numeraire received by selling one unit of the j-currency at
time-period 1 and if the state s becomes true, where j = 1, 2, . . . , L. These “spot” prices allow
for the expression p • Ai which is the payoff vector of every such “multicurrency” asset in
terms of the numeraire currency across the states of the world.

For a simple definition of the real asset structures, see in [11]. The examples of real
assets mentioned in [11] are the futures contracts and the equity contracts.

A future contract for the good l = 1, 2, . . . , L is the financial contract which promises
its owner one unit of the good l independently of which is the state of the world that is going
to be true at the time-period 1. The numeraire payoff of this contract at the time-period 1
is equal to pl(s), s = 1, 2, . . . , S. The S × L-payoff matrix A of this contract with respect to
the consumption goods is a matrix which has all its columns equal to zero except the column
which corresponds to the l-good, whose entries are all equal to 1. The numeraire payoff vector
p •A in this case has the form we described.

An equity contract is connected to a stochastic production plan of some firm, or else it
is connected to the decision of production made under the state which is true. If we suppose
that the L goods enter the production of a firm, then a stochastic production plan is a vector
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y = (y(s), s = 1, 2, . . . , S) where every y(s) is a production plan in a technology set Y ∈ �
L .

The payoff vector of an equity contract relies on the vector p • y, whose components denote
the profits p(s) · y(s) earned by the firm at any state of the world s = 1, 2, . . . , S under the
relevant spot prices p(s) and the selection of the production plan y(s).

The corporate bonds and the earnings of the shareholders of a firm are straightly
connected to the way we define a call option on the numeraire payoff of a real asset with
respect to a nominal asset. For example, the shareholders’ payoff of a firm whose total
nominal value of its bond is b and its equity payoff vector written on the production value
vector p • y, as we mentioned before, is the call option (p • y − b1)+. This is the payoff vector
of the equity contract of the firm.

Magill and Shafer in [12] study the completeness properties of a real asset market
structure under the light of the rational expectations equilibrium studied in [13]. In their
paper, the authors indicate that (Proposition 2) if the number of real assets n is at least as great
as the number of states of the world, then generically the asset span [p •A1, p •A2, . . . , p •An]
is equivalent to the complete numeraire spot market. However, in this paper we refer to
the case where a real asset market structure is not equivalent to a complete spot market for
the numeraire. This is assured for example, by the condition that n < S we pose on the
number of the real assets. Hence we wonder whether the span [p • A1, p • A2, . . . , p • An]
can be completed by implementing call and put options written on elements of this asset
span with respect to some nominal asset whose payoff is expressed in terms of the numeraire
good across the states of the world. This nominal asset is denoted by u and it is supposed
to have positive payoffs in any state of the world. The nominal asset may be the riskless
bond, but we may select u to be some risky asset. We define the completion of the asset
span [p • A1, p • A2, . . . , p • An] by options with respect to the strike asset u in a way which
is the same to the one described to the Definition 2 in [8]. We first prove that generically
both in the prices p and in the payoffs Ai, i = 1, 2, . . . , n, of the assets, the numeraire payoffs
p • Ai, i = 1, 2, . . . , n, are nonredundant. For this goal, we use the Preimage Theorem for
smooth maps between manifolds. We also prove that the set of prices p and consumption-
good payoffs Ai, i = 1, 2, . . . , n, of the real assets, such that the numeraire payoff vectors
p•A1, p•A2, . . . , p•An separate the states of the world is generic inM×�SLn++ . This implies that
the completion of the market by options is the whole �S , because in this case the dimension
of the sublattice of �S generated by p •A1, p •A2, . . . , p •An, u is the number of the different
values of the basic function of the set of vectors {p • A1, p • A2, . . . , p • An, u}, according to
what is proved in [10], Theorem 3.7. We actually prove this result for the case where u = 1.
But in this case, generically we have that this number of different values is exactly equal to
S, hence the completion of the asset span [p • A1, p •A2, . . . , p •An] by options with respect
to the nominal asset u = 1 is the whole space �S . This is the main result of the present paper,
which is equivalent to the one which holds for the markets of nominal assets.

4. The Completion of a Real Assets’ Span with Respect to
a Nominal Asset

The call option written on the real asset Ai, i = 1, 2, . . . , n, with respect to the nominal asset
u ∈ �S++ under spot prices p and exercise price k ∈ � is the derivative on the numeraire payoff
p •Ai of Ai whose payoff vector is

(
p •Ai − ku

)+
. (4.1)
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This indicates that the payoff of this option at the state s is

max
{
p(s) ·Ai(s) − ku(s), 0

}
, (4.2)

expressed in units of the numeraire. We denote this option by cu(p • Ai, k). The equivalent
put option is defined in a similar way, namely, it is the claim (ku − p •Ai)+ and it is denoted
by pu(p •Ai, k).

The completion by options of the asset span [p •A1, p •A2, . . . , p •An] with respect to
the nominal asset u is determined as follows:

O1 =
{
cu(x, k), k ∈ �, x ∈ [

p •A1, p •A2, . . . , p •An

]}
, X1 = [O1], (4.3)

and for any natural numberm ≥ 1

Om = {cu(x, k), k ∈ �, x ∈ Xm−1}, Xm = [Om]. (4.4)

In the above definition X0 = X = A(p).
We denote byA(p) the numeraire-asset span [p •A1, p •A2, . . . , p •An] of the real asset

structure consisted by the assets Ai, i = 1, 2, . . . , n, if spot prices are equal to p. We also use
A(p) in order to denote the S × nmatrix whose columns are the vectors p •Ai, i = 1, 2, . . . , n.

Definition 4.1. The completion by options of A(p) with respect to u is the following subspace
Fu(A(p)) of �S :

Fu
(
A
(
p
))

=
∞⋃

m=1

Xm (4.5)

of �S .

By Theorem 3 in [8] what is proved is that Fu(A(p)) is the sublattice S(Y(p)) of �S

generated by the elements of the span Y(p) generated by the vectors p•A1, p•A2, . . . , p•An, u
of �S .

5. On the Generic Determination of the Completion

In the rest of the paper, we use two assumptions:

(A) There is not any zero element in the matrix A whose columns are the vectors Ai, or
else Ai ∈ �SL++ for any i = 1, 2, . . . , n.

(B) No free-goods are available, that is, p ∈ intΔ = M

We also suppose in the rest of the paper that n ≥ 1, S ≥ 2, L ≥ 2. These conditions about
both the numbers of the assets and the number of the states are crucial for the validity of
the results of the present paper, since they are related to the applicability of the theorems of
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Differential Topology mentioned in the next paragraphs. The matrix A can be also identified
with a vector of �SLn. We will use A by both ways.

Supposing that Ai ∈ �
SL
++ , our aim is to determine the basic set of the asset span A(p) in

the sense of Definition 10 and Theorem 11 in [8], generically in the prices and the payoffs
of the real assets. We remind that a basic set of the asset span A(p) whose completion
is taken with respect to u is a maximal subset of linearly independent vectors among the
set of positive and negative parts of the vectors p • A1, p • A2, . . . , p • An, u. But these
vectors are all positive, hence what we have to check is whether the variation of p and the
payoffs Ai, i = 1, 2, . . . , n, allow for these vectors to be linearly independent except negligible
sets.

We show that the set intΔ = M is a manifold itself. We are going to provide some
notions about manifolds in Euclidean spaces contained in many papers and books, such as in
the books [14–16] and in the paper [17, pages 52-53].

The definition of a smooth manifold contained in [15], for example, is the following:
A subset M ⊆ �

k is called a smooth manifold (of class Cr, r ≥ 1) of dimension m if each
x ∈ M has a neighborhood W ∩ M that is diffeomorphic to an open subset of the Euclidean space
�
m .

Suppose that F is an m-dimensional smooth manifold. A subsetN of F is a null set in
F if for any x ∈ N there is a chart (ψ,D, V ) of F around x such that ψ(D ∩N) has Lebesgue
measure zero in �

m (V ⊆ F,D ⊆ �
m ). We show that a chart of F around x ∈ F is a triple

(ψ,D, V ) in which D is an open subset of �m , V is a subset of F containing x, and ψ−1 : V →
D is a Cr-diffeomorphism. Every such subset V of F is called an open neighborhood of x in
F.

A subsetH of F is a set of full measure in F if F \H is a null set in F.
The above definitions are taken from [16, page 149].
A subset of full measure in F is called generic.
If F ′′ is a generic subset of F ′ and F ′ is a generic subset of F, then F ′′ is also a generic

subset of F. The implication holds for a finite number of such inclusions.
If a particular property depends on the elements of the manifold F and this property

is true for any element in a generic set G in F, we say that this property holds generically, or
almost everywhere or almost always.

A smooth function f : X → Y between the smooth manifoldsX, Y is regular at a point
x ∈ X if the derivative of f has full rank at the point x, or else if the differential (df)x is a
surjection. In this case, x is called a regular point of f .

A smooth function f : X → Y between the smooth manifolds X, Y is critical at a point
x ∈ X if f is not regular at x. In this case, x is called a critical point of f .

A smooth function f : X → Y between the smooth manifolds X, Y is transversal at
a point y ∈ Y if any x ∈ f−1(y) is a regular point of f . An alternative name for such a y is
regular value of f .

A y ∈ Y which belongs to the range of values of a smooth function f : X → Y between
the smooth manifolds X, Y is called a critical value of f if it is not a regular one.

The above definitions are taken form [16, pages 79-80], and [17, pages 52-53].
Also, it is easy to see that an m-dimensional manifoldM in a Euclidean space �k is a

set of (m+ 1)-dimensional Lebesgue measure zero. This arises especially by Proposition 11 in
Chapter 6 in [16].

We mention three well-known theorems of the Differential Topology which we are
going to use in the following.
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(Morse-Sard’s Theorem)

If F :M → N is a Ck-class map between the manifolds M,N with dimM = m, dimN = n,
and k > max{0, m − n}, then the set of critical values of F is a null set in N.

(Preimage Theorem)

If F : M → N is a smooth map between the smooth manifolds M, N of dimensions m, n,
respectively, while y ∈ N is a regular value of F, then the set F−1(y) is either empty (in the
case where m < n) or a smooth manifold of dimension m − n.

(Transversality Theorem)

Let F : M × Ω → N be a Cr-map into N, where the Cr -smooth manifolds M, Ω, N are of
dimensions m, p, n, respectively. Then if r > max{m − n, 0} and F is transversal to y, then
there exists a set of full measure Ω∗ ⊆ Ω such that for any x ∈ Ω∗ the map Fx : M → N,
Fx(t) = F(t, x), t ∈M is also transversal to y.

Finally, the statements of the three above theorems are contained in [16, pages 150, 84,
151], respectively.

Proposition 5.1. For the generic element (p,A) ∈ M × �SLn++ , the vectors {p • A1, . . . , p • An} are
linearly independent.

Proof. If A(p) is the matrix whose columns are the elements of the set

{
p •A1, . . . , p •An

}
, (5.1)

we have to show that for a set of full measure in M × �
SLn
++ , we have rankA(p) = n. We

define Tσ : M × �SLn++ → �, where Tσ(p,A) = detAσ(p) and Aσ(p) is the n × n matrix which
arises by selecting n lines-states among the S lines of the matrix A(p) which correspond to
the combination σ (a combination is a selection of n objects out of S objects, without having
their order in mind). Tσ is transversal to 0, namely, 0 is a regular value of Tσ . Since this
is true by Lemma 5.2, then T−1

σ (0) = Pσ is either empty or a submanifold of M × �
SLn
++ of

dimension SLn+SL−2, namely, a null setNσ ofM×�SLn++ . Repeating this for all combinations
σ ∈ Cn, we take that the set of pairs (p,A) in M × �SLn++ for which every n × n submatrix
of A(p) is singular is actually the set

⋂
σ∈Cn

Nσ , being a null set of M × �
SLn
++ , where Cn

denotes the set of n-combinations of the S objects. Namely, the generic matrix A(p) is of full
rank.

Lemma 5.2. The map Tσ :M × �SLn++ → �, where Tσ(p,A) = detAσ(p), is transversal to 0 for any
combination σ of n objects out of S.

Proof. Suppose that T−1
σ (0) is nonempty. Suppose that σ = {s1, s2, . . . , sn} is a selection of n

states out of S. The image of Tσ(p,A) of Tσ at (p,A) is the determinant of the n × n matrix
Aσ(p) whose b-row is

(
p(sb) ·A1(sb), p(sb) ·A2(sb), . . . , p(sb) ·An(sb)

)
, b = 1, 2, . . . , n. (5.2)
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Then we have

Tσ
(
p,A

)
=
∑

θ∈Sn
ε(θ)

(
p(s1) ·Aθ(s1)(s1)

)(
p(s2) ·Aθ(s2)(s2)

) · · · (p(sn) ·Aθ(sn)(sn)
)

=
∑

θ∈Sn
ε(θ)

⎡

⎣
L∑

ds1=1

p(s1)(ds1)Aθ(s1)(s1)(ds1)

⎤

⎦ · · ·
⎡

⎣
L∑

dsn=1

p(sn)(dsn)Aθ(sn)(sn)(dsn)

⎤

⎦

=
∑

θ∈Sn

L∑

ds1=1

L∑

ds2=1

· · ·
L∑

dsn=1

ε(θ)p(s1)(ds1) · · ·p(sn)(dsn)Aθ(s1)(s1)(ds1) · · ·Aθ(sn)(sn)(dsn),

(5.3)

where Sn is the set of permutations over n symbols, θ is any permutation in Sn, and ε(θ) is
the sign of the permutation θ. Also, p(sa)(dsa) is the spot price of the dsa-good corresponding
to the state sa, where a = 1, 2, . . . , n and dsa = 1, 2, . . . , L. In a similar way,Aθ(sa)(sa)(dsa) is the
amount of the dsa consumption good that the owner of one unit of the asset θ(sa) is going to
receive at the time-period 1 if the state sa occurs.

In order to show that Tσ is transversal to 0, we have to prove that for any (p,A) ∈
T−1
σ (0) we have rank(DTσ(p,A)) = 1. To show that, we have to verify that for any p ∈ T−1

σ (0)
at least one partial derivative

∂Tσ
(
p,A

)

∂p(sa)(dsa)
, a = 1, 2, . . . , n, sa ∈ σ, dsa = 1, 2, . . . , L, (5.4)

is nonzero. But this is true, since p ∈ M and all of the products

Aθ(s1)(s1)(ds1)Aθ(s2)(s2)(ds2) · · ·Aθ(sn)(sn)(dsn) (5.5)

are nonzero.

By the fact that A ∈ �
SLn
++ and by repeating the previous proof, we may take the

following.

Corollary 5.3. The map TAσ : M → �, where TAσ (p) = detAσ(p), is transversal to 0 for any
combination σ of n objects out of S, for allA ∈ �SLn++ .

By using the Transversality theorem, we can prove almost the same thing.

Corollary 5.4. The map TAσ : M → �, where TAσ (p) = detAσ(p), is transversal to 0 for any
combination σ of n objects out of S, where n < S, for every A which lies in a set of full measure in
�
SLn
++ .

Proof. From the previously proved Lemma 5.2, Tσ is transversal to zero for any combination
σ and for any (p,A) ∈ M × �SLn++ . Note that dimM = SL − 1, dim�

SLn
++ = SLn, and dim� = 1.

Also note that Tσ is a C∞-map, hence we may suppose that it is also a Cr -map with r >
(SL−1)−1 = SL−2. Hence the projection TAσ :M → �, where TAσ (p) = Tσ(p,A) for a specific
A in a set of full measure Gσ ⊆ �SLn++ , is transversal to zero.
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By Transversality theorem, we can also prove the following.

Proposition 5.5. For a set of full measure G ⊆ �
SLn
++ and for any asset structure A ∈ G, the set of

prices for which the vectors {p •A1, . . . , p •An} are linearly independent is generic inM.

Proof. Since from Lemma 5.2, Tσ is transversal to zero for any combination σ and for any
(p,A) ∈ M × �SLn++ and by Transversality theorem, there is a set of full measure Gσ of �SLn++
such that for any fixedA in this set, the projection TAσ is transversal to zero for each σ. Hence,
we may apply the Preimage theorem for TAσ : M → � whenever A lies in Gσ . Then we get
that (TAσ )

−1(0) is a smooth submanifold of M of dimension SL − 2 = (SL − 1) − 1. Hence,
(TAσ )

−1(0) is a null set in M, for any combination σ ∈ Cn. Consider the set of full measure
⋂
σ∈Cn

Gσ = G in �SLn++ . For any A ∈ G and for any σ, we have that (TAσ )
−1(0) is a null set in

M. Given anA ∈ G, the set of prices inM for which the vectors p •A1, . . . , p •An are linearly
dependent is the intersection

⋂
σ∈Cn

(TAσ )
−1(0), being a null set inM.

For any (p,A) ∈ M × �SLn++ , we define the basic function β : {1, 2, . . . , S} → Δn−1 (see in
[9], page 2797) of the vectors p •A1, p •A2, . . . , p •An

β
(
p,A

)
(s) =

1
y
(
p,A

)
(s)

(
y1
(
p,A

)
(s), y2

(
p,A

)
(s), . . . , yn

(
p,A

)
(s)

)
, (5.6)

where

y
(
p,A

)
i(s) = p(s) ·Ai(s), i = 1, 2, . . . , n,

y
(
p,A

)
(s) =

n∑

i=1

y
(
p,A

)
i(s),

(5.7)

for all the states s such that y(p,A)(s) > 0. Note that Δn−1 is the simplex of the positive cone
�
n
+ of �n .

Note that under the assumptions (A) and (B), β(p,A) is well defined for all s =
1, 2, . . . , S.

Proposition 5.6. For the generic element (p,A) ∈ M × �SLn++ , the vectors p • A1, p • A2, . . ., and
p •An are linearly independent and they separate the states of the world.

Proof. The set of (p,A) ∈M×�SLn++ for which there is at least one pair (s, s′) of disjoint states of
the world s /= s′ such that p(s) ·Ai(s) = p(s′) ·Ai(s′) for some asset i = 1, 2, . . . , n is denoted by
E. This set of (p,A) is actually the set

⋃n
i=1

⋃
(s,s′):s/= s′(F

−1
s,s′,i(0))

c, where F−1
s,s′,i : M × �SLn++ → �

is the map Fs,s′,i(p,A) = p(s) ·Ai(s)−p(s′) ·Ai(s′) and (F−1
s,s′,i(0))

c is the complement of F−1
s,s′,i(0)

inM × �SLn++ . Let us prove that Fs,s′,i is transversal to 0. We have to prove that for all (p,A) ∈
F−1
s,s′,i(0), rankDFs,s′,i(p,A) = 1. Note that for any such (p,A), we have ∂Fs,s′,i(p,A)/∂p(s)(d) =
Ai(d) > 0, where d = 1, 2, . . . , L denotes any of the consumption goods. Thus, by applying the
Preimage Theorem, F−1

s,s′,i(0) is a submanifold ofM × �SLn++ of dimension SLn + SL − 2, hence
a null set. Namely, the union

⋃n
i=1

⋃
(s,s′):s/= s′(F

−1
s,s′,i(0))

c is a set of full measure in M × �SLn++ .
Also, the set of (p,A) inM×�SLn++ for which p •A1, p •A2, . . . , p •An are linearly independent
in �S is a set of full measure as it is shown by Lemma 5.2, since this set is the complement
of
⋂
σ∈Cn

T−1
σ (0) inM × �SLn++ , being a null set (where Cn denotes the set of n-combinations of
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the S objects). Hence the set of (p,A) such that p•A1, p•A2, . . . , p•An are linearly independent
and every pair of different states (s, s′) is separated by some p •Ai, i = 1, 2, . . . , n, is the set

(
⋃

σ∈Cn

(
T−1
σ (0)

)−1
)c

∩
⎛

⎝
n⋃

i=1

⋃

(s,s′):s/= s′

(
F−1
s,s′,i(0)

)c
⎞

⎠, (5.8)

being the intersection of two sets of full measure, hence a set of full measure inM×�SLn++ .

Theorem 5.7. For the generic element (p,A) ∈ M × �SLn++ , the completion by options of the span
[p •A1, p •A2, . . . , p •An] with respect to the riskless bond is �S .

Proof. Consider the generic subset K of M × �
SLn
++ such that the states of the world are

separated by the vectors of {p • A1, p • A2, . . . , p • An}, while these vectors are linearly
independent. This set is indicated in the end of Proposition 5.6. Consider K1 ⊆ K to be
the subset of those (p,A) ∈ K for which 1 ∈ [p • A1, p • A2, . . . , p • An]. Then the basic
set of the market defined in [8] in the case where (p,A) ∈ K1 consists of the elements of
{p•A1, p•A2, . . . , p•An}; see also Definition 10 and Theorem 11 in [8]. Hence the completion
of the numeraire asset spanA(p) = [p•A1, p•A2, . . . , p•An]with respect to the riskless bond
1 is �S for the elements of K1. This is true because the values of the basic function β(p,A) of
the elements {p•A1, p•A2, . . . , p•An} of the basic set are disjoint and their cardinality is equal
to S, for any (p,A) ∈ K1. Then, due to Theorem 14 in [8] for any (p,A) ∈ K1, F1(A(p)) = �S .
Let us verify this fact. Suppose that there is some (p,A) ∈ K1 and some pair of states of the
world (s, s′) with s /= s′ such that β(p,A)(s) = β(p,A)(s′). Then the cardinality of R(β) is less
than S in this case and according to Theorem 9 in [8] and Theorem 3.7 in [10], this implies
dimF1(A(p)) < S. But if β(p,A)(s) = β(p,A)(s′), this implies

p(s) ·Aj(s)
∑n

i=1 p(s) ·Ai(s)
=

p(s′) ·Aj(s′)
∑n

i=1 p(s′) ·Ai(s′)
(5.9)

for this (p,A) and for any j = 1, 2, . . . , n. These equations imply

((
p •A1

)
(s),

(
p •A2

)
(s), . . . ,

(
p •An

)
(s)

)

=
((
p •A1

)(
s′
)
,
(
p •A2

)(
s′
)
, . . . ,

(
p •An

)(
s′
))

∑n
i=1
(
p •Ai

)
(s)

∑n
i=1
(
p •Ai

)
(s′)

,
(5.10)

namely,

(
p(s) ·A1(s), p(s) ·A2(s), . . . , p(s) ·An(s)

)

=
(
p
(
s′
) ·A1

(
s′
)
, p
(
s′
) ·A2

(
s′
)
, . . . , p

(
s′
) ·An

(
s′
))

∑n
i=1 p(s) ·Ai(s)

∑n
i=1 p(s′) ·Ai(s′)

.
(5.11)



International Journal of Mathematics and Mathematical Sciences 15

Then

p(s) ·Aj(s) = p
(
s′
) ·Aj

(
s′
)
∑n

i=1 p(s) ·Ai(s)
∑n

i=1 p(s′) ·Ai(s′)
(5.12)

for any j = 1, 2, . . . , n. Since we supposed that 1 ∈ [p • A1, p • A2, . . . , p • An], there are real
numbers kj , j = 1, 2, . . . , n such that

1 =
n∑

j=1

kj
(
p •Aj

)
. (5.13)

Then, 1 = 1(s) =
∑n

j=1 kj(p •Aj)(s) and 1 = 1(s′) =
∑n

j=1 kj(p •Aj)(s′). We get that

n∑

j=1

kj
(
p •Aj

)
(s) =

n∑

j=1

kj
(
p •Aj

)(
s′
)
, (5.14)

or else

1 =
n∑

j=1

kj
(
p(s) ·Aj(s)

)
=

n∑

j=1

kj
(
p
(
s′
) ·Aj

(
s′
))
. (5.15)

Then

1 =
n∑

j=1

kj
(
p
(
s′
) ·Aj

(
s′
))

∑n
i=1 p(s) ·Ai(s)

∑n
i=1 p(s′) ·Ai(s′)

=
n∑

j=1

kj
(
p
(
s′
) ·Ai

(
s′
))
. (5.16)

Hence, due to (5.9),
∑n

i=1(p(s) ·Ai)(s) =
∑n

i=1(p(s
′) ·Ai)(s′), which indicates that

p(s) ·Ai(s) = p
(
s′
) ·Ai

(
s′
)
, (5.17)

for any i = 1, 2, . . . , n. This is a contradiction, since this implies that (p,A) does not belong to
the setK such that the elements of {p •A1, p •A2, . . . , p •An} separate the states of the world,
since in this case the states of the pair (s, s′) where s /= s′ are not separated by the assets of
the set {p •A1, p •A2, . . . , p • An}. We were led to a contradiction because we supposed that
there exist some (p,A) ∈ K1 such that β(p,A)(s) = β(p,A)(s′) for some pair of states (s, s′),
where s /= s′. Then there is not any such (p,A) inK1, which implies that for any (p,A) ∈ K1 the
values of β(p,A) are disjoint; hence for the completion by options, the equality F1(A(p)) = �S

holds. Also, consider the complement of K1 in K, denoted by K2. In this case, the basic set of
the market is consisted by the elements of {p •A1, p •A2, . . . , p •An, 1}; see also Definition 10
and Theorem 11 in [8]. Hence the completion of the numeraire asset span A(p) = [p •A1, p •
A2, . . . , p • An] with respect to the riskless bond 1 is �S for the elements of K2. This is true
because the values of the basic function δ(p,A) of the elements {p • A1, p • A2, . . . , p • An}
of the basic set are disjoint and their cardinality is equal to S, for any (p,A) ∈ K2. Then, due
to Theorem 14 in [8] for any (p,A) ∈ K2, F1(A(p)) = �

S . Let us verify this fact. The basic
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function δ(p,A) of the basic set {p • A1, p • A2, . . . , p • An, 1} of the market for an element
(p,A) ∈ K2 has the form

δ
(
p,A

)
(s) =

1
∑n

i=1 p(s) ·Ai(s) + 1
(
p(s) ·A1(s), p(s) ·A2(s), . . . , p(s) ·An(s), 1

)
, (5.18)

for any s = 1, 2, . . . , S. If we suppose that the dimension of the completion F1(A(p)), which
is equal to the cardinality of the range of δ(p,A), is less than S for some (p,A) ∈ K2, we will
be led to a contradiction. If δ(p,A)(s) = δ(p,A)(s′) for some pair (s, s′) of states where s /= s′,
then

1
∑n

i=1 p(s) ·Ai(s) + 1
=

1
∑n

i=1 p(s′) ·Ai(s′) + 1
, (5.19)

an equation which corresponds to the equality of the last components of these vectors. This
equation implies

∑n
i=1 p(s) ·Ai(s) =

∑n
i=1 p(s

′) ·Ai(s′). Also, for each j = 1, 2, . . . , n, we have

p(s) ·Aj(s)
∑n

i=1 p(s) ·Ai(s) + 1
=

p(s′) ·Aj(s′)
∑n

i=1 p(s′) ·Ai(s′) + 1
. (5.20)

But from equation
∑n

i=1 p(s) ·Ai(s) =
∑n

i=1 p(s
′) ·Ai(s′), this also implies p(s) ·Aj(s) = p(s′) ·

Aj(s′) for any j = 1, 2, . . . , n. This is a contradiction, since this means that the states s, s′ are
not separated by the vectors p •A1, p •A2, . . . , p •An, namely, that (p,A) does not belong to
K. Then there is not any such (p,A) in K2, which implies that for any (p,A) ∈ K2 the values
of δ(p,A) are disjoint; hence the for the completion by options, the equality F1(A(p)) = �

S

holds for any (p,A) ∈ K2. Hence in any case for any (p,A) ∈ K the completion is equal to
�
S .

Note that some arguments of the last proof are the same to the ones contained in
Theorem 23 of [8].

6. Examples

First, we give an example of calculation for the completion of a real asset structure.

Example 6.1. Consider S = 4, L = 2, and n = 2, or else we suppose that there are four states
of the world, two goods in which the payoffs of the assets are primarily expressed and we
suppose that there are two assets A1 and A2 in the market. Suppose that the payoff-matrices
of the two assets are

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 4

2 3

1 5

1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6 4

8 4

5 5

2 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (6.1)
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respectively, where the rows of these matrices correspond to the states and the columns
correspond to the goods, or else the sl-element of the matrix Ai, i = 1, 2, for s = 1, 2, . . . , S
and l = 1, 2, . . . , L denotes the units of the l-good received at the time-period 1 by the owner
of one unit of the i-asset if the state s occurs (l = 1, 2). Also, suppose that the spot prices for
the numeraire are p = (p(1), p(2), p(3), p(4)) where p(1) = (1/12, 2/12), p(2) = (3/12, 1/12),
p(3) = (1/12, 1/12), and p(4) = (2/12, 1/12). We show that we take p to be normalized with
respect to the ‖ · ‖1-norm in �SL and each p(s), s = 1, 2, 3, 4, is consisted by the unitary prices
of the two consumed goods at the time-period 1 whether the state s occurs. Namely, the
numeraire payoff-vectors for the two assets i = 1, 2 are

p •A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
4
3
4
1
2
1
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, p •A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7
6
7
3
5
6
7
12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.2)

respectively. Note that the riskless bond 1 = (1, 1, 1, 1) does not belong to the span of p •
A1, p • A2. The basic function β of these three vectors y1 = p • A1, y2 = p • A2, and y3 = 1
is calculated as follows. First, we have that y1 + y2 + y3 = (35/12, 49/12, 7/3, 11/6). Then
the values β(s) = (1/y(s))(y1(s), y2(s), y3(s)) of β calculated at the states s = 1, 2, 3, 4 are the
following:

β(1) =
(

9
35
,
14
35
,
12
35

)

, β(2) =
(

9
49
,
28
49
,
12
49

)

,

β(3) =
(

3
14
,
5
14
,
6
14

)

, β(4) =
(

18
132

,
42
132

,
72
132

)

.

(6.3)

Since the four values of β are distinct, from the Theorem 14 in [8], we get that

dimF1
(
A
(
p
))

= 4, (6.4)

namely, that the completion F1(A(p)) of the numeraire asset span

A
(
p
)
=
[
p •A1, p •A2

]
(6.5)

with respect to the riskless bond 1 is the whole space �4 . If we would like to indicate a call
option on p • A1, we may consider the nontrivial call option with exercise price k = 1/2
with respect to the numeraire. The payoff vector of this call option is (p • A1 − (1/2)1)+ =
(1/4, 1/4, 0, 0). More specifically and according to the algorithm for the determination of the
positive basis of F1(A(p)) indicated in Theorem 8 and Theorem 9 of [8] and Theorem 3.7 of
[10], by enumerating the values of β, we get β(1) = P1, β(2) = P2, β(3) = P3, and β(4) = P4.
The vectors P1, P2, P3 are linearly independent. We notice that β(4) = P4; hence we define
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y′
4 = (0, 0, 0, 11/6). We also consider y′

1 = y1, y
′
2 = y2, y

′
3 = y3. The values of γ , being the basic

function of y′
1, y

′
2, y

′
3, y

′
4, are the following:

γ(1) =
(

9
35
,
14
35
,
12
35
, 0
)

= P ′
1, γ(2) =

(
9
49
,
28
49
,
12
49
, 0
)

= P ′
2,

γ(3) =
(

3
14
,
5
14
,
6
14
, 0
)

= P ′
3, γ(4) =

(
18
264

,
42
264

,
72
264

,
1
2

)

= P ′
4.

(6.6)

We denote by D the 4 × 4 matrix whose columns are the vectors P ′
1, P

′
2, P

′
3, P

′
4. The vectors

of the positive basis {b1, b2, b3, b4} of F1(A(p)) are determined through the matrix equation
(b1, b2, b3, b4)

T = D−1 · (y′
1, y

′
2, y

′
3, y

′
4)
T , where (b1, b2, b3, b4)

T is the 4× 4 matrix whose rows are
the vectors b1, b2, b3, b4 and (y′

1, y
′
2, y

′
3, y

′
4)
T is the 4 × 4 matrix whose rows are the vectors y′

1,
y′
2, y

′
3, y

′
4. We have that

D−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 −5
2

−65
12

75
44

−14
3

7
2

− 7
12

− 7
44

−28
3

0 7 −28
11

0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.7)

and the vectors of the positive basis {b1, b2, b3, b4} are b1 = (35/12, 0, 0, 0), b2 = (0, 49/12, 0, 0),
b3 = (0, 0, 7/3, 0), and b4 = (0, 0, 0, 11/3). Hence the basis b′1 = (1, 0, 0, 0), b′2 = (0, 1, 0, 0),
b′3 = (0, 0, 1, 0), b′4 = (0, 0, 0, 1) is also a positive basis of Fu(A(p)), which is equal to �

4 .
According to Theorem 21 of [8], F1(A(p)) is the subspace of �4 generated by {c1(x, a) | x ∈
Y(p), a ∈ �}, where Y(p) is the subspace of �4 generated by p •A1, p •A2, 1. As an example,
if we take 1, c1(p • A2, 7/12), c1(p • A2, 5/6), c1(p • A2, 7/6), we have respectively the set of
vectors: (1, 1, 1, 1), (7/12, 21/12, 3/12, 0), (1/3, 3/2, 0, 0), and (0, 7/6, 0, 0) which are linearly
independent and they generate the whole space �4 which is the completion by options of
A(p) with respect to u = 1.

Example 6.2. Continuing with the previous example, we have that the general element of the
manifold M is p = (p(1), p(2), p(3), p(4)) where p(1) = (p1(1), p2(1)), p(2) = (p1(2), p2(2)),
p(3) = (p1(3), p2(3)), p(4) = (p1(4), p2(4)), where the index i denotes the good, namely, pi(s)
is the price—in units of the numeraire—for the ownership of one unit of the i-good at the
time-period 1 if the state s occurs. The numeraire payoffs of the assets are

p •A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p1(1) + 4p2(1)

2p1(2) + 3p2(2)

p1(3) + 5p2(3)

p1(4) + p1(4)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, p •A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6p1(1) + 4p1(1)

8p1(2) + 4p2(2)

5p1(3) + 5p2(3)

2p1(4) + 3p2(4)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (6.8)
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The prices of M for which these payoffs are redundant are those for which all the 2 × 2
determinants consist of coordinates of these vectors which correspond to a certain pair of
states of the world are zero. The possible such pairs are

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). (6.9)

The determinants are those of the corresponding 2 × 2 matrices

H(1,2) =

[
p1(1) + 4p2(1) 6p1(1) + 4p2(1)

2p1(2) + 3p2(2) 8p1(2) + 4p2(2)

]

,

H(1,3) =

[
p1(1) + 4p2(1) 6p1(1) + 4p1(1)

p1(3) + 5p2(3) 5p1(3) + 5p2(3)

]

,

H(1,4) =

[
p1(1) + 4p2(1) 6p1(1) + 4p2(1)

p1(4) + p1(4) 2p1(4) + 3p2(4)

]

,

H(2,3) =

[
2p1(2) + 3p2(2) 8p1(2) + 4p2(2)

p1(3) + 5p2(3) 5p1(3) + 5p2(3)

]

,

H(2,4) =

[
2p1(2) + 3p2(2) 8p1(2) + 4p2(2)

p1(4) + p1(4) 2p1(4) + 3p2(4)

]

,

H(3,4) =

[
p1(3) + 5p2(3) 5p1(3) + 5p2(3)

p1(4) + p1(4) 2p1(4) + 3p2(4)

]

.

(6.10)

We are going to prove that the set of prices p = (p(1), p(2), p(3), p(4)) where p(1) =
(p1(1), p2(1)), p(2) = (p1(2), p2(2)), p(3) = (p1(3), p2(3)), and p(4) = (p1(4), p2(4)) in M,
with these vectors being whose components are all positive, such that the determinants
of the above six matrices are zero, is a negligible set (actually a null set) in the manifold
M = {p = (p(1), p(2), p(3), p(4)) | p(s) = (p1(s), p2(s)), where pi(s) > 0 for every i = 1, 2 and
for every s = 1, 2, 3, 4}. For two disjoint states s, s′, we define the map Ts,s′ : M → � with
Ts,s′(p) = detH(s,s′). The determinant of a matrix is a C∞-map; hence we may take it to be
a Cr -map for r large enough. Hence in order to apply the Preimage Theorem, we may take
r > 7 − 1 = 6, since dimM = 7 = SL − 1, dim� = 1. Hence, if T−1

s,s′(0) is a nonempty set, it is
a submanifold ofM of dimension 6, hence a null set in it. If we apply the Preimage Theorem
for all the pairs (s, s′) of disjoint states, we may find that the set of prices in M for which
p •A1, p •A2 are non-redundant is generic inM. This is due to the fact that either in the case
that T−1

s,s′(0) is nonempty or not for some pair of states (s, s′) where s /= s′, the set of prices, for
which the value payoffs p • A1, p • A2 of the real assets A1, A2 are redundant, is the subset
⋂

(s,s′):s/= s′ T
−1
s,s′(0) of M. This set is actually a null set. Let us verify whether some T−1

s,s′(0) is a
nonempty set or not in this case. If we would like to see whether T−1

1,2(0) is a nonempty set
in M, we calculate the determinant of the matrix H(1,2) and we may find that it is actually a
nonempty set, since p = (p(1), p(2), p(3), p(4))with p(1) = (1/16, 1/16), p(2) = (5/128, 5/64),
and, for example, p(3) = (48/128, 8/128), p(4) = (13/128, 28/128) belong to T−1

1,2(0). Hence,
T−1
1,2(0) is a six-dimensional submanifold of a seven-dimensional manifold which is M itself.
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Hence, T−1
1,2(0) is a closed and zero-Lebesgue measure set of M, namely, a null set. The same

search of nonemptiness can be repeated for the rest pairs of states (s, s′), where s /= s′.
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