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Making use of the generalized hypergeometric functions, we define a new subclass of uniformly
convex functions and a corresponding subclass of starlike functions with negative coefficients
and obtain coefficient estimates, extreme points, the radii of close-to-convexity, starlikeness and
convexity, and neighborhood results for the class TSl

m(α, β, γ). In particular, we obtain integral
means inequalities for the function f that belongs to the class TSl

m(α, β, γ) in the unit disc.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n (1.1)

which are analytic in the open unit disc U = {z : z ∈ C, |z| < 1} and normalized by f(0) =
f ′(0) − 1 = 0. Also denote by T the subclass of A consisting of functions of the form

f(z) = z −
∞∑

n=2
|an|zn, (1.2)

introduced and studied by Silverman [1]. For functions f ∈ A given by (1.1) and g ∈ A
given by g(z) = z +

∑∞
n=2 bnz

n, it is known [2] the definition of the Hadamard product
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(or Convolution) of f and g by

(
f ∗ g)(z) = z +

∞∑

n=2

anbnz
n, z ∈ U. (1.3)

For positive real values of α1, . . . , αl and β1, . . . , βm (βj /= 0,−1, . . . ; j = 1, 2, . . . , m) the
generalized hypergeometric function lFm(z) is defined by

lFm(z) ≡ lFm

(
α1, . . . , αl; β1, . . . , βm; z

)
:=

∞∑

n=0

(α1)n · · · (αl)n(
β1
)
n · · ·

(
βm
)
n

zn

n!

(l ≤ m + 1; l,m ∈ N0 := N ∪ {0}; z ∈ U),

(1.4)

where N denotes the set of all positive integers and (λ)k is the Pochhammer symbol defined
by

(λ)n =

⎧
⎨

⎩
1, n = 0,

λ(λ + 1)(λ + 2) · · · (λ + n − 1), n ∈ N.
(1.5)

The notation lFm is quite useful for representing many well-known functions such as the
exponential, the Binomial, the Bessel, the Laguerre polynomial, and others; for example, see
[3].

Let H(α1, . . . , αl; β1, . . . , βm) : A → A be a linear operator defined by

H
(
α1, . . . , αl; β1, . . . , βm

)
f(z) := zlFm

(
α1, α2, . . . , αl; β1, β2, . . . , βm; z

) ∗ f(z)

= z +
∞∑

n=2

Γnanz
n,

(1.6)

where

Γn =
(α1)n−1 · · · (αl)n−1(
β1
)
n−1 · · ·

(
βm
)
n−1

1
(n − 1)!

, (1.7)

unless otherwise stated. For notational simplicity, we can use a shorter notation Hl
m[α1] for

H(α1, . . . , αl; β1, . . . , βm) in the sequel. The linear operator Hl
m[α1] is called Dziok-Srivastava

operator (see [3]), includ (as its special cases) various other linear operators introduced and
studied by Carlson and Shaffer [4], Owa [5], Ruscheweyh [2], and Srivastava and Owa
[6]. Motivated by Goodman [7, 8], Rønning [9, 10] introduced and studied the following
subclasses of A. A function f ∈ A is said to be in the class Sp(α, β), uniformly β-starlike
functions if it satisfies the condition

Re
{
zf ′(z)
f(z)

− α

}
> β

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣,
(−1 < α ≤ 1; β ≥ 0

)
z ∈ U (1.8)



International Journal of Mathematics and Mathematical Sciences 3

and is said to be in the class UCV(α, β), uniformly β-convex functions if it satisfies the
condition

Re
{
1 +

zf ′′(z)
f ′(z)

− α

}
> β

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣,
(−1 < α ≤ 1; β ≥ 0

)
z ∈ U. (1.9)

Indeed it follows from (1.8) and (1.9) that

f ∈ UCV
(
α, β
)⇐⇒ zf ′ ∈ Sp

(
α, β
)
. (1.10)

The interesting geometric properties of these function classes were extensively studied by
Kanas et al., in [11–14]. Motivated by Altintas et al. [15], Murugusundaramoorthy and
Srivastava [16], and Murugusundaramoorthy and Magesh [17], now, we define a new
subclass uniformly starlike functions of complex order.

For −1 ≤ α < 1, β ≥ 0, and γ ∈ C \ {0}, we let TSl
m(α, β, γ) be the class of functions f

satisfying (1.2) with the analytic criterion

Re

{
1 +

1
γ

(
z
(
Hl

m[α1]f(z)
)′

Hl
m[α1]f(z)

− α

)}
> β

∣∣∣∣∣1 +
1
γ

(
z
(
Hl

m[α1]f(z)
)′

Hl
m[α1]f(z)

− 1

)∣∣∣∣∣, z ∈ U (1.11)

where Hl
m[α1]f(z) is given by (1.6).

By suitably specializing the values of l, m, α1, α2, . . . , αl, β1, β2, . . . , βm, α, γ , and β the
class TSl

m(α, β, γ), leads to various new subclasses of starlike functions of complex order. As
for illustrations, we present some examples for the cases.

Example 1.1. If l = 2, m = 1 with α1 = 1, α2 = 1, β1 = 1, and f of the form of (1.2), then

TS
(
α, β, γ

)
:=
{
Re
{
1 +

1
γ

(
zf ′(z)
f(z)

− α

)}
> β

∣∣∣∣1 +
1
γ

(
zf ′(z)
f(z)

− 1
)∣∣∣∣, z ∈ U

}
. (1.12)

Example 1.2. If l = 2, m = 1 with α1 = δ + 1 (δ > −1), α2 = 1, β1 = 1, and f of the form of (1.2),
then

TRδ

(
α, β, γ

)
:=

{
Re

{
1 +

1
γ

(
z
(
Dδf(z)

)′

Dδf(z)
− α

)}
> β

∣∣∣∣∣1 +
1
γ

(
z
(
Dδf(z)

)′

Dδf(z)
− 1

)∣∣∣∣∣, z ∈ U

}
,

(1.13)

where Dδ is called Ruscheweyh derivative of order δ (δ > −1) defined by

Dδf(z) :=
z

(1 − z)δ+1
∗ f(z) ≡ H2

1(δ + 1, 1; 1)f(z). (1.14)
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Example 1.3. If l = 2, m = 1 with α1 = μ + 1 (μ > −1), α2 = 1, β1 = μ + 2, and f of the form of
(1.2), then

TBμ

(
α, β, γ

)
=

{
Re

{
1 +

1
γ

(
z
(
Jμf(z)

)′

Jμf(z)
− α

)}
> β

∣∣∣∣∣1 +
1
γ

(
z
(
Jμf(z)

)′

Jμf(z)
− 1

)∣∣∣∣∣, z ∈ U

}
,

(1.15)

where Jμ is a Bernardi operator [18] defined by

Jμf(z) :=
μ + 1
zμ

∫z

0
tμ−1f(t)dt ≡ H2

1

(
μ + 1, 1;μ + 2

)
f(z). (1.16)

Example 1.4. If l = 2, m = 1 with α1 = a (a > 0), α2 = 1, β1 = c (c > 0), and f of the form of
(1.2), then

TLa
c

(
α, β, γ

)
:=

{
Re

{
1 +

1
γ

(
z
(
L(a, c)f(z)

)′

L(a, c)f(z)
− α

)}

> β

∣∣∣∣∣1 +
1
γ

(
z
(
L(a, c)f(z)

)′

L(a, c)f(z)
− 1

)∣∣∣∣∣, z ∈ U

}
,

(1.17)

where L(a, c) is a well-known Carlson-Shaffer linear operator [4] defined by

L(a, c)f(z) :=

( ∞∑

k=0

(a)k
(c)k

zk+1
)

∗ f(z) ≡ H2
1(a, 1; c)f(z). (1.18)

Also TLa
c (α, β, γ) was studied by Murugusundaramoorthy and Magesh [19].

The main object of this paper is to study some usual properties of the geometric
function theory such as the coefficient bound, extreme points, radii of close to convexity,
starlikeness, and convexity for the class TSl

m(α, β, γ). Further, we obtain neighborhood results
and integral means inequalities for aforementioned class.

2. Basic Properties

First we obtain the necessary and sufficient condition for functions f in the class TSl
m(α, β, γ).

Theorem 2.1. The necessary and sufficient condition for f of the form of (1.2) to be in the class
TSl

m(α, β, γ) is

∞∑

n=2

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γn|an| ≤ (1 − α) +

∣∣γ
∣∣(1 − β

)
, (2.1)

where −1 ≤ α < 1, β ≥ 0, and γ ∈ C \ {0}.
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Proof. Assume that f ∈ TSl
m(α, β, γ), then

Re

{
1 +

1
γ

(
z
(
Hl

m[α1]f(z)
)′

Hl
m[α1]f(z)

− α

)}
> β

∣∣∣∣∣1 +
1
γ

(
z
(
Hl

m[α1]f(z)
)′

Hl
m[α1]f(z)

− 1

)∣∣∣∣∣ ,

Re
{
1 +

1
γ

(
z(1 − α) −∑∞

n=2(n − α)Γn|an|zn
z −∑∞

n=2 Γn|an|zn
)}

> β

∣∣∣∣1 −
1
γ

(∑∞
n=2(n − 1)Γn|an|zn
z −∑∞

n=2 Γn|an|zn
)∣∣∣∣ .

(2.2)

Letting z → 1− along the real axis, we have

{
1 +

1∣∣γ
∣∣

(
(1 − α) −∑∞

n=2(n − α)Γn|an|
1 −∑∞

n=2 Γn|an|
)}

> β

[
1 − 1∣∣γ

∣∣

(∑∞
n=2(n − 1)Γn|an|
1 −∑∞

n=2 Γn|an|
)]

. (2.3)

Hence, by maximum modulus theorem, the simple computational leads the desired
inequality

∞∑

n=2

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γn|an| ≤ (1 − α) +

∣∣γ
∣∣(1 − β

)
. (2.4)

Conversely, suppose that (2.1) is true for z ∈ U. Then

Re

{
1 +

1
γ

(
z
(
Hl

m[α1]f(z)
)′

Hl
m[α1]f(z)

− α

)}
− β

∣∣∣∣∣1 +
1
γ

(
z
(
Hl

m[α1]f(z)
)′

Hl
m[α1]f(z)

− 1

)∣∣∣∣∣ > 0 (2.5)

if

1 +
1∣∣γ
∣∣

(
(1 − α) −∑∞

n=2(n − α)Γn|an||z|n−1
1 −∑∞

n=2 Γn|an||z|n−1
)

− β

[
1 − 1∣∣γ

∣∣

(∑∞
n=2(n − 1)Γn|an||z|n−1
1 −∑∞

n=2 Γn|an||z|n−1
)]

> 0.

(2.6)

That is if

∞∑

n=2

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γn|an| ≤ (1 − α) +

∣∣γ
∣∣(1 − β

)
, (2.7)

which completes the proof.

Corollary 2.2. Let the function f defined by (1.2) belong to TSl
m(α, β, γ). Then

|an| ≤
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γn

, (2.8)
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n ≥ 2, −1 ≤ α < 1, β ≥ 0 and, γ ∈ C \ {0}, with equality for

f(z) = z −
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γn

zn. (2.9)

Next we state the following theorem on extreme points for the class TSl
m(α, β, γ)

without proof.

Theorem 2.3 (Extreme Points). Let

f1(z) = z, fn(z) = z −
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γn

zn for n = 2, 3, 4, . . . . (2.10)

Then f ∈ TSl
m(α, β, γ) if and only if f can be expressed in the form f(z) =

∑∞
n=1 λnfn(z), where

λn ≥ 0 and
∑∞

n=1 λn = 1.

3. Close-to-Convexity, Starlikeness, and Convexity

We determine the radii of close-to-convexity, starlikeness, and convexity results for functions
in the class TSl

m(α, β, γ) in the following theorems.

Theorem 3.1. Let f ∈ TSl
m(α, β, γ). Then f is close-to-convex of order δ (0 ≤ δ < 1) in the disc

|z| < r1, where

r1 = inf
n≥2

[
(1 − δ)

n

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

[
(1 − α) +

∣∣γ
∣∣(1 − β

)] Γn

]1/(n−1)
. (3.1)

Proof. Let f belong to T. It is known [20] that f is close-to-convex of order δ, if it satisfies the
condition

∣∣f ′(z) − 1
∣∣ < 1 − δ. (3.2)

For the left-hand side of (3.2) we have

∣∣f ′(z) − 1
∣∣ ≤

∞∑

n=2

n|an||z|n−1. (3.3)

The last expression is less than 1 − δ if

∞∑

n=2

n

1 − δ
|an||z|n−1 < 1. (3.4)
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Using the fact that f ∈ TSl
m(α, β, γ) if and only if

∞∑

n=2

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

(1 − α) +
∣∣γ
∣∣(1 − β

) Γn|an| < 1. (3.5)

we can say that (3.2) is true if

n

1 − δ
|z|n−1 ≤

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

(1 − α) +
∣∣γ
∣∣(1 − β

) Γn. (3.6)

Or, equivalently,

|z| ≤
[
(1 − δ)

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

n
[
(1 − α) +

∣∣γ
∣∣(1 − β

)] Γn

]1/(n−1)
, (3.7)

which completes the proof.

Theorem 3.2. Let f ∈ TSl
m(α, β, γ). Then the following are given.

(1) f is starlike of order δ (0 ≤ δ < 1) in the disc |z| < r2, where

r2 = inf
n≥2

{
(1 − δ)
(n − δ)

[(n +
∣∣γ
∣∣)(1 − β) − (α − β)]

[(1 − α) +
∣∣γ
∣∣(1 − β)]

Γn

}1/(n−1)
. (3.8)

(2) f is convex of order δ (0 ≤ δ < 1) in the unit disc |z| < r3, where

r3 = inf
n≥2

{
(1 − δ)
n(n − δ)

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

[
(1 − α) +

∣∣γ
∣∣(1 − β

)] Γn

}1/(n−1)
. (3.9)

Each of these results is sharp for the extremal function f given by (2.10).

Proof. Let f ∈ T. It is known [1] that f is starlike of order δ, if it satisfies the condition

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ < 1 − δ. (3.10)

For the left-hand side of (3.10)we have

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ ≤
∑∞

n=2(n − 1)|an||z|n−1
1 −∑∞

n=2|an||z|n−1
. (3.11)
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The last expression is less than 1 − δ if

∞∑

n=2

n − δ

1 − δ
|an||z|n−1 < 1. (3.12)

Using the fact that f ∈ TSl
m(α, β, γ) if and only if

∞∑

n=2

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

(1 − α) +
∣∣γ
∣∣(1 − β

) Γn|an| < 1. (3.13)

we can say that (3.10) is true if

n − δ

1 − δ
|z|n−1 <

[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

(1 − α) +
∣∣γ
∣∣(1 − β

) Γn. (3.14)

Or, equivalently,

|z|n−1 < (1 − δ)
[(
n +
∣∣γ
∣∣)(1 − β

) − (α − β
)]

(n − δ)
[
(1 − α) +

∣∣γ
∣∣(1 − β

)] Γn, (3.15)

which yields the starlikeness of the family.
Using the fact that f is convex if and only if zf ′ is starlike, we can prove (2), on lines

similar to those the proof of (1).

4. Integral Means

In order to find the integral means inequality and to verify the Silverman Conjuncture [21]
for f ∈ TSl

m(α, β, γ) we need the following subordination result due to Littlewood [22].

Lemma 4.1 (see [22]). If the functions f and g are analytic inU with g ≺ f , then

∫2π

0

∣∣∣g
(
reiθ
)∣∣∣

η
dθ ≤

∫2π

0

∣∣∣f
(
reiθ
)∣∣∣

η
dθ, η > 0, z = reiθ, 0 < r < 1. (4.1)

Applying Theorem 2.1 with the extremal function and Lemma 4.1, we prove the
following theorem.

Theorem 4.2. Let η > 0. If f ∈ TSlm(α, β, γ) and {Φ(α, β, γ, n)}∞n=2 is nondecreasing sequence, then,
for z = reiθ and 0 < r < 1, one has

∫2π

0

∣∣∣f(reiθ)
∣∣∣
η
dθ ≤

∫2π

0

∣∣∣f2(reiθ)
∣∣∣
η
dθ, (4.2)

where f2(z) = z−((1−α)+|γ |(1−β))z2/Φ(α, β, γ, 2), andΦ(α, β, γ, n) = [(n+|γ |)(1−β)−(α−β)]Γn.
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Proof. Let f of the form of (1.2) and f2(z) = z − ((1 − α) + |γ |(1 − β))z2/Φ(α, β, γ, 2), then we
must show that

∫2π

0

∣∣∣∣∣1 −
∞∑

n=2

anz
n−1
∣∣∣∣∣

η

dθ ≤
∫2π

0

∣∣∣∣∣1 −
(1 − α) +

∣∣γ
∣∣(1 − β)

Φ(α, β, γ, 2)
z

∣∣∣∣∣

η

dθ. (4.3)

By Lemma 4.1, it suffices to show that

1 −
∞∑

n=2
|an|zn−1 ≺ 1 − (1 − α) +

∣∣γ
∣∣(1 − β

)

Φ
(
α, β, γ, 2

) z. (4.4)

Setting

1 −
∞∑

n=2
|an|zn−1 = 1 − (1 − α) +

∣∣γ
∣∣(1 − β

)

Φ
(
α, β, γ, 2

) w(z), (4.5)

from (4.5) and (2.1)we obtain

|w(z)| =
∣∣∣∣∣

∞∑

n=2

Φ
(
α, β, γ, n

)

(1 − α) +
∣∣γ
∣∣(1 − β

)anz
n−1
∣∣∣∣∣

≤ |z|
∞∑

n=2

Φ
(
α, β, γ, n

)

(1 − α) +
∣∣γ
∣∣(1 − β

) |an|

≤ |z| < 1.

(4.6)

This completes the proof of Theorem 4.2.

5. Inclusion Relations Involving Nδ(e)

To study about the inclusion relations involvingNδ(e)we need the following definitions due
to Goodman [23] and Ruscheweyh [24]. The n, δ neighborhood of function f ∈ T is given by

Nδ

(
f
)
=

{
g ∈ T : g(z) = z −

∞∑

n=2
|bn|zn,

∞∑

n=2

n|an − bn| ≤ δ

}
. (5.1)

Particularly for the identity function e(z) = z, we have

Nδ(e) =

{
g ∈ T : g(z) = z −

∞∑

n=2
|bn|zn,

∞∑

n=2

n|bn| ≤ δ

}
. (5.2)
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Theorem 5.1. Let

δ =
2
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

, (5.3)

where Γ2 = (α1 · · ·α2)/(β1 · · · β2). Then TSl
m(α, β, γ) ⊂ Nδ(e).

Proof. For f ∈ TSl
m(α, β, γ), Theorem 2.1 yields

[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

∞∑

n=2
|an| ≤ (1 − α) +

∣∣γ
∣∣(1 − β

)
(5.4)

so that

∞∑

n=2
|an| ≤

(1 − α) +
∣∣γ
∣∣(1 − β

)
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

. (5.5)

On the other hand, from (2.1) and (5.5) we have

(
1 − β

)
Γ2

∞∑

n=2

n|an| ≤ (1 − α) +
∣∣γ
∣∣(1 − β

)
+
[(
α − β

) − ∣∣γ∣∣(1 − β
)]
Γ2

∞∑

n=2
|an|

≤ (1 − α) +
∣∣γ
∣∣(1 − β

)
+
[(
α − β

) − ∣∣γ∣∣(1 − β
)]

× Γ2
(1 − α) +

∣∣γ
∣∣(1 − β

)
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

≤
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
2
(
1 − β

)
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)] ,

∞∑

n=2

n|an| ≤
2
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

.

(5.6)

Now we determine the neighborhood for each of the class TSl
m(α, β, γ) which we

define as follows. A function f ∈ T is said to be in the class TSl
m(α, β, γ) if there exists a

function g ∈ TSl
m(α, β, γ) such that

∣∣∣∣
f(z)
g(z)

− 1
∣∣∣∣ < 1 − η,

(
z ∈ U, 0 ≤ η < 1

)
. (5.7)

Theorem 5.2. If g ∈ TSl
m(α, β, γ) and

η = 1 − δ
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

2
[((

2 +
∣∣γ
∣∣)(1 − β

) − (α − β
))
Γ2 −

(
(1 − α) +

∣∣γ
∣∣(1 − β

))] , (5.8)

where Γ2 = (α1 · · ·α2)/(β1 · · · β2), thenNδ(g) ⊂ TSl
m(α, β, γ, η).
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Proof. Suppose that f ∈ Nδ(g), then we find from (5.6) that

∞∑

n=2
|an − bn| ≤ δ, (5.9)

which implies the coefficient inequality

∞∑

n=2
|an − bn| ≤ δ

2
. (5.10)

Next, since g ∈ TSl
m(α, β, γ), we have

∞∑

n=2
|bn| ≤

2
[
(1 − α) +

∣∣γ
∣∣(1 − β

)]
[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2

(5.11)

so that

∣∣∣∣
f(z)
g(z)

− 1
∣∣∣∣ <
∑∞

n=2|an − bn|
1 −∑∞

n=2|bn|

≤ δ

2
×

[(
2 +
∣∣γ
∣∣)(1 − β

) − (α − β
)]
Γ2[((

2 +
∣∣γ
∣∣)(1 − β

) − (α − β
))
Γ2 −

(
(1 − α) +

∣∣γ
∣∣(1 − β

))]

≤ 1 − η,

(5.12)

provided that η is given precisely by (5.8). Thus by definition, f ∈ TSl
m(α, β, γ, η) for η given

by (5.8), which completes the proof.

Concluding Remarks

By suitably specializing the various parameters involved in Theorems 2.1 to 5.2, we can state
the corresponding results for the new subclasses defined in Examples 1.1 to 1.4 and also for
many relatively more familiar function classes.
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