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We show that the equivalence of the Apollonian metric and its inner metric remains unchanged by
the removal of a point from the domain. For this we need to assume that the complement of the
domain is not contained in a hyperplane. This improves a result of the authors wherein the same
conclusion was reached under the stronger assumption that the domain contains an exterior point.

1. Introduction and the Main Result

The Apollonian metric was first introduced by Barbilian [1] in 1934-35 and then rediscovered
by Beardon [2] in 1995. This metric has also been considered in [3–14]. It should also be
noted that the same metric has been studied from a different perspective under the name of
the Barbilian metric, for instance, in [1, 15–20]; compare, for example, [21] for a historical
overview and more references. One interesting historical point, made in [21], is that Barbilian
himself proposed the name “Apollonian metric” in 1959, which was later independently
coined by Beardon [2]. Recently, the Apollonian metric has also been studied with certain
group structures [22].

In this paper we mainly study the equivalence of the Apollonian metric and its inner
metric proving a result which is a generalization of Theorem 5.1 in [12]. In addition, we also
consider the jD metric and its inner metric, namely, the quasihyperbolic metric. Inequalities
among these metrics (see Table 1) and the geometric characterization of these inequalities in
certain domains have been studied in [12, 13]. We start by defining the above metrics and
stating our main result. The notation used mostly is from the standard books by Beardon [23]
and Vuorinen [24].

We will be considering domains (open connected nonempty sets) D in the Möbius
space Rn := Rn ∪ {∞}. The “Apollonian metric” is defined for x, y ∈ D � Rn by
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Table 1: Inequalities between the metrics αD, jD, α̃D, and kD. The subscripts are omitted for clarity with
the understanding that every metric is defined in the same domain. The A-column refers to whether the
inequality can occur in simply connected planar domains, the B-column refers to whether it can occur in
proper subdomains of Rn.

No. Inequality A B No. Inequality A B
(1) α ≈ j ≈ α̃ ≈ k + + (7) α ≈ j � α̃� k − −
(2) α� j ≈ α̃ ≈ k − − (8) α� j � α̃� k − −
(3) α ≈ j ≈ α̃� k − − (9) α ≈ α̃� j ≈ k − +
(4) α� j ≈ α̃� k − − (10) α� α̃� j ≈ k − +
(5) α ≈ j � α̃ ≈ k + + (11) α ≈ α̃� j � k − −
(6) α� j � α̃ ≈ k + + (12) α� α̃� j � k − −

the formula

αD
(

x, y
)

:= sup
a,b∈∂D

log

∣

∣a − y
∣

∣

∣

∣b − x
∣

∣

∣

∣a − x
∣

∣

∣

∣b − y
∣

∣

, (1.1)

(with the understanding that |∞ − x|/|∞ − y| = 1) where ∂D denotes the boundary of D. It
is in fact a metric if and only if the complement of D is not contained in a hyperplane and a
pseudometric otherwise, as was noted in [2, Theorem 1.1]. Some of the main reasons for the
interest in the metric are that

(i) the formula has a very nice geometric interpretation, see Section 2.2,

(ii) it is invariant under Möbius map,

(iii) it equals the hyperbolic metric in balls and half-spaces.

Now we define the inner metric as follows. Let γ : [0, 1] → D ⊂ Rn be a path, that is,
a continuous function. If d is a metric in D, then the d-length of γ is defined by

d
(

γ
)

:= sup
k−1
∑

i=0

d
(

γ(ti), γ(ti+1)
)

, (1.2)

where the supremum is taken over all k < ∞ and all sequences {ti} satisfying 0 = t0 < t1 <
· · · < tk = 1. All the paths in this paper are assumed to be rectifiable, that is, to have finite
Euclidean length. The inner metric of the metric d is defined by the formula

˜d
(

x, y
)

:= inf
γ
d
(

γ
)

, (1.3)

where the infimum is taken over all paths γ connecting x and y in D. We denote the inner
metric of the Apollonian metric by α̃D and call it the “Apollonian inner metric”. Strictly
speaking, the Apollonian inner metric is only a pseudometric in a general domain D � R

n;
it is a metric if and only if the complement of D is not contained in an (n − 2)-dimensional
plane [10, Theorem 1.2]. We say that a path γ joining x, y is a geodesic (of the metric d) if
d(x, y) = d(γ); there always exists a geodesic path γ for the Apollonian inner metric α̃D
connecting x and y in D such that α̃D(γ) = α̃D(x, y) [10].



International Journal of Mathematics and Mathematical Sciences 3

Let D � R
n be a domain and x, y ∈ D. The jD metric [25], which is a modification of a

metric from [26], is defined by

jD
(

x, y
)

:= log

(

1 +

∣

∣x − y
∣

∣

min
{

d(x, ∂D), d
(

y, ∂D
)}

)

, (1.4)

where d(x, ∂D) denotes the shortest Euclidean distance from x to the boundary ∂D of D. The
quasihyperbolic metric from [27] is defined by

kD
(

x, y
)

:= inf
γ

∫

|dz|
d(z, ∂D)

, (1.5)

where the infimum is taken over all paths γ joining x and y in D. Note that the
quasihyperbolic metric is the inner metric of the jD metric.

We now recall some relations on the set of metrics inD for an overview of our previous
work in [12].

Definition 1.1. Let d and d′ be metrics on D.

(i) We write d � d′ if there exists a constant K > 0 such that d ≤ Kd′, similarly for the
relation d � d′.

(ii) We write d ≈ d′ if d � d′ and d � d′.

(iii) We write d � d′ if d � d′ and d /�d′.

Let us first of all note that the following inequalities hold in every domain D � Rn:

αD � jD � kD, αD � α̃D � kD. (1.6)

The first two are from [2, Theorem 3.2] and the second two are from [7, Remark 5.2, Corollary
5.4]. We see that, of the four metrics to be considered, the Apollonian is the smallest and the
quasihyperbolic is the largest.

In this paper we are especially concerned with the relation αD ≈ α̃D, that is, the
question whether or not the Apollonian metric is quasiconvex. We note that this always holds
in simply connected uniform planar domains [7, Theorem 1.10, Lemma 6.4]. Also, in convex
uniform domains this relation always holds: from [6, Theorem 4.2] we know that αD ≈ jD in
convex domains; additionally, jD ≈ kD if D is uniform; hence α̃D � kD � jD � αD � α̃D. On
the other hand, there are also domains in which αD � α̃D, for example, the infinite strip.
Finally, we note that in [13, Corollary 1.4] it was shown that αD ≈ α̃D implies that D is
uniform.

In [12], we have undertaken a systematic study of which of the inequalities in (1.6) can
hold in the strong form with� and which of the relations jD � α̃D, jD ≈ α̃D, and jD � α̃D can
hold. Thus we are led to twelve inequalities, which are given along with the results in Table 1,
where we have indicated in column A whether the inequality can hold in simply connected
planar domains and in column B whether it can hold in arbitrary proper subdomains of Rn.
Two entries, 11B and 12B, could not be dealt with at that time, but they have meanwhile been
resolved in [13]. From the table we see that most of the cases cannot occur, which means that
there are many restrictions on which inequalities can occur together.
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One ingredient in the proofs of some of the inequalities in [12] was the following result,
which shows that removing a point from the domain (i.e., adding a boundary point) does not
affect the inequality αD ≈ α̃D.

Theorem 1.2. Let D � R
n be a domain with an exterior point. Let p ∈ D and G := D \ {p}. If

αD ≈ α̃D, then αG ≈ α̃G as well.

Note that by Möbius invariance, one may assume that the exterior point is in fact
∞, in which case the domain is bounded, as was the assumption in the original source.
This assumption was of a technical nature, and in this article we show that indeed it can
be replaced by a much weaker assumption that the complement of D is not contained in a
hyperplane. Note that this is a minimal assumption for αD to be a metric in the first place, as
noted above.

Theorem 1.3 (Main Theorem). Let D � R
n be a domain whose boundary is not contained in a

hyperplane. Let p ∈ D and G := D \ {p}. If αD ≈ α̃D, then αG ≈ α̃G as well.

The structure of the rest of this paper is as follows. We start by reviewing the notation
and terminology. These tools will be applied in later sections to prove the new results of
this article. The main problem in this paper is the inequality αG � α̃G where the integral
representation [10, Theorem 1.4] of the Apollonian inner metric plays a crucial rule. The main
result shows that if the boundary of the domain contains n + 1 points which form extreme
points of an n-simplex, then the equivalence of the Apollonian metric and its inner metric
will remain unchanged even if we remove a point from the original domain.

2. Background

2.1. Notation

The notation used conforms largely to that in [23, 24], as was mentioned in Section 1.
We denote by {e1, e2, . . . , en} the standard basis of Rn and by n the dimension of the

Euclidean space under consideration and assume that n ≥ 2. For x ∈ Rn we denote by xi its
ith coordinate. The following notation is used for Euclidean balls and spheres:

Bn(x, r) :=
{

y ∈ Rn :
∣

∣x − y
∣

∣ < r
}

, Sn−1(x, r) :=
{

y ∈ Rn :
∣

∣x − y
∣

∣ = r
}

,

Bn := Bn(0, 1), Sn−1 := Sn−1(0, 1).
(2.1)

For x, y, z ∈ Rn we denote by x̂yz the smallest angle between the vectors x − y and z − y at 0.
We use the notation Rn := Rn∪{∞} for the one-point compactification of Rn, equipped

with the chordal metric. Thus an open ball ofRn is an open Euclidean ball, an open half-space,
or the complement of a closed Euclidean ball. We denote by ∂G, Gc, and G the boundary,
complement, and closure of G, respectively, all with respect to Rn.

We also need some notation for quantities depending on the underlying Euclidean
metric. For x ∈ G � Rn we write

δ(x) := d(x, ∂G) := min{|x − z| : z ∈ ∂G}. (2.2)

For a path γ in Rn we denote by �(γ) its Euclidean length.
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2.2. The Apollonian Balls Approach

In this subsection we present the Apollonian balls approach which gives a geometric
interpretation of the Apollonian metric.

For x, y ∈ G � Rn we define

qx := sup
a∈∂G

∣

∣a − y
∣

∣

|a − x| , qy := sup
b∈∂G

|b − x|
∣

∣b − y
∣

∣

. (2.3)

The numbers qx and qy are called the Apollonian parameters of x and y (with respect to G)
and by the definition

αG
(

x, y
)

= log
(

qxqy
)

. (2.4)

The balls (in Rn!),

Bx :=

{

z ∈ Rn :
|z − x|
∣

∣z − y
∣

∣

<
1
qx

}

, By :=

{

z ∈ Rn :

∣

∣z − y
∣

∣

|z − x| <
1
qy

}

, (2.5)

are called the Apollonian balls about x and y, respectively. We collect some immediate results
regarding these balls; similar results obviously hold with x and y interchanged.

(1) x ∈ Bx ⊂ G and Bx ∩ ∂G/= ∅.
(2) If ix and iy denote the inversions in the spheres ∂Bx and ∂By, then

y = ix(x) = iy(x). (2.6)

(3) If∞/∈G, we have qx ≥ 1. If, moreover,∞/∈G, then qx > 1.

2.3. Uniformity

Uniform domains were introduced by Martio and Sarvas in [28, 2.12], but the following
definition is an equivalent form from [26, equation (1.1)]. In the paper in [29] there is a survey
of characterizations and implications of uniformity; as an example we mention that a Sobolev
mapping can be extended from G to the whole space if G is uniform; see [30].

Definition 2.1. A domain G � R
n is said to be uniform with constant K if for every x, y ∈ G

there exists a path γ , parameterized by arc-length, connecting x and y in G, such that

(1) �(γ) ≤ K|x − y|,
(2) Kδ(γ(t)) ≥ min{t, �(γ) − t}.

The relevance of uniformity to our investigation comes from [26, Corollary 1] which
states that a domain is uniform if and only if kG ≈ jG. This condition is also equivalent to α̃G �
jG; see [13, Theorem 1.2]. Thus we have a geometric characterization of domains satisfying
these inequalities as well.
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2.4. Directed Density and the Apollonian Inner Metric

We start by introducing some concepts which allow us to calculate the Apollonian inner
metric. First we define a directed density of the Apollonian metric as follows:

αG(x; r) = lim
t→ 0

1
t
αG

(

x, x + t
r

|r|

)

, (2.7)

where r ∈ Rn \ {0}. If αG(x; r) is independent of r in every point of G, then the Apollonian
metric is isotropic and we may denote αG(x) := αG(x; e1) and call this function the density of
αG at x. In order to present an integral formula for the Apollonian inner metric we need to
relate the density of the Apollonian metric with the limiting concept of the Apollonian balls,
which we call the Apollonian spheres.

Definition 2.2. Let G � Rn, x ∈ G and θ ∈ Sn−1.

(i) If Bn(x + sθ, s) ⊂ G for every s > 0 and∞/∈G, then let r+ =∞.

(ii) If Bn(x + sθ, s) ⊂ G for every s > 0 and∞ ∈ G, then let r+ to be the largest negative
real number such that G ⊂ Bn(x + r+θ, |r+|).

(iii) Otherwise let r+ > 0 to be the largest real number such that Bn(x + r+θ, r+) ⊂ G.

Define r− in the same way but using the vector −θ instead of θ. We define the
Apollonian spheres through x in direction θ by

S+ := Sn−1(x + r+θ, r+), S− := Sn−1(x − r−θ, r−) (2.8)

for finite radii and by the limiting half-space for infinite radii.
Using these spheres, we can present a useful result from [7].

Lemma 2.3 (see [7, Lemma 5.8]). Let G � Rn be open, x ∈ G \ {∞} and θ ∈ Sn−1. Let r± be the
radii of the Apollonian spheres S± at x in the direction θ. Then

αG(x; θ) =
1

2r+
+

1
2r−

, (2.9)

where one understands 1/∞ = 0.

The following result shows that we can find the Apollonian inner metric by integrating
over the directed density, as should be expected. This is also used as a main tool for proving
our main result. Piecewise continuously differentiable means continuously differentiable
except at a finite number of points.

Lemma 2.4 (see [10, Theorem 1.4]). If x, y ∈ G � Rn, then

α̃G
(

x, y
)

= inf
γ

∫

αG
(

γ(t); γ ′(t)
)∣

∣γ ′(t)
∣

∣dt, (2.10)
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Figure 1: The largest ball BT tangent to Bl and contained in Ω = Rn \ V , where V = {v1, v2, v3}.

where the infimum is taken over all paths connecting x and y in G that are piecewise continuously
differentiable (with the understanding that αG(z; 0) = 0 for all z ∈ G, even though αG(z; 0) is not
defined).

3. The Proof of the Main Theorem

Proof of Main Theorem. In this proof we denote by δ the distance to the boundary of D, not
of G = D \ {p}. It is enough to prove the inequality αG � α̃G, because other way inequality
always holds. Let x, y ∈ G and denote B := Bn(p, δ(p)/2). Let γxy be a path connecting x
and y such that αD(γxy) = α̃D(x, y); note that such a length-minimizing path exists by [10,
Theorem 1.5].

Case 1. (a) x, y ∈ D \ B and γxy ∩ B = ∅.
Let z ∈ ∂D be such that δ(p) = |p − z|. Let V be the collection of n + 1 boundary points

of D where they form the vertices of an n-simplex. Denote by Bt := Bn(c, t) the largest ball
with radius t and centered at c such that Bt is inside the n-simplex [V ]; see Figure 1. Define
l = t/2. Denote by Bl := Bn(c, l) the ball with radius l and centered at c. Define Ω = Rn \ V .
Let BT ⊂ Ω be a ball tangent to Bl with maximal radius, denoted by T .

Choose L = 5 max{|p − c|, T}. Consider the ball Bn(c, L) centred at c with radius L and
denote it by BL. Then we see that V ∪ {∞} ⊂ Rn \D. Since

∂Ω = ∂(Rn \ V ) = V ∪ {∞} ⊂ Rn \D, (3.1)

we see that

αD(w; r) ≥ αΩ(w; r) (3.2)

for r ∈ Sn−1.
We now estimate the density of the Apollonian spheres (see Definition 2.2) in Ω

passing through w ∈ γxy and in the direction r ∈ Sn−1. In order to compare the density
αΩ(w; r) with the densities αG(w; r) and αD(w; r), we consider two possibilities of the choice
of w ∈ γxy w.r.t. BL.
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We first assume that w ∈ Rn \ BL. Denote by F the ray from w along r. Consider a
sphere S1 with radius R1 and centered at x ∈ F such that S1 is tangent to Bl. Denote θ := x̂wc.
Construction of BT gives that, for |θ| < π/2, the Apollonian spheres passing through w and
in the direction r are smaller in size than the sphere S1.

This gives

αΩ(w; r) ≥ 1
2R1

=
l + (d + l) cos θ

(d + l)2 − l2
, (3.3)

where d := d(w,Bl) and R1 is obtained using the cosine formula in the triangle � xwc.
Now the sphere with radius R2 and centre at q passing through w and p gives

∣

∣w − p
∣

∣

2
= R2 cos

(

θ − ψ
)

, (3.4)

where ψ = ĉwp and q ∈ F. If the Apollonian spheres (passing through w and in the direction
r) are affected by the boundary point p, then by Lemma 2.3 we have

αG(w; r) =
1
R2

+
1
r+

≤ 1
R2

+ αD(w; r)

=
2 cos

(

θ − ψ
)

∣

∣w − p
∣

∣

+ αD(w; r),

(3.5)

where r+ denotes the radius of the smaller Apollonian sphere which touches ∂D. Denote
φ := ŵpc. Since p ∈ BL, using the sine formula in the triangle � wpc we get

sinψ =

∣

∣p − c
∣

∣

∣

∣w − p
∣

∣

sinφ ≤
∣

∣p − c
∣

∣

∣

∣w − p
∣

∣

. (3.6)

Then we see that

cos
(

θ − ψ
)

≤ cos θ + sinψ ≤ cos θ +

∣

∣p − c
∣

∣

∣

∣w − p
∣

∣

. (3.7)

Thus, from (3.5) we get

αG(w; r) ≤
2
(

cos θ +
∣

∣p − c
∣

∣/
∣

∣w − p
∣

∣

)

∣

∣w − p
∣

∣

+ αD(w; r)

=
2 cos θ
∣

∣w − p
∣

∣

+
2
∣

∣p − c
∣

∣

∣

∣w − p
∣

∣

2
+ αD(w; r).

(3.8)
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Since w/∈BL, we notice that the Euclidean triangle inequalities of the triangle � wpc give
|w − p| ≈ d. We then obtain

αG(w; r) � cos θ
d

+
l

d2
+ αD(w; r)

≈ l + (d + l) cos θ

(d + l)2 − l2
+ αD(w; r).

(3.9)

We next assume that w ∈ BL. It is clear that if αΩ(w; r) = 0 then ∂Ω is contained in
a hyperplane, which contradicts our assumption. Thus if w ∈ BL, then αΩ(w; r) > 0, and
since the density function is continuous it has a greatest lower bound; namely, there exists a
constant k > 0 such that for r ∈ S1 we have

αΩ(w; r) ≥ k. (3.10)

Therefore, (3.3) and (3.10) together give

αΩ(w; r) ≥ min

{

l + (d + l) cos θ

(d + l)2 − l2
, k

}

. (3.11)

Since γxy ∩ B = ∅, we note that |w − p| ≥ δ(p)/2 for all w ∈ γxy. Thus, if the Apollonian
spheres passing through w and in the direction r ∈ Sn−1 are affected by the boundary point
p, then by Lemma 2.3

αG(w; r) ≤ 1
∣

∣w − p
∣

∣

+
1

2r+
≤ 1
∣

∣w − p
∣

∣

+ αD(w; r)

≤ 2
δ
(

p
) + αD(w; r) ≈ k + αD(w; r)

(3.12)

hold, where r+ denotes the radius of the smaller Apollonian sphere which touches ∂D. Then
(3.2), (3.9), (3.11), and (3.12) together give

αG(w; r) � min

{

l + (d + l) cos θ

(d + l)2 − l2
, k

}

+ αD(w; r)

� αD(w; r).

(3.13)

Thus, by the definition of the inner metric and Lemma 2.4, we get the relation

αG
(

γxy
)

≤ KαD
(

γxy
)

= Kα̃D
(

x, y
)

(3.14)

for some constant K. This gives

α̃G
(

x, y
)

� α̃D
(

x, y
)

≈ αD
(

x, y
)

≤ αG
(

x, y
)

, (3.15)
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where the second inequality holds by assumption and the third holds trivially, as G is a
subdomain of D.

(b) x, y ∈ D \ B and γxy intersects B.
Let γ be an intersecting part of γxy from x1 to x2 (if there are more intersecting parts,

we proceed similarly). Let γ ′ be the shortest circular arc on ∂B from x1 to x2, as shown in
Figure 2.

Using the density bounds (3.2) and (3.10), we get k ≤ αD(u; r) ≤ 2/δ(u) for every
u ∈ γ ′. Then we see that the inequalities

αD
(

γ
)

≥
�
(

γ
)

k
, αD

(

γ ′
)

≤
4�
(

γ ′
)

δ
(

p
) (3.16)

hold. But since �(γ) ≥ |x1 − x2| and �(γ ′) ≤ (π/2)|x1 − x2|, we have �(γ ′) � �(γ). This shows
that αD(γ ′xy) � αD(γxy), where the path γ ′xy is obtained from γxy by modifying γ with the
circular arc γ ′ joining x1 to x2. Since γ ′xy ⊂ G \ B, (3.13) implies that αG(γ ′xy) � αD(γ ′xy). So we
get

αG
(

x, y
)

≥ αD
(

x, y
)

≈ α̃D
(

x, y
)

= αD
(

γxy
)

� αD
(

γ ′xy

)

� αG
(

γ ′xy

)

≥ α̃G
(

x, y
)

. (3.17)

Thus we have shown that αG(x, y) � α̃G(x, y) holds for all x, y ∈ D \ B.

Case 2 (x, y ∈ Bn(p, (3/4)δ(p))). Without loss of generality we assume that |y − p| ≤ |x −
p|. Since ∂G = ∂D ∪ {p}, it is clear by the definition and the monotonicity property of the
Apollonian metric that

αG
(

x, y
)

≥ max

{

log

∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

, αD
(

x, y
)

}

. (3.18)

Let γ := γ1 ∪ γ2, where γ1 is the path which is circular about the point p from y to (|y − p|(x −
p)/|x−p|)+p and γ2 is the radial part from (|y−p|(x−p)/|x−p|)+p to x, as shown in Figure 3.

Since the Apollonian spheres are not affected by the boundary point p in the circular
part, we have

αG
(

γ1(t); γ ′1 (t)
)

≤ αBn(p,δ(p))
(

γ1(t); γ ′1(t)
)

=
1

σ
(

p
)

−
∣

∣y − p
∣

∣

+
1

δ
(

p
)

+
∣

∣y − p
∣

∣

=
2σ
(

p
)

σ
(

p
)2 −

∣

∣y − p
∣

∣

2
,

(3.19)
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where the first equality holds since the Apollonian metric equals the hyperbolic metric in a
ball. For γ2(t), by monotonicity in the domain of definition, we see that

αG
(

γ2(t); γ ′2(t)
)

≤ αBn(p,δ(p))\{p}
(

γ2(t); γ ′2(t)
)

=
1

∣

∣p − γ2(t)
∣

∣

+
1

δ
(

p
)

−
∣

∣p − γ2(t)
∣

∣

.
(3.20)

Hence, by Lemma 2.4 we have

α̃G
(

x, y
)

≤ αG
(

γ
)

≤
∫

γ1

2δ
(

p
)

δ
(

p
)2 −

∣

∣y − p
∣

∣

2

∣

∣dy
∣

∣ +
∫ |x−p|

|y−p|

(

1
t
+

1
δ
(

p
)

− t

)

dt

=
2δ
(

p
)

�
(

γ1
)

δ
(

p
)2 −

∣

∣y − p
∣

∣

2
+ log

(∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

δ
(

p
)

−
∣

∣y − p
∣

∣

δ
(

p
)

−
∣

∣x − p
∣

∣

)

≤ 32
7
�
(

γ1
)

δ
(

p
) + log

(∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

δ
(

p
)

−
∣

∣y − p
∣

∣

δ
(

p
)

−
∣

∣x − p
∣

∣

)

.

(3.21)

Since u �→ u3(δ(p) − u) is increasing for 0 < u < 3δ(p)/4 and we have

∣

∣y − p
∣

∣ ≤
∣

∣x − p
∣

∣ ≤
3δ
(

p
)

4
, (3.22)

for the choice u = |x − p|, the inequality

∣

∣x − p
∣

∣

3(
δ
(

p
)

−
∣

∣x − p
∣

∣

)

≥
∣

∣y − p
∣

∣

3(
δ
(

p
)

−
∣

∣y − p
∣

∣

)

(3.23)

holds. This inequality is equivalent to

log

(∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

δ
(

p
)

−
∣

∣y − p
∣

∣

δ
(

p
)

−
∣

∣x − p
∣

∣

)

≤ 4 log

∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

. (3.24)

Using αD ≈ α̃D, we easily get αD(x, y) � �(γ1)/δ(p). We have thus shown that

α̃G
(

x, y
)

≤ KαD
(

x, y
)

+ 4 log

∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

≤ (K + 4)αG
(

x, y
)

, (3.25)

for some constant K.

Case 3. x /∈Bn(p, 3δ(p)/4) and y ∈ B.
Let w ∈ Sn−1(p, (3/4)δ(p)) be such that

∣

∣y −w
∣

∣ = d
(

y, Sn−1
(

p,
3
4
δ
(

p
)

))

. (3.26)
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Let γ := γ1 ∪ γ2, where γ1 = [y,w] and γ2 is a path connecting w and x such that

αG
(

γ2
)

= α̃G(w,x). (3.27)

As we discussed in the previous case, we have

αG
(

γ1
)

≤ 4 log
3δ
(

p
)

4
∣

∣y − p
∣

∣

≤ 4 log

∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

≤ 4αG
(

x, y
)

. (3.28)

Since x,w /∈B, it follows by Case 1 that

αG
(

γ2
)

= α̃G(w,x) � α̃D(w,x) ≈ αD(w,x) ≤ 2jD(w,x). (3.29)

It is now sufficient to see that jD(w,x) � αG(x, y).
If δ(w) ≤ δ(x), then the triangle inequality |w − x| ≤ |w − p| + |x − p| and the fact

δ(w) ≥ δ(p)/4 together give

jD(w,x) ≤ log

(

1 +
4
∣

∣w − p
∣

∣ + 4
∣

∣x − p
∣

∣

δ
(

p
)

)

= log

(

4 +
4
∣

∣x − p
∣

∣

δ
(

p
)

)

, (3.30)

where the equality holds due to the fact that w ∈ Sn−1(p, (3/4)δ(p)). But for s ≥ 3/2, we have
log(4 + 2s) ≤ 5 log s. For the choice s = |x − p|/|y − p|, the inequality (3.30) reduces to

jD(w,x) ≤ log

(

4 +
2
∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

)

≤ 5 log

∣

∣x − p
∣

∣

∣

∣y − p
∣

∣

≤ 5αG
(

x, y
)

, (3.31)

where the first inequality holds since |y − p| ≤ δ(p)/2 and the last holds by the definition of
the Apollonian metric.

We next move on to the case δ(w) ≥ δ(x). If |x − y| ≥ 3δ(x), we see (by the triangle
inequality |b − y| ≥ |x − y| − |b − x|) that

αG
(

x, y
)

≥ sup
b∈∂D

log

∣

∣b − y
∣

∣

|b − x| ≥ log

(∣

∣x − y
∣

∣

δ(x)
− 1

)

(3.32)

holds. Using (3.32) and the fact that |x − p|/|y − p| ≥ 3/2, we get

αG
(

x, y
)

≥

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

log

(∣

∣x − y
∣

∣

δ(x)
− 1

)

for

∣

∣x − y
∣

∣

δ(x)
≥ 3,

log
3
2

otherwise.

(3.33)
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•

•
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G = D\{p}
∂D

z

y
x1

B

p x2

γ ′

γ

γxy x

Figure 2: The geodesic path γxy (w.r.t. the Apollonian inner metric α̃D) connecting x and y intersects B,
and its modification γ ′ from x1 to x2 along the circular part.

Since |x − y| ≥ δ(p)/4, we get the following upper bound for jD(w,x):

jD(w,x) � log

(

1 +

∣

∣x − y
∣

∣ + δ
(

p
)

δ(x)

)

≤ log

(

1 +
5
∣

∣x − y
∣

∣

δ(x)

)

, (3.34)

where the first inequality follows by the triangle inequality |w − x| ≤ |x − y| + |y −w| and the
fact that |y −w| ≤ (3/4)δ(p). We see that the function f(s) = (s − 1)4 − (1 + 5s) is increasing
for s ≥ 3, so f(s) ≥ f(3) = 0. Thus, for the choice s = |x − y|/δ(x) ≥ 3, we get

jD(w,x) � log

(

1 +
5
∣

∣x − y
∣

∣

δ(x)

)

≤ 4 log

(∣

∣x − y
∣

∣

δ(x)
− 1

)

≤ 4αG
(

x, y
)

, (3.35)

where the last inequality holds by (3.32). On the other hand, if |x−y|/δ(x) < 3, then jD(w,x)
is bounded above by 4 log 2 and αG(x, y) is bounded below by log(3/2), so the inequality
jD(w,x) � αG(x, y) is clear. Thus for the choice of w,x, and y we obtain

αG
(

γ2
)

� jD(w,x) � αG
(

x, y
)

, (3.36)

which concludes that

α̃G
(

x, y
)

≤ αG
(

γ
)

� αG
(

x, y
)

. (3.37)

We have now verified the inequality in all of the possible cases, so the proof is
complete.

Of course, we can iterate the main result, to remove any finite set of points from our
domain. Like in [12], we get the following.
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y
p

x

γ1

γ2

γ = γ1 ∪ γ2

(| y − p |/| x − p |)(x − p) + p

Bn(p, (3/4)δ(p))

Figure 3: A short path γ = γ1 ∪ γ2 connecting x and y in Bn(p, (3/4)σ(p)).

Corollary 3.1. Let D � R
n be a domain whose boundary does not lie in a hyperplane. Suppose that

(pi)
k
i=1 is a finite nonempty sequence of points inD and define G := D \ {p1, p2, . . . , pk}. Assume that

αD ≈ α̃D and jD ≈ kD. Then Inequality (9) in Table 1, αG ≈ α̃G � jG ≈ kG, holds.
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1959.

[16] D. Barbilian and N. Radu, “Les J-métriques finslériennes naturelles et la fonction de représentation
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