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We investigate the solution of a repairable parallel system with primary as well as secondary
failures. By using the method of functional analysis, especially, the spectral theory of linear
operators and the theory of C0-semigroups, we prove well-posedness of the system and the
existence of positive solution of the system. And then we show that the time-dependent solution
strongly converges to steady-state solution, thus we obtain the asymptotic stability of the time-
dependent solution.

1. Introduction

As science and technology develop, the theory of reliability has infiltrated into the basic
sciences, technological sciences, applied sciences, and management sciences. It is well known
that repairable parallel systems are the most essential and important systems in reliability
theory. In practical applications, repairable parallel systems consisting of three units are often
used. Since the strong practical background of such systems, many researchers have studied
them extensively under varying assumptions on the failures and repairs; see [1–5] and their
references.

The mathematical model of a repairable parallel system with primary as well as
secondary failures was first put forward by Gupta; see [1]. This system is consisted of three
independent identical units, which are connected in parallel. In the system, one of those units
operates, the other two act as warm standby. If the operating unit fails, a warm standby unit
is instantaneously switched into operation. The operating unit submits primary failures and
secondary failures. The primary failures are the result of a deficiency in a unit while it is
operating within the design limits. The secondary failures are the result of causes that stem
from a unit operating in a conditions that are outside its design limits. Two important types



2 International Journal of Mathematics and Mathematical Sciences

of secondary failures are common cause failures and human error failures. A Common cause
failure refers to the situation where multiple units fail due to a single cause such as fire,
earthquake, flood, explosion, design flaw, and poor maintenance; see [2, 3]. A human error
failure implies a failure of the system due to a mistake made by a human caused by such
reasons as inadequate training, improper tools, and working in a poor lighting environment;
see [4, 5]. There is one repairman available to repair these units. Once repaired, these units are
as good as new. The failure rates of units and system are constant and independent. When
the system is operating, the repairman can repair only one unit at a time. If all units fail,
the entire system is repaired and checked before beginning further operation of these units.
Unlike [4, 5], the repair times in this system are arbitrarily distributed.

The parallel repairable system with primary and secondary failures can be described
by the following equations (see [1]):

dp0(t)
dt

= −(λ + 2α + λc0 + λh0)p0(t) + μp1(t) +
5∑

i=3

∫∞

0
μi(x)pi(x, t)dx,

dp1(t)
dt

= (λ + 2α)p0(t) −
(
μ + λ + α + λc1 + λh1

)
p1(t) + μp2(t),

dp2(t)
dt

= (λ + α)p1(t) −
(
μ + λ + λc2 + λh2

)
p2(t),

∂pi(x, t)
∂t

+
∂pi(x, t)
∂x

= −μi(x)pi(x, t), i = 3, 4, 5.

(R)

For x = 0, the boundary conditions

p3(0, t) = λp2(t),

p4(0, t) =
2∑

i=0

λcipi(t),

p5(0, t) =
2∑

i=0

λhipi(t)

(BC)

are prescribed, and we consider the usual initial condition

p0(0) = c ∈ C, pi(0) = bi ∈ C, i = 1, 2,

pj(x, 0) = fj(x), j = 3, 4, 5,
(IC)

where fj(x) ∈ L1[0,∞). The most interesting initial condition is

p0(0) = 1, pi(0) = 0, i = 1, 2,

pj(x, 0) = 0, j = 3, 4, 5.
(IC0)
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Here (x, t) ∈ [0,∞) × [0,∞); pi(t) represents the probability that the system is in state i at
time t, i = 0, 1, 2; pj(x, t) represents the probability that at time t the failed system is in state
j and has an elapsed repair time of x, j = 3, 4, 5; λ represents failure rate of an operating
unit; λci represents common-cause failure rates from state i to state 4, i = 0, 1, 2; λhi represents
human-error rates from state i to state 5, i = 0, 1, 2; α represents failure rate of standby unit;
μ represents constant repair rate if the system is operating; μj(x) represents repair-rate when
the failed system is in state j and has an elapsed repair time of x for j = 3, 4, 5 which satisfies
μj(x) ≥ 0 (j = 3, 4, 5); λci (i = 0, 1, 2), λhi (i = 0, 1, 2), λ, μ, and α are positive constants.

In [1] the author analyzed the system using supplementary variable technique and
obtained various expressions including the system availability, reliability, and mean time of
the failure using the Laplace transform. And then he discovered that the time-dependent
availability decreases as time increases for exponential repair-time distribution under the
following hypotheses.

Hypothesis 1. The system has a unique positive time-dependent solution p(x, t).

Hypothesis 2. The time-dependent solution p(x, t) converges to the steady-state solution p(x)
as time tends to infinity, where

p(x, t) =
(
p0(t), p1(t), p2(t), p3(x, t), p4(x, t), p5(x, t)

)
,

p(x) =
(
p0, p1, p2, p3(x), p4(x), p5(x)

)
.

(1.1)

The availability and the reliability depend on the time-dependent solution of the system.
In fact, the author used the time-dependent solution in calculating the availability and the
reliability. But the author did not discuss the existence of the time-dependent solution and its
asymptotic stability, that is, the author did not prove the correctness of the above hypotheses.
It is well known that the above hypotheses do not always hold and it is necessary to prove
the correctness. Motivated by this, we will show the well-posedness of the system and study
the asymptotic stability of the time-dependent solution in this paper, by using the theory
of strongly continuous operator semigroups, from [6–8]. First, we convert the model of the
system into an abstract Cauchy problem in a Banach space. Next, we show that the operator
corresponding to this model generates a positive contraction C0-semigroup. Furthermore,
we prove that the system is well-posed and there is a positive solution for given initial value.
Finally, we prove that the time-dependent solution converging to its static solution in the
sense of the norm through studying the spectrum of the operator and irreducibility of the
corresponding semigroup, thus we obtain the asymptotic stability of the time-dependent
solution of this system.

In this paper, we require the following assumption for the failure rate μj(x).

Assumption 1.1 (general assumption). The function μj : R+ → R+ is measurable and bounded
such that limx→∞μj(x) exists and

μ
(j)
∞ := lim

x→∞
μj(x) > 0, j = 3, 4, 5, μ∞ := min

(
μ
(3)
∞ , μ

(4)
∞ , μ

(5)
∞
)
. (1.2)
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2. The Problem as an Abstract Cauchy Problem

In this section, we rewrite the underlying problem as an abstract Cauchy problem on a
suitable space X, see [6, Definition II.6.1], also see [7, Definition II.6.1]. As the state space
for our problem we choose

X := C
3 × (L1[0,∞))

3
. (2.1)

It is obvious that X is a Banach space endowed with the norm

∥∥p
∥∥ :=

2∑

i=0

∣∣pi
∣∣ +

5∑

n=3

∥∥pn
∥∥
L1[0,∞), (2.2)

where p = (p0, p1, p2, p3(x), p4(x), p5(x))
t ∈ X.

For simplicity, let

a0 := λ + 2α + λc0 + λh0 ,

a1 := μ + λ + α + λc1 + λh1 ,

a2 := μ + λ + λc2 + λh2 ,

(2.3)

and we denote by ψj the linear functionals

ψj : L1[0,∞) −→ C, f �−→ ψj
(
f
)
:=
∫∞

0
μj(x)f(x)dx, j = 3, 4, 5. (2.4)

Moreover, we define the operators Dj onW1,1[0,∞) as

Djf := − d

dx
f − μjf, f ∈W1,1[0,∞), j = 3, 4, 5, (2.5)

respectively. To define the appropriate operator (A,D(A)) we introduce a “maximal
operator” (Am,D(Am)) on X given as

Am :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a0 μ 0 ψ3 ψ4 ψ5

λ + 2α −a1 μ 0 0 0

0 λ + α −a2 0 0 0

0 0 0 D3 0 0

0 0 0 0 D4 0

0 0 0 0 0 D5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D(Am) := C
3 × (W1,1[0,∞))

3
.

(2.6)
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To model the boundary conditions (BC) we use an abstract approach as in, for
example, [9]. For this purpose we consider the “boundary space”

∂X := C
3, (2.7)

and then define “boundary operators” L and Φ. As the operator Lwe take

L : D(Am) −→ ∂X,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

p2

p3(x)

p4(x)

p5(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�−→ L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

p2

p3(x)

p4(x)

p5(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎝

p3(0)

p4(0)

p5(0)

⎞
⎟⎟⎠, (2.8)

and the operator Φ ∈ L(D(Am), ∂X) is given by

Φp :=

⎛
⎜⎜⎝

0 0 λ 0 0 0

λc0 λc1 λc2 0 0 0

λh0 λh1 λh2 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

p2

p3(x)
p4(x)

p5(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.9)

where p = (p0, p1, p2, p3(x), p4(x), p5(x))
t ∈ D(Am).

The operator (A,D(A)) onX corresponding to our original problem is then defined as

Ap := Amp, D(A) :=
{
p ∈ D(Am) | Lp = Φp

}
. (2.10)

Let pj(0) = pj(0, t), j = 3, 4, 5, t ≥ 0, then the condition Lp = Φp inD(A) is equivalent to (BC).
The system of integrodifferential equations (R) can be written as the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dp0(t)
dt

dp1(t)
dt

dp2(t)
dt

dp3(x, t)
dt

dp4(x, t)
dt

dp5(x, t)
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a0 μ 0 ψ3 ψ4 ψ5

λ + 2α −a1 μ 0 0 0

0 λ + α −a2 0 0 0

0 0 0 D3 0 0

0 0 0 0 D4 0

0 0 0 0 0 D5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0(t)

p1(t)

p2(t)

p3(x, t)

p4(x, t)

p5(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)
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Let p(t) = (p0(t), p1(t), p2(t), p3(·, t), p4(·, t), p5(·, t))t ∈ X, then (2.11) is equivalent to the
following operator equation:

dp(t)
dt

= Ap(t), t ∈ [0,∞). (2.12)

Thus, the above equations (R), (BC), and (IC) can be equivalently formulated as the abstract
Cauchy problem

dp(t)
dt

= Ap(t), t ∈ [0,∞),

p(0) =
(
c, b1, b2, f1, f2, f3

)t ∈ X.
(ACP)

IfA is the generator of a strongly continuous semigroup (T(t))t≥0 and the initial value in (IC)
satisfies p(0) = (c, b1, b2, f1, f2, f3)

t ∈ D(A), then the unique solution of (R), (BC), and (IC) is
given by

pi(t) = (T(t)p(0))i+1, 0 ≤ i ≤ 2,

pj(x, t) = (T(t)p(0))j+1(x), 3 ≤ j ≤ 5.
(2.13)

For this reason it suffices to study (ACP).

3. Boundary Spectrum

In this section we investigate the boundary spectrum σ(A) ∩ iR of A. In order to characterise
σ(A) by the spectrum of a scalar 3 × 3-matrix, that is, or on the boundary space ∂X, we apply
techniques and results from [10]. We start from the operator (A0, D(A0)) defined by

D(A0) :=
{
p ∈ D(Am)Lp = 0

}
,

A0p := Amp
(3.1)

We give the the representation of the resolvent of the operator A0 needed below to prove the
irreducibility of the semigroup generated by the operator A.

Lemma 3.1. Let

A :=

⎛
⎜⎜⎝

−a0 μ 0

λ + 2α −a1 μ

0 λ + α −a2

⎞
⎟⎟⎠ (3.2)

and set S := {γ ∈ C | Rγ > −μ∞} \ σ(A). Then one has

S � ρ(A0). (3.3)
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Moreover, if γ ∈ S, then

R
(
γ,A0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

0 0 0 r4,4 0 0

0 0 0 0 r5,5 0

0 0 0 0 0 r6,6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.4)

where

r1,1 =

(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r1,2 =
μ
(
γ + a2

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r1,3 =
μ2

(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r1,4 =

[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
ψ3R

(
γ,D3

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r1,5 =
μ
(
γ + a2

)
ψ4R

(
γ,D4

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r1,6 =
μ2ψ5R

(
γ,D5

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r2,1 =
(λ + 2α)

(
γ + a2

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r2,2 =

(
γ + a0

)(
γ + a2

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r2,3 =
μ
(
γ + a0

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r2,4 =
(λ + 2α)

(
γ + a2

)
ψ3R

(
γ,D3

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r2,5 =
(λ + a0)

(
γ + a2

)
ψ4R

(
γ,D4

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r2,6 =
μ
(
γ + a0

)
ψ5R

(
γ,D5

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,
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r3,1 =
(λ + 2α)(λ + α)

(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r3,2 =

(
γ + a0

)
(λ + α)

(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r3,3 =

(
γ + a0

)(
γ + a1

) − μ(λ + 2α)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r3,4 =
(λ + 2α)(λ + α)ψ3R

(
γ,D3

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r3,5 =
(λ + a0)(λ + α)ψ4R

(
γ,D4

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r3,6 =

[
(λ + a0)(λ + a1) − μ(λ + 2α)

]
ψ5R

(
γ,D5

)
(
γ + a0

)(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

) − μ(λ + 2α)
(
γ + a2

) ,

r4,4 = R
(
γ,D3

)
,

r5,5 = R
(
γ,D4

)
,

r6,6 = R
(
γ,D3

)
.

(3.5)

The resolvent operators of the differential operators Dj (j = 3, 4, 5) are given by

(
R
(
γ,Dj

)
p
)
(x) = e−γx−

∫x
0 μj (ξ)dξ

∫x

0
eγx+

∫x
0 μj (ξ)dξp(s)ds (3.6)

for p ∈ L1[0,∞).

Proof. A combination of [11, Proposition 2.1] and [12, Theorem 2.4] yields that the resolvent
set of A0 satisfies

ρ(A0) ⊇ S. (3.7)

For γ ∈ S we can compute the resolvent of A0 explicitly applying the formula for the inverse
of operator matrices; see [12, Theorem 2.4]. This leads to the representation (3.4) of the
resolvent of A0.

Clearly, knowing the operator matrix in (3.4), we can directly compute that it
represents the resolvent of A0.

The following consequence is useful to compute the boundary spectrum of A.

Corollary 3.2. The imaginary axis belongs to the resolvent set of A0, that is,

iR ⊆ ρ(A0). (3.8)

The eigenvectors in ker(γ −Am) can be computed as follows.
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Lemma 3.3. For γ ∈ C, one has

p ∈ ker
(
γ −Am

)⇐⇒ (3.9)

p = (p0, p1, p2, p3(·), p4(·), p5(·))t ∈ D(Am), with (3.10)

p0 =

(
γ + a1

)(
γ + a2

) − μ(λ + α)
(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
5∑

j=3

cj

∫∞

0
μj(x)e−γx−

∫x
0 μj (ξ)dξdx,

(3.11)

p1 =
(λ + 2α)

(
γ + a2

)∑5
j=3 cj

∫∞
0 μj(x)e−γx−

∫x
0 μj (ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) , (3.12)

p2 =
(λ + α)(λ + 2α)

∑5
j=3 cj

∫∞
0 μj(x)e−γx−

∫x
0 μj (ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) , (3.13)

pj(x) = cje−γx−
∫x
0 μj (ξ)dξ, j = 3, 4, 5, (3.14)

where c3, c4, c5 ∈ C.

Proof. If for p ∈ X, (3.11)–(3.14) are fulfilled, then we can easily compute that p ∈ ker(γ −Am).
Conversely, condition (3.9) gives a system of differential equations. Solving these differential
equations, we see that (3.11)–(3.14) are indeed satisfied.

The domain D(Am) of the maximal operator Am decomposes, using [10, Lemma 1.2],
as

D(Am) = D(A0) ⊕ ker
(
γ −Am

)
. (3.15)

Moreover, since L is surjective,

L|ker(γ−Am) : ker
(
γ −Am

) −→ ∂X (3.16)

is invertible for each γ ∈ ρ(A0), see [10, Lemma 1.2]. We denote its inverse by

Dγ := (L|ker(γ−Am))
−1 : ∂X −→ ker

(
γ −Am

)
(3.17)

and call it “Dirichlet operator.”
We can give the explicit form of Dγ as follows.
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Lemma 3.4. For each γ ∈ ρ(A0), the operator Dγ has the form

Dγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3

d4,1 0 0

0 d5,2 0

0 0 d6,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.18)

where

d1,1 =

[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] ∫∞

0 μ3(x)e−γx−
∫x
0 μ3(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d1,2 =

[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] ∫∞

0 μ4(x)e−γx−
∫x
0 μ4(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d1,3 =

[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] ∫∞

0 μ5(x)e−γx−
∫x
0 μ5(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d2,1 =
(λ + 2α)

(
γ + a2

) ∫∞
0 μ3(x)e−γx−

∫x
0 μ3(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d2,2 =
(λ + 2α)

(
γ + a2

) ∫∞
0 μ4(x)e−γx−

∫x
0 μ4(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d2,3 =
(λ + 2α)

(
γ + a2

) ∫∞
0 μ5(x)e−γx−

∫x
0 μ5(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d3,1 =
(λ + α)(λ + 2α)

∫∞
0 μ3(x)e−γx−

∫x
0 μ3(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d3,2 =
(λ + α)(λ + 2α)

∫∞
0 μ4(x)e−γx−

∫x
0 μ4(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d3,3 =
(λ + α)(λ + 2α)

∫∞
0 μ5(x)e−γx−

∫x
0 μ5(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

d4,1 = e−γx−
∫x
0 μ3(ξ)dξ,

d5,2 = e−γx−
∫x
0 μ4(ξ)dξ,

d6,3 = e−γx−
∫x
0 μ5(ξ)dξ.

(3.19)

The operator ΦDγ can be computed explicitly for γ ∈ ρ(A0).
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Remark 3.5. For γ ∈ ρ(A0) the operator ΦDγ can be represented by the 3 × 3-matrix

ΦDγ =

⎛
⎜⎜⎝

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎞
⎟⎟⎠, (3.20)

where

a1,1 =
λ(λ + α)(λ + 2α)

∫∞
0 μ3(x)e−γx−

∫x
0 μ3(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

a1,2 =
λ(λ + α)(λ + 2α)

∫∞
0 μ4(x)e−γx−

∫x
0 μ4(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

a1,3 =
λ(λ + α)(λ + 2α)

∫∞
0 μ5(x)e−γx−

∫x
0 μ5(ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

a2,1 =
λc0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λc1(λ + 2α)

(
γ + a2

)
+ λc2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μ3(x)e−γx−

∫x
0 μ3(ξ)dξdx,

a2,2 =
λc0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λc1(λ + 2α)

(
γ + a2

)
+ λc2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μ4(x)e−γx−

∫x
0 μ4(ξ)dξdx,

a2,3 =
λc0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λc1(λ + 2α)

(
γ + a2

)
+ λc2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μ5(x)e−γx−

∫x
0 μ5(ξ)dξdx,

a3,1 =
λh0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λh1(λ + 2α)

(
γ + a2

)
+ λh2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μ3(x)e−γx−

∫x
0 μ3(ξ)dξdx,

a3,2 =
λh0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λh1(λ + 2α)

(
γ + a2

)
+ λh2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μ4(x)e−γx−

∫x
0 μ4(ξ)dξdx,



12 International Journal of Mathematics and Mathematical Sciences

a3,3 =
λh0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λh1(λ + 2α)

(
γ + a2

)
+ λh2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μ5(x)e−γx−

∫x
0 μ5(ξ)dξdx.

(3.21)

The operators Dγ and Φ allow to characterise the spectrum σ(A) and the point
spectrum σp(A) of A. Before doing so we extend the given operators to the product X × ∂X
as in [13, Section 3].

Definition 3.6. (i)X := X × ∂X.

(ii) A0 :=
(
Am 0

−L 0

)
, D(A0) := D(Am) × {0}.

(iii) X0 := X × {0} = D(Am) × {0} = D(A0).

(iv) B :=
(

0 0

Φ 0

)
, D(B) := D(Am) × ∂X.

(v) A := A0 + B =
(

Am 0

Φ−L 0

)
, D(A) := D(Am) × {0}.

Remark 3.7. (i) Note that ρ(A0) ⊇ ρ(A0). For γ ∈ ρ(A0) the resolvent of A0 is

R
(
γ,A0

)
=

(
R
(
γ,A0

)
Dγ

0 0

)
. (3.22)

(ii) The part A|X0 of A inX0 is

D(A|X0) = D(A) × {0}, A|X0 =

(
A 0

0 0

)
. (3.23)

Hence, A|X0 can be identified with the operator (A,D(A)).

The spectrum of A can be characterise by the spectrum of operators on the boundary
space ∂X as follows.

Characteristic Equation 3.8.

Let γ ∈ ρ(A0). Then

(i)

γ ∈ σp(A) ⇐⇒ 1 ∈ σp
(
ΦDγ

)
. (3.24)
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(ii) If, in addition, there exists γ0 ∈ C such that 1/∈ σ(ΦDγ0), then

γ ∈ σ(A) ⇐⇒ 1 ∈ σ(ΦDγ

)
. (3.25)

Proof. Let us first show the equivalence

γ ∈ σ(A) ⇐⇒ 1 ∈ σ(ΦDγ

)
. (3.26)

We can decompose γ −A as

γ −A = γ −A0 − B =
(I − BR(γ,A0

))(
γ −A0

)
. (3.27)

We conclude from this that the invertibility of γ − A is equivalent to the invertibility of I −
BR(γ,A0). From

I − BR(γ,A0
)
=

(
IdX 0

−ΦR(γ,A0
)
Id∂X −ΦDγ

)
, (3.28)

one can easily see that I−BR(γ,A0) is invertible if and only if 1/∈ σ(ΦDγ). This proves (3.26).
Since by our assumption 1/∈ σ(ΦDγ0), it follows that γ0 ∈ ρ(A). Therefore, ρ(A) is not empty.
Hence we obtain from [6, Proposition IV.2.17] that

σ(A) = σ(A), (3.29)

since A is the part ofA inX0. This shows (ii).
To prove (i) observe first that A and A have the same point spectrum, that is,

σp(A) = σp(A). (3.30)

Suppose now that 1 ∈ σp(ΦDγ). Then there exists 0/= f ∈ ∂X such that (Id∂X − ΦDγ)f = 0.

Since 0/=
(
Dγf

0

)
∈ D(A), we can compute

(
γ −A)

(
Dγf

0

)
=

(
IdX 0

−ΦR(γ,A0
)
Id∂X −ΦDγ

)((
γ −Am

)
Dγf

LDγf

)

=

(
IdX 0

−ΦR(γ,A0
)
Id∂X −ΦDγ

)(
0

f

)

=

(
0

(
Id∂X −ΦDγ

)
f

)
=

(
0

0

)
.

(3.31)

This shows that γ ∈ σp(A).
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Conversely, if we assume that γ ∈ σp(A), then there exists 0/= f ∈ D(Am) such that

(γ −A)
(
f

0

)
= 0. From

(
0

0

)
=
(
γ −A)

(
f

0

)

=

(
IdX 0

−ΦR(γ,A0
)
Id∂X −ΦDγ

)((
γ −Am

)
f

Lf

)

=

( (
γ −Am

)
f

−ΦR(γ,A0
)(
γ −Am

)
f +

(
Id∂X −ΦDγ

)
Lf

)

(3.32)

we conclude that f ∈ ker(γ −Am) and thus

0 = −ΦR(γ,A0
)(
γ −Am

)
f +

(
Id∂X −ΦDγ

)
Lf =

(
Id∂X −ΦDγ

)
Lf. (3.33)

It follows from the decomposition (3.15) that Lf /= 0 and hence 1 ∈ σp(ΦDγ).

Using the Characteristic Equation 3.8 we can show that 0 is in the point spectrum ofA.

Lemma 8.8. For the operator (A,D(A)) one has 0 ∈ σp(A).

Proof. By the Characteristic Equation 3.8 it suffices to prove that 1 ∈ σp(ΦD0). Since

ΦD0 =

⎛
⎜⎜⎝

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

⎞
⎟⎟⎠, (3.34)

where

b1,1 =
λ(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,

b1,2 =
λ(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,

b1,3 =
λ(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,

b2,1 =
λc0
[
a1a2 − μ(λ + α)

]
+ λc1(λ + 2α)a2 + λc2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,
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b2,2 =
λc0
[
a1a2 − μ(λ + α)

]
+ λc1(λ + 2α)a2 + λc2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) ,

b2,3 =
λc0
[
a1a2 − μ(λ + α)

]
+ λc1(λ + 2α)a2 + λc2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,

b3,1 =
λh0
[
a1a2 − μ(λ + α)

]
+ λh1(λ + 2α)a2 + λh2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,

b3,2 =
λh0
[
a1a2 − μ(λ + α)

]
+ λh1(λ + 2α)a2 + λh2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
,

b3,3 =
λh0
[
a1a2 − μ(λ + α)

]
+ λh1(λ + 2α)a2 + λh2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
.

(3.35)

We can compute the jth column sum (j = 1, 2, 3) of the 3 × 3-matrix ΦD0 as follows:

3∑

i=1

(ΦD0)i,j = b1,j + b2,j + b3,j

=
λ(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

+
λc0
[
a1a2 − μ(λ + α)

]
+ λc1(λ + 2α)a2 + λc2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

+
λh0
[
a1a2 − μ(λ + α)

]
+ λh1(λ + 2α)a2 + λh2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

=
(λc0 + λh0)

[
a1a2 − μ(λ + α)

]
+ (λc1 + λh1)(λ + 2α)a2

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

+
(λ + λc2 + λc2)(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

=
[a0 − (λ + 2α)]

[
a1a2 − μ(λ + α)

]
+
[
a1 −

(
μ + λ + α

)]
(λ + 2α)a2

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

+

(
a2 − μ

)
(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

=
a0
[
a1a2 − μ(λ + α)

] − a1a2(λ + 2α) + μ(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

+
a1a2(λ + 2α) − μ(λ + 2α)a2 − a2(λ + α)(λ + 2α)

a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
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+
a2(λ + α)(λ + 2α) − μ(λ + α)(λ + 2α)
a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2

=
a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
a0
[
a1a2 − μ(λ + α)

] − μ(λ + 2α)a2
= 1.

(3.36)

This shows that ΦD0 is column stochastic, its transpose (ΦD0)
t is row stochastic, and hence

1 ∈ σp((ΦD0)
t). Since σp(ΦD0) = σp((ΦD0)

t), also 1 ∈ σp(ΦD0) holds. Therefore, by the
Characteristic Equation 3.8 we conclude that 0 ∈ σp(A).

Indeed, 0 is even the only spectral value of A on the imaginary axis.

Lemma 8.9. Under Assumption 1.1, the spectrum σ(A) of A satisfies

σ(A) ∩ iR = {0}. (3.37)

Proof. For any a ∈ R, a/= 0, Ψ = (ψ0, ψ1, ψ2, ψ3(x), ψ4(x), ψ5(x)) ∈ X, we consider the resolvent
equation

(aiId −A)P = Ψ, (3.38)

where P = (p0, p1, p2, p3(x), p4(x), p5(x)). This equation is equivalent to the following system
of equations:

(ai − a0)p0 + μp1 +
5∑

j=3

∫∞

0
μj(x)pj(x)dx = ψ0, (3.39)

−(λ + 2α)p0 + (ai − a1)p1 − μp2 = ψ1, (3.40)

−(λ + α)p1 + (ai − a2)p2 = ψ2, (3.41)

dpj(x)
dx

+
(
ai − μj(x)

)
pj(x) = ψj(x), j = 3, 4, 5, (3.42)

p3(0) = λp2, t > 0, (3.43)

p4(0) =
2∑

i=0

λcipi, (3.44)

p5(0) =
2∑

i=0

λhipi. (3.45)

Solving (3.42)–(3.45), we get

pj(x) = pj(0)e−aix−
∫x
0 μj (ξ)dξ + e−aix−

∫x
0 μj (ξ)dξ

∫x

0
ψj(u)eaiu+

∫u
0 μj (ξ)dξdu. (3.46)
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Since

∫∞

0

∣∣pj(x)
∣∣dx =

∣∣pj(0)
∣∣
∫∞

0
e−aix−

∫x
0 μj (ξ)dξdx +

∫∞

0

[
e−

∫x
0 μj (ξ)dξ

∫x

0

∣∣ψj(u)
∣∣e
∫u
0 μj (ξ)dξdu

]
dx,

∫∞

0

[
e−

∫x
0 μj (ξ)dξ

∫x

0

∣∣ψj(u)
∣∣e
∫u
0 μj (ξ)dξdu

]
dx =

∫∞

0

[∣∣ψj(u)
∣∣e
∫u
0 μj (ξ)dξ

∫∞

u

e−
∫x
0 μj (ξ)dξdx

]
du.

(3.47)

By Assumption 1.1, we have

lim
u→+∞

e
∫u
0 μj (ξ)dξ

∫∞

u

e−
∫x
0 μj (ξ)dξdx = lim

u→+∞

∫∞
u e−

∫x
0 μj (ξ)dξdx

e−
∫u
0 μj (ξ)dξ

= lim
u→+∞

e−
∫u
0 μj (ξ)dξdx

μj(u)e−
∫u
0 μj (ξ)dξ

= lim
u→+∞

1
μj(u)

< +∞.

(3.48)

It follows that pj(x) ∈ L1[0,+∞), j = 3, 4, 5. Let

Ij =
∫∞

0
μj(x)e−aix−

∫x
0 μj (ξ)dξdx,

Kj =
∫∞

0

[
μj(x)e−aix−

∫x
0 μj (ξ)dξ

∫x

0
ψj(u)eaiu+

∫u
0 μj (ξ)dξdu

]
dx.

(3.49)

Then

∣∣Ij
∣∣ ≤

∫∞

0
μj(x)e−

∫x
0 μj (ξ)dξdx = 1,

∣∣Kj

∣∣ ≤
∫∞

0

[
μj(x)e−

∫x
0 μj (ξ)dξ

∫x

0

∣∣ψj(u)
∣∣e
∫u
0 μj (ξ)dξdu

]
dx.

(3.50)

Since

∫∞

0
μj(x)pj(x)dx = pj(0)Ij +Kj, (3.51)

hence μj(x)pj(x) ∈ L1[0,+∞), j = 3, 4, 5.
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Substituting pj(x) into (3.39)–(3.41) we get the following system of equations:

(ai + a0 − λc0I4 − λh0I5)p0 −
(
μ + λc1 + λh1I5

)
p1

− (λI3 + λc2I4 + λh2I5)p2 = ψ0 +K3 +K4 +K5,

(−λ − 2α)p0 + (ai + a1)p1 − μp2 = ψ1,

(−λ − α)p1 + (ai + a2)p2 = ψ2.

(3.52)

The matrix of the coefficient of the above system is denoted by

D =

⎛
⎜⎜⎝

ai + a0 − λc0I4 − λh0I5 −μ − λc1 − λh1I5 −λI3 − λc2I4 − λh2I5
−λ − 2α ai + a1 −μ

0 −λ − α ai + a2

⎞
⎟⎟⎠. (3.53)

Since

|ai + a0 − λc0I4 − λh0I5| ≥ |ai + a0| − λc0 |I4| − λh0 |I5|
> |ai + a0| − λc0 − λh0
> a0 − λc0 − λh0 = λ + 2α,

∣∣−μ − λc1 − λh1I5
∣∣ + |−λ − α| ≤ μ + λc1 |I4| + λh1 |I5| + λ + α

< μ + λc1 + λh1 + λ + α = a1

< |ai + a1|,
|−λI3 − λc2I4 − λh2I5| +

∣∣−μ∣∣ ≤ λ|I3| + λc2 |I4| + λh2 |I5| + μ
< λ + λc2 + λh2 + μ = a2

< |ai + a2|.

(3.54)

This shows that the matrixD is a diagonally dominant matrix, it follows that the determinant
of the matrix D is not equal to 0. Therefore, system (3.52) has a unique solution (p0, p1, p2).
Combining this with (3.46) we obtain that the equation (aiId − A)P = Ψ has exactly one
solution (p0, p1, p2, p3(x), p4(x), p5(x)) ∈ D(A), this yields ai ∈ ρ(A).

4. Well-Posedness of the System

The main gaol in this section is to prove the well-posedness of the system. In order to prove
this, we will need some lemmas.

Lemma 8.1. A : D(A) → R(A) ⊂ X is a closed linear operator and D(A) is dense in X.
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Proof. We will prove the assertion in two steps.
We first prove that A is closed. For any given

Pn =
(
p
(n)
0 , p

(n)
1 , p

(n)
2 , p

(n)
3 (x), p(n)4 (x), p(n)5 (x)

)t ∈ D(A),

P0 =
(
p
(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
3 (x), p(0)4 (x), p(0)5 (x)

)t ∈ X.
(4.1)

We suppose that

lim
n→∞

Pn = P0,

lim
n→∞

APn = F,
(4.2)

where F = (f0, f1, f2, f3(x), f4(x), f5(x))
t ∈ X. That is,

lim
n→∞

p
(n)
i = p(0)i (i = 0, 1, 2),

lim
n→∞

∫∞

0

∣∣∣p(n)j (x) − p(0)j (x)
∣∣∣dx = 0

(
j = 3, 4, 5

)
.

(4.3)

Then we obtain from Assumption 1.1 that

lim
n→∞

∫∞

0
p
(n)
j (x)μj(x)dx =

∫∞

0
p
(0)
j (x)μj(x) j = 3, 4, 5. (4.4)

Furthermore,

lim
n→∞

APn = lim
n→∞

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a0p(n)0 + μp(n)1 +
5∑

i=3

∫∞

0
μi(x)p

(n)
i (x)dx

(λ + 2α)p(n)0 − a1p(n)1 + μp(n)2

(λ + α)p(n)1 − a2p(n)2

−dp
(n)
3 (x)
dx

− μ3(x)p
(n)
3 (x)

−dp
(n)
4 (x)
dx

− μ4(x)p
(n)
4 (x)

−dp
(n)
5 (x)
dx

− μ5(x)p
(n)
5 (x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0

f1

f2

f3(x)

f4(x)

f5(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.5)
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This is equivalent to the following system of equations:

lim
n→∞

[
−a0p(n)0 + μp(n)1 +

5∑

i=3

∫∞

0
μi(x)p

(n)
i (x)dx

]
= f0,

lim
n→∞

[
(λ + 2α)p(n)0 − a1p(n)1 + μp(n)2

]
= f1,

lim
n→∞

[
(λ + α)p(n)1 − a2p(n)2

]
= f2,

lim
n→∞

[
−dp

(n)
3 (x)
dx

− μ3(x)p
(n)
3 (x)

]
= f3(x),

lim
n→∞

[
−dp

(n)
4 (x)
dx

− μ4(x)p
(n)
4 (x)

]
= f4(x),

lim
n→∞

[
−dp

(n)
5 (x)
dx

− μ5(x)p
(n)
5 (x)

]
= f5(x).

(4.6)

Integrating both sides of last three equations from 0 to β > 0, we have

lim
n→∞

∫β

0

⎡

⎣−
dp

(n)
j (x)

dx
− μj(x)p(n)j (x)

⎤

⎦ =
∫β

0
lim
n→∞

⎡

⎣−
dp

(n)
j (x)

dx
− μj(x)p(n)j (x)

⎤

⎦

=
∫β

0
fj(x), j = 3, 4, 5.

(4.7)

This yields

lim
n→∞

[
−p(n)j

(
β
) − p(n)j (0) −

∫β

0
μj(x)p

(n)
j (x)dx

]
= −p(0)j

(
β
) − p(0)j (0) −

∫β

0
μj(x)p

(0)
j (x)dx

=
∫β

0
fj(x), j = 3, 4, 5.

(4.8)

We know from the boundedness of μj(x) that
∫∞
0 |μj(x)p(0)j (x)|dx <∞. Furthermore, we have

∫∞
0 |fj(x)|dx <∞. It follows from (4.8) that p(0)j (β) is absolutely continuous and

p
′(0)
j

(
β
)
= −μj

(
β
)
p
(0)
j

(
β
) − fj(x) ∈ L1[0,∞). (4.9)

Therefore, P0 ∈ D(A) and

lim
n→∞

p
′(n)
j

(
β
)
= lim

n→∞

[
−μj

(
β
)
p
(n)
j

(
β
)] − fj(x) = p′(0)j

(
β
)
. (4.10)
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From the above deduction we have

−a0p(0)0 + μp(0)1 +
5∑

i=3

∫∞

0
μi(x)p

(0)
i (x)dx = f0,

(λ + 2α)p(0)0 − a1p(0)1 + μp(0)2 = f1,

(λ + α)p(0)1 − a2p(0)2 = f2,

−dp
(0)
3 (x)
dx

− μ3(x)p
(0)
3 (x) = f3(x),

−dp
(0)
4 (x)
dx

− μ4(x)p
(0)
4 (x) = f4(x),

−dp
(0)
5 (x)
dx

− μ5(x)p
(0)
5 (x) = f5(x).

(4.11)

This shows that A(P0)
t = (F)t, hence (A,D(A)) is closed.

We now prove that D(A) is dense in X. We define

E =

{
p(x) =

(
p0, p1, p2, p3(x), p4(x), p5(x)

)
∣∣∣∣∣

pi ∈ C, i = 0, 1, 2,

pi(x) ∈ C∞
0 [0,∞), i = 3, 4, 5

}
. (4.12)

Then by [14] E is dense in X. If we define

H =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(x) =
(
p0, p1, p2, p3(x), p4(x), p5(x)

)

∣∣∣∣∣∣∣∣∣∣∣

pi(x) ∈ C∞[0,∞) and

there exists a number

αi such that pi(x) = 0,

for x ∈ [0, αi], i = 3, 4, 5

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (4.13)

thenH is dense in E. Therefore, in order to prove thatD(A) is dense in X, it suffices to prove
that D(A) is dense inH. Take any

p(x) =
(
p0, p1, p2, p3(x), p4(x), p5(x)

) ∈ H, (4.14)

then there exist numbers αi such that pi(x) = 0, for all x ∈ [0, αi] (i = 3, 4, 5); that is, pi(x) = 0
for x ∈ [0, s], here 0 < s = min{α3, α4, α5}.We introduce a function

ϕs(0) =
(
ϕs0, ϕ

s
1, ϕ

s
2, ϕ

s
3(0), ϕ

s
4(0), ϕ

s
5(0)

)

=

(
p0, p1, p2, λp2,

2∑

i=0

λcipi,
2∑

i=0

λhipi

)

ϕs(x) =
(
ϕs0, ϕ

s
1, ϕ

s
2, ϕ

s
3(x), ϕ

s
4(x), ϕ

s
5(x)

)
,

(4.15)
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where

ϕsi (x) =

⎧
⎪⎨

⎪⎩
ϕsi (0)

(
1 − x

s

)2

if x ∈ [0, s),

pi(x) if x ∈ [s,∞),
i = 3, 4, 5. (4.16)

It is easy to verify that ϕs(x) ∈ D(A).Moreover

∥∥p − ϕs∥∥ =
5∑

i=3

∫s

0

∣∣ϕsi (0)
∣∣
(
1 − x

s

)2

dx =
5∑

i=3

∣∣ϕsi (0)
∣∣s
3
−→ 0 as s −→ 0. (4.17)

This shows that D(A) is dense inH.

Lemma 8.2. (A,D(A)) is a dispersive operator.

Proof. For p ∈ D(A),we may choose

φ(x) =

([
p0
]+

p0
,

[
p1
]+

p1
,

[
p2
]+

p2
,

[
p3(x)

]+

p3(x)
,

[
p4(x)

]+

p4(x)
,

[
p5(x)

]+

p5(x)

)
, (4.18)

where

[pi]
+ =

⎧
⎨

⎩
pi if pi > 0,

0 if pi ≤ 0,
i = 0, 1, 2, [pi(x)]

+ =

⎧
⎨

⎩
pi(x) if pi(x) > 0,

0 if pi(x) ≤ 0,
i = 3, 4, 5. (4.19)

If we defineWi = {x ∈ [0,∞) | pi(x) > 0} and Qi = {x ∈ [0,∞) | pi(x) ≤ 0} for i = 3, 4, 5, then
we have

∫∞

0

dpi(x)
dx

[pi(x)]
+

pi(x)
dx =

∫

Wi

dpi(x)
dx

[pi(x)]
+

pi(x)
dx +

∫

Qi

dpi(x)
dx

[pi(x)]
+

pi(x)
dx

=
∫

Wi

dpi(x)
dx

[pi(x)]
+

pi(x)
dx =

∫

Wi

dpi(x)
dx

dx

=
∫∞

0

d[pi(x)]
+

dx
dx = −[pi(0)]+, i = 3, 4, 5,

∫∞

0
μi(x)pi(x)dx ≤

∫∞

0
μi(x)[pi(x)]

+dx, i = 3, 4, 5.

(4.20)
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By (4.20) and the boundary conditions on p ∈ D(A)we obtain that

〈Ap, φ〉 =

{
−a0p0 + μp1 +

5∑

i=3

∫∞

0
μi(x)pi(x)dx

}
[p0]

+

p0

+
{
(λ + 2α)p0 − a1p1 + μp2

}
[
p1
]+

p1
+
{
(λ + α)p1 − a2p2

} [p2]+

p2

+
5∑

i=3

∫∞

0

{
−dpi(x)

dx
− μi(x)pi(x)

}
[pi(x)]

+

pi(x)
dx

= −a0[p0]+ + μp1
[p0]

+

p0
+
[p0]

+

p0

5∑

i=3

∫∞

0
μi(x)pi(x)dx

+ (λ + 2α)
[p1]

+

p1
p0 − a1[p1]+ + μ

[p1]
+

p1
p1 + (λ + α)

[p2]
+

p2
p1

− a2[p2]+ −
5∑

i=3

∫∞

0

dpi(x)
dx

[pi(x)]
+

pi(x)
dx −

5∑

i=3

∫∞

0
μi(x)[pi(x)]

+dx

= −a0[p0]+ + μp1
[p0]

+

p0
+
[p0]

+

p0

5∑

i=3

∫∞

0
μi(x)pi(x)dx

+ (λ + 2α)
[p1]

+

p1
p0 − a1[p1]+ + μ

[p1]
+

p1
p1 + (λ + α)

[p2]
+

p2
p1

− a2[p2]+ +
5∑

i=3

[pi(0)]
+ −

5∑

i=3

∫∞

0
μi(x)[pi(x)]

+dx

= −a0[p0]+ + μp1
[p0]

+

p0
+
[p0]

+

p0

5∑

i=3

∫∞

0
μi(x)pi(x)dx

+ (λ + 2α)
[p1]

+

p1
p0 − a1[p1]+ + μ

[p1]
+

p1
p1 + (λ + α)

[p2]
+

p2
p1

− a2[p2]+ +
{[
λp2

]+ +
[
λc0p0 + λc1p1 + λc2p2

]+ +
[
λh0p0 + λh1p1 + λh2p2

]+}

−
5∑

i=3

∫∞

0
μi(x)[pi(x)]

+dx

≤ −a0[p0]+ + μp1
[p0]

+

p0
+
[p0]

+

p0

5∑

i=3

∫∞

0
μi(x)pi(x)dx

+ (λ + 2α)
[p1]

+

p1
p0 − a1

[
p1
]+ + μ

[
p1
]+

p1
p1 + (λ + α)

[p2]
+

p2
p1

− a2[p2]+ +
{
λ
[
p2
]+ +

{
λc0
[
p0
]+ + λc1

[
p1
]+ + λc2

[
p2
]+}
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+
{
λh0
[
p0
]+ + λh1

[
p1
]+ + λh2

[
p2
]+} −

5∑

i=3

∫∞

0
μi(x)[pi(x)]

+dx

= (λc0 + λh0 − a0)
[
p0
]+ + (λc1 + λh1 − a0)

[
p1
]+ + (λ + λc2 + λh2 − a0)

[
p2
]+

+ μp1

[
p0
]+

p0
+

[
p0
]+

p0

5∑

i=3

∫∞

0
μi(x)pi(x)dx + (λ + 2α)

[
p1
]+

p1
p0

+ μ

[
p1
]+

p1
p1 + (λ + α)

[
p2
]+

p2
p1 −

5∑

i=3

∫∞

0
μi(x)[pi(x)]

+dx

= −(λ + 2α)
[
p0
]+ − (μ + λ + α

)
[p1]

+ − μ[p2]+ + μp1
[p0]

+

p0

+

[
p0
]+

p0

5∑

i=3

∫∞

0
μi(x)pi(x)dx + (λ + 2α)

[p1]
+

p1
p0 + μ

[
p1
]+

p1
p2

+ (λ + α)

[
p2
]+

p2
p1 −

5∑

i=3

∫∞

0
μi(x)

[
pi(x)

]+
dx

≤ −(λ + 2α)
[
p0
]+ − (μ + λ + α

)[
p1
]+ − μ[p2

]+ + μp1

[
p0
]+

p0

+

[
p0
]+

p0

5∑

i=3

∫∞

0
μi(x)

[
pi(x)

]+
dx + (λ + 2α)

[
p1
]+

p1
p0 + μ

[
p1
]+

p1
p2

+ (λ + α)

[
p2
]+

p2
p1 −

5∑

i=3

∫∞

0
μi(x)

[
pi(x)

]+
dx

≤ −(λ + 2α)
[
p0
]+ − (μ + λ + α

)[
p1
]+ − μ[p2

]+ + μ
[
p1
]+
[
p0
]+

p0

+

([
p0
]+

p0
− 1

)
5∑

i=3

∫∞

0
μi(x)

[
pi(x)

]+
dx + (λ + 2α)

[
p1
]+

p1

[
p0
]+

+ μ

[
p1
]+

p1

[
p2
]+ + (λ + α)

[
p2
]+

p2

[
p1
]+

≤ −(λ + 2α)
[
p0
]+ − (μ + λ + α

)[
p1
]+ − μ[p2

]+ + μ
[
p1
]+

+

([
p0
]+

p0
− 1

)
5∑

i=3

∫∞

0
μi(x)

[
pi(x)

]+
dx + (λ + 2α)

[
p0
]+ + μ

[
p2
]+ + (λ + α)

[
p1
]+

=

([
p0
]+

p0
− 1

)
5∑

i=3

∫∞

0
μi(x)

[
pi(x)

]+
dx ≤ 0.

(4.21)

This shows that (A,D(A)) is a dispersive operator.
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Lemma 8.3. If γ ∈ R, γ > 0, then γ ∈ ρ(A).

Proof. Let γ ∈ R, γ > 0, then all the entries of ΦDγ are positive and we have

a0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

) − γ(λ + 2α)
(
γ + a2

)

= (λ + 2α + λc0 + λh0)
(
γ + μ + λ + α + λc1 + λh1

)(
γ + μ + λ + λc2 + λh2

)

− (λ + 2α + λc0 + λh0)μ(λ + α) − μ(λ + 2α)
(
γ + μ + λ + λc2 + λh2

)

− γ(λ + 2α)
(
γ + μ + λ + λc2 + λh2

)

=
[
(λ + 2α + λc0 + λh0)γ

(
γ + μ + λ + λc2 + λh2

)

−γ(λ + 2α)
(
γ + μ + λ + λc2 + λh2

)]

+
[
(λ + 2α + λc0 + λh0)μ

(
γ + μ + λ + λc2 + λh2

)

−μ(λ + 2α)
(
γ + μ + λ + λc2 + λh2

)]

+
[
(λ + 2α + λc0 + λh0)(λ + α + λc1 + λh1)

(
γ + μ + λ + λc2 + λh2

)

−(λ + 2α + λc0 + λh0)μ(λ + α)
]
> 0

=⇒ a0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)
> γ(λ + 2α)

(
γ + a2

)
.

(4.22)

We also have

∫∞

0
μj(x)e−γs−

∫s
0 μj (ξ)dξds <

∫∞

0
μj(x)e−

∫s
0 μj (ξ)dξds = 1. (4.23)

Using (4.22) and (4.23) we can estimate the jth column sum as

3∑

i=1

(ΦDγ)i,j =
λ(λ + α)(λ + 2α)

∫∞
0 μj(x)e−γx−

∫x
0 μj (ξ)dξdx

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

+
λc0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λc1(λ + 2α)

(
γ + a2

)
+ λc2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μj(x)e−γx−

∫x
0 μj (ξ)dξdx

+
λh0
[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ λh1(λ + 2α)

(
γ + a2

)
+ λh2(λ + α)(λ + 2α)

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)

×
∫∞

0
μj(x)e−γx−

∫x
0 μj (ξ)dξdx
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=

{
1 − γ

[
(λ + 2α)

(
γ + a2

)
+
(
γ + a1

)(
γ + a2

) − μ(λ + α)
]

(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)
}

×
∫∞

0
μj(x)e−γx−

∫x
0 μj (ξ)dξdx

=

{
1 − γ

[(
γ + a1

)(
γ + a2

) − μ(λ + α)
]
+ γ(λ + 2α)

(
γ + a2

)
(
γ + a0

)[(
γ + a1

)(
γ + a2

) − μ(λ + α)
] − μ(λ + 2α)

(
γ + a2

)
}

×
∫∞

0
μj(x)e−γx−

∫x
0 μj (ξ)dξdx < 1.

(4.24)

It follows from this that ‖ΦDγ‖ < 1, and thus also

r
(
ΦDγ

) ≤ ∥∥ΦDγ

∥∥ < 1. (4.25)

Therefore, 1/∈ σ(ΦDγ). Using the Characteristic Equation 3.8 we conclude that γ ∈ ρ(A) for
γ ∈ R, γ > 0.

From Lemmas 8.1, 8.2, and 8.3 and Phillips theorem (see [8, Theorem C-II 1.2]), we
immediately obtain the following result.

Theorem 8.4. The operator (A,D(A)) generates a positive contraction C0-semigroup (T(t))t≥0.

We now characterize the well-posedness of (ACP) as follows; see [6, Corollary II.6.9].

Theorem 8.5. For a closed operator (A,D(A)) on X the associated abstract Cauchy problem (ACP)
is well-posed if and only if (A,D(A)) generates a strongly continuous semigroup on X.

From Theorem 8.5 and [6, Proposition II.6.2] we can state our main result.

Theorem 8.6. The system (R), (BC), and (IC0) has a unique positive solution p(x, t) which satisfies
‖p(·, t)‖ = 1, t ∈ [0,∞).

Proof. From Theorems 8.4, 8.5, and [6, Proposition II.6.2] we obtain that the associated
abstract Cauchy problem (ACP) has a unique positive time-dependent solution p(x, t)which
can be expressed as

p(x, t) = T(t)p(0) = T(t)(1, 0, 0, 0, 0, 0). (4.26)
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Let P(t) = p(x, t) = (p0(t), p1, p2, p3(x, t), p4(x, t), p5(x, t)), then P(t) satisfies the system of
equations

dp0(t)
dt

= −a0p0(t) + μp1(t) +
5∑

i=3

∫∞

0
μi(x)pi(x, t)dx,

dp1(t)
dt

= (λ + 2α)p0(t) − a1p1(t) + μp2(t),

dp2(t)
dt

= (λ + α)p1(t) − a2p2(t),

∂p3(x, t)
∂t

= −∂p3(x, t)
∂x

− μ3(x)p3(x, t),

∂p4(x, t)
∂t

= −∂p4(x, t)
∂x

− μ4(x)p4(x, t),

∂p5(x, t)
∂t

= −∂p5(x, t)
∂x

− μ5(x)p5(x, t),

p3(0, t) = λp2(t), t > 0,

p4(0, t) =
2∑

i=0

λcipi(t), t > 0,

p5(0, t) =
2∑

i=0

λhipi(t), t > 0,

P(0) = (1, 0, 0, 0, 0, 0).

(4.27)

Since

∫∞

0

∂pj(x, t)
∂x

dx = pj(∞, t) − pj(0, t) = −pj(0, t), j = 3, 4, 5. (4.28)

Using (4.27)-(4.28) we compute

d‖P(t)‖
dt

=
2∑

i=0

dpi(t)
dt

+
5∑

j=3

∫∞

0

∂pj(x, t)
∂t

dx

= −a0p0(t) + μp1(t) +
5∑

j=3

∫∞

0
μi(x)pi(x, t)dx,

+ (λ + 2α)p0(t) − a1p1(t) + μp2(t) + (λ + α)p1(t) − a2p2(t),

+
5∑

j=3

∫∞

0

[
−∂pj(x, t)

∂x
− μj(x)pj(x, t)

]
dx
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= (−a0 + λ + 2α)p0(t) +
(
μ − a1 + λ + α

)
+
(
μ − a2

)
p2(t) +

5∑

j=3

pj(0, t)

= −
5∑

j=3

pj(0, t) +
5∑

j=3

pj(0, t) = 0.

(4.29)

By (4.26) and (4.29)we obtain

d‖P(t)‖
dt

=
d‖T(t)P(0)‖

dt
= 0. (4.30)

Therefore,

‖T(t)P(0)‖ = ‖P(t)‖ = ‖P(0)‖ = 1. (4.31)

This shows ‖p(·, t)‖ = 1, for all t ∈ [0,∞).

5. Asymptotic Stability of the Solution

In this section, we prove the asymptotic stability of the system by using C0-semigroup theory.
First we express the resolvent of A in terms of the resolvent of A0, the Dirichlet operator Dγ

and the boundary operator Φ, compare with [10].

Lemma 8.1. Let γ ∈ ρ(A0) ∩ ρ(A). Then

R
(
γ,A

)
= R

(
γ,A0

)
+Dγ(Id −ΦDγ)

−1ΦR
(
γ,A0

)
. (5.1)

Proof. Under our assumption, we see from the Characteristic Equation 3.8 that 1/∈ σ(ΦDγ)
and it follows from theProof that γ −A is invertible with inverse

R
(
γ,A) = (γ −A0)

−1(I − BR(γ,A0
)
)−1. (5.2)

Using the explicit representation (3.28) for I − BR(γ,A0)we compute

(I − BR(γ,A0
)
)−1 =

(
IdX 0

(Id∂X −ΦDγ)
−1ΦR

(
γ,A0

)
(Id∂X −ΦDγ)

−1

)
. (5.3)

Define R(γ) := (IdX +Dγ(Id∂X −ΦDγ)
−1Φ)R(γ,A0). Then

R
(
γ,A) =

(
R
(
γ
)
Dγ(Id∂X −ΦDγ)

−1

0 0

)
. (5.4)
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Since

(
R
(
γ
)

0

0 0

)
= R

(
γ,A)|X0 = R

(
γ,A|X0

)
(5.5)

and since A ∼= A|X0 , it follows that

R
(
γ,A

)
= R

(
γ
)
. (5.6)

The above representation for the resolvent ofA0 shows that it is a positive operator for
γ > 0. This property is very useful in the following lemma to prove the irreducibility of the
semigroup generated by A. For the notation and terminology concerning positive operators
we refer to the books [8, 15].

Lemma 8.2. The semigroup (T(t))t≥0 generated by (A,D(A)) is irreducible.

Proof. We know from [8, Definition C-III 3.1] that the irreducibility of (T(t))t≥0 is equivalent
to the existence of γ > 0 such that 0 < p ∈ X implies R(γ,A)p � 0. We now suppose that
γ > 0 and 0 < p ∈ X. Then also R(γ,A0)p > 0 and ΦR(γ,A0)p > 0. It follows from theProof of
Lemma 8.3 that ‖ΦDγ‖ < 1 for all γ > 0. Hence the inverse of Id∂X − ΦDγ can be computed
via the Neumann series

(Id∂X −ΦDγ)
−1 =

∞∑

n=0

(ΦDγ)
n. (5.7)

We know from the form of ΦDγ that for every i ∈ {1, 2, 3} there exists k ∈ N such that the real
number ((ΦDγ)

kΦR(γ,A0)p)i > 0. Therefore,

(Id∂X −ΦDγ)
−1ΦR

(
γ,A0

)
p � 0, (5.8)

and by the form of Dγ we have

Dγ(Id∂X −ΦDγ)
−1ΦR

(
γ,A0

)
p � 0. (5.9)

This implies

R
(
γ,A

)
p � 0, (5.10)

and hence (T(t))t≥0 is irreducible.

We now use the information obtained on σ(A) ∩ iR and on (T(t))t≥0 to prove our
main result on the asymptotic behaviour of the solutions of (ACP). We first show that the
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semigroup is relatively weakly compact, see [6, Section V.2.b], and then we argue as in
[16, 17]. Denote by

fix(T(t))t≥0 :=
⋂

t≥0
fix(T(t)) =

{
p ∈ X : T(t)p = p ∀t ≥ 0

}
. (5.11)

According to [6, Corollary IV.3.8(i)] we have the equality

fix(T(t))t≥0 = kerA. (5.12)

To study the asymptotic behaviour of the semigroup (T(t))t≥0 the following
compactness property is useful.

Lemma 8.3. The set {T(t) : t ≥ 0} ⊆ L(X) is relatively compact for the weak operator topology. In
particular, it is mean ergodic, that is,

lim
r→∞

1
r

∫ r

0
T(s)p ds (5.13)

exists for all p ∈ X.

Proof. From 0 ∈ σp(B) and (5.12) it follows that there exists 0/= p ∈ fix(T(t))t≥0. By the
positivity of the semigroup we have

∣∣p
∣∣ =

∣∣T(t)p
∣∣ ≤ T(t)∣∣p∣∣ ∀t ≥ 0. (5.14)

Suppose that |p| < T(t)|p|. Since (T(t))t≥0 is a contraction semigroup and the norm on X is
strictly monotone, we obtain that

∥∥p
∥∥ <

∥∥T(t)
∣∣p
∣∣∥∥ ≤ ∥∥p∥∥, (5.15)

which is a contradiction. Thus

∣∣p
∣∣ = T(t)

∣∣p
∣∣ (5.16)

holds, and we can already assume that p > 0. Since (T(t))t≥0 is irreducible, we obtain from [8,
Proposition C-III 3.5(a)] that p is a quasi-interior point of X which implies that

Xp :=
⋃

n≥1

[−np, np] (5.17)

is dense in X. Let n ∈ N and take w ∈ [−np, np], that is, −np ≤ w ≤ np. Then

−np = −nT(t)p ≤ T(t)w ≤ nT(t)p = np ∀t ≥ 0. (5.18)
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Since the order interval [−np, np] is weakly compact inX, see [15, page 92], the orbit {T(t)w :
t ≥ 0} is relatively weakly compact in X. So far, we have shown that the orbits of elements
w ∈ Xp are relatively weakly compact. Since the semigroup (T(t))t≥0 is bounded and Xp is
dense in X, we know from [6, Lemma V.2.7] that {T(t) : t ≥ 0} ⊆ L(X) is relatively weakly
compact. By [6, Lemma V.2.7] we obtain that the semigroup (T(t))t≥0 is mean ergodic.

We can now show the convergence of the semigroup to a one-dimensional equilibrium
point.

Theorem 8.4. The space X can be decomposed into the direct sum

X = X1 ⊕X2, (5.19)

where X1 = fix(T(t))t≥0 = kerA is one dimensional and spanned by a strictly positive eigenvector
p̃ ∈ kerA of A. In addition, the restriction (T(t)|X2)t≥0 is strongly stable.

Proof. Since by Lemma 8.3 every p ∈ X has a relatively weakly compact orbit, (T(t))t≥0 is
totally ergodic; see [18, Proposition 4.3.12]. This implies that X can be decomposed into

X = kerA ⊕ rg(A) =: X1 ⊕X2, (5.20)

where kerA = fix(T(t))t≥0 and X1 and X2 are invariant under (T(t))t≥0; see [6, Lemma V.4.4].
There exists p̃ ∈ kerA such that p̃ > 0; see theProof of Lemma 8.3. Moreover, by the same
construction as in theProof of [6, Lemma V.2.20(i)], we find p′ ∈ X′ such that p′ > 0 and
A′p′ = 0. Hence we obtain that

dim kerA = 1, (5.21)

and that p̃ is strictly positive, that is, p̃ � 0; see [8, Proposition C-III 3.5].
We now consider the generator (A2, D(A2)) of the restricted semigroup (T2(t))t≥0,

where

A2v = Av, D(A2) = D(A) ∩X2, (5.22)

and T2(t) = T(t)|X2 . Clearly, (T2(t))t≥0 is bounded and totally ergodic on X2; that is,
(e−iatT(t))t≥0 is mean ergodic for all a ∈ R. This implies that ker(A2−iat) separates ker(A′

2−iat)
for all a ∈ R; see [6, Theorem V.4.5]. By Lemma 8.9 ker(A2 − iat) = {0}, thus ker(A′

2 − iat) =
{0} for all a ∈ R. Hence it follows that σp(A′

2)∩iR = ∅.Applying the Arendt-Batty-Lyubich-Vũ
Theorem, see [18, Theorem 5.5.5], we obtain the strong stability of (T2(t))t≥0.

Combining Lemmas 8.8, 8.9, and 8.3 with Theorem 8.4 we obtain the following main
result.
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Corollary 8.5. There exists p′ ∈ X′, p′ � 0, such that for all p ∈ X

lim
t→∞

T(t)p = 〈p′, p〉p̃, (5.23)

where kerA = 〈p̃〉, p̃ � 0.

Since the semigroup gives the solutions of the original system, we obtain our final
result.

Corollary 8.6. The time-dependent solution of the system (R), (BC), and (IC0) converges strongly
to the steady-state solution as time tends to infinite, that is, limt→∞p(·, t) = αp̃, where α > 0 and p̃ as
in Corollary 8.5.

6. Conclusions

In this paper, we considered a repairable system involving primary as well as secondary
failures. By using the C0-semigroup theory of bounded linear operator on Banach space,
we proved that the corresponding dynamic operator generates positive contractive C0-
semigroup and the system is well-posed. Furthermore, we proved the existence of positive
solution of the system. Moreover, we obtained the result on the asymptotic stability of the
solution of this system, that is, the convergence to a one-dimensional equilibrium. TheProof
is based on the Arendt-Batty-Lyubich-Vũ Theorem [18, Theorem 5.5.5].
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