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The aim of the present paper is to study the p-valent analytic functions in the unit disk and
satisfy the differential subordinations z(Ip(r, λ)f(z))(j+1)/(p − j)(Ip(r, λ)f(z))(j) ≺ (a + (aB + (A −
B)β)z)/a(1 + Bz), where Ip(r, λ) is an operator defined by Sălăgean and β is a complex number.
Further we define a new related integral operator and also study the Fekete-Szego problem by
proving some interesting properties.

1. Introduction

LetA be the class of analytic functions in Δ = {z ∈ C : |z| < 1}. LetAp denote the class of all
analytic functions in the form of

f(z) = ezp −
2p−1∑

n=p−1
tn−p+1zn−p+1 + 2F1(a, b; c; z), |z| < 1, (1.1)

where F1(a, b; c; z) is Gaussian hypergeometric function defined by

2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)n!

zn,

(a, n) =
Γ(a + n)
Γ(a)

= a(a + 1, n − 1), c > b > 0, c > a + b,

tn−p+1 =

(
a, n − p + 1

)(
b, n − p + 1

)
(
c, n − p + 1

)(
n − p + 1

)
!
, e > 0.

(1.2)
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Note that it is easy to see that these functions are analytic in the unit disk Δ; for more details
on hypergeometric functions 2F1(a, b; c.z), see [1, 2].

Definition 1.1. A function f ∈ Ap is said to be in the class S∗
p(α), p-valently starlike functions

of order α, if it satisfies Re{zf ′(z)/f(z)} > α, (0 ≤ α < p, z ∈ Δ). We write S∗
p(0) = S

∗
p, the class

of p-valently starlike functions in Δ.
Similarly, a function f ∈ Ap is said to be in the class Cp(α), p-valently convex of order

α, if it satisfies Re{1 + zf ′′(z)/f ′(z)} > α, (0 ≤ α < p, z ∈ Δ).
Let h(z) be analytic and h(0) = p. A function f ∈ Ap is in the class S∗

p(h) if

zf ′(z)
f(z)

≺ h(z), z ∈ Δ. (1.3)

The class S∗
p(h) and a corresponding convex class Cp(h) were defined by Ma and Minda in

[3]. Similar results which are related to the convex class can also be obtained easily from the
corresponding functions in S∗

p(h). For example,

(i) if p = 1 and

h(z) =
1 + z
1 − z , (1.4)

then the classes reduce to the usual classes of starlike and convex functions;

(ii) if h(z) = (1 + (1 − 2α)z)/(1 − z)where 0 ≤ α < 1, then the classes are reduced to the
usual classes of starlike and convex functions of order α;

(iii) if h(z) = p((1 +Az)/(1 + Bz)), where −1 ≤ B < A ≤ 1, then the classes are reduced
to the class of Janowski starlike functions S∗

p[A,B]which is defined by

S∗
p[A,B] =

{
f ∈ Ap :

zf ′

f
≺ p1 +Az

1 + Bz
, −1 ≤ B < A ≤ 1, z ∈ Δ

}
; (1.5)

(iv) if h(z) = ((1 + z)/(1 − z))α where p = 1 and 0 < α ≤ 1, then the classes reduce
to the classes of strongly starlike and convex functions of order α that consists of
univalent functions f ∈ A satisfing

∣∣∣∣arg
(
zf ′(z)
f(z)

)∣∣∣∣ <
απ

2
, 0 < α ≤ 1, z ∈ Δ (1.6)

or equivalently we have

SS∗(α) =
{
f ∈ Ap :

zf ′

f
≺
(
1 + z
1 − z

)α
, 0 < α ≤ 1, z ∈ Δ

}
. (1.7)
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In the literature, there are several works and many researchers have been studying
the related problems. For example, Obradović and Owa [4], Silverman [5], Obrad-
owič and Tuneski [6], and Tuneski [7] have studied the properties of classes of func-
tions which are defined in terms of the ratio of 1 + zf ′′(z)/f ′(z) and zf ′(z)/f(z).

Definition 1.2. A function f ∈ Ap is said to be p-valent Bazilevic of type η and order α if there
exists a function g ∈ S∗

p such that

Re

{
zf ′(z)

f1−η(z)gη(z)

}
> α (z ∈ Δ) (1.8)

for some η (η ≥ 0) and α (0 ≤ α < p). We denote by Bp(η, α), the subclass of Ap consisting
of all such functions. In particular, a function in Bp(1, α) = Bp(α) is said to be p-valently
close-to-convex of order α in Δ.

Definition 1.3. Let f and g be analytic functions in Δ, then we say f is subordinate to g and
denoted by f ≺ g if there exists a Schwarz function w(z), analytic in Δ with w(0) = 0 and
|w(z)| < 1, such that f(z) = g(w(z)), z ∈ Δ. In particular, if the function g is univalent in Δ,
the above subordination is equivalent to f(0) = g(0) and f(Δ) ⊂ g(Δ). Also, we say that g is
superordinate to f ; see [8].

Definition 1.4. Motivated by the multiplier transformation on A, we define the operator
Ip(r, λ); by the following infinite series when f(z) = zp +

∑∞
n=p+1 anz

n then

Ip(r, λ)f(z) = zp +
∞∑

n=1+p

(
n + λ
p + λ

)r
anz

n (λ ≥ 0). (1.9)

Sălăgean derivative operator is closely related to the operator Ip(r, λ); see [9]. In [10],
Uralegaddi and Somanatha also studied the case I1(r, 1) = Ir . The operator I1(r, λ) = Iλr
was studied recently by Cho and Srivastava [11] and Cho and Kim [12].

Definition 1.5. Differential operator, for each f(z) = zp +
∑∞

n=p+1 anz
n, we have

f (j)(z) =
p!

(
p − j)!z

p−j +
∞∑

n=1+p

n!
(
n − j)!anz

n−j , (1.10)

where n, p ∈N, p > j, and j ∈N0 = {0} ∪N. In particular, if j = 0 we have f (0)(z) = f(z).

Definition 1.6. A function f ∈ Ap is said to be in the class Ap(λ, r, j;h) if it satisfies the
following subordination:

z
(Ip(r, λ)f(z)

)(j+1)
(
p − j)(Ip(r, λ)f(z)

)(j) ≺ h(z), (1.11)
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and in this study we consider

h(z) = 1 +
A − B
a

βz

1 + Bz
, z ∈ Δ, (1.12)

where −1 ≤ B < A ≤ 1, a > 0 and β(/= 0) is a complex number; so we denote Ap(λ, r, j;h) =
Ap(λ, r, j, β, a,A, B). Then we say that f(z) is superordinate to h(z) if f(z) satisfies the
following:

h(z) ≺ z
(Ip(r, λ)f(z)

)(j+1)
(
p − j)(Ip(r, λ)f(z)

)(j) , (1.13)

where h(z) is analytic in Δ and h(0) = 1.
Further we note that if

z
(Ip(r, λ)f(z)

)(j+1)
(Ip(r, λ)f(z)

)(j) ≺
(
p − j)[a +

(
aB + (A − B)β)z]

a(1 + Bz)
= h(z). (1.14)

By choosing j = r = 0, p = 1, so h(0) = 1, then f(z) ∈ S∗(h). For a = A = β = 1, B = −1,
and p ≥ 1, we have f(z) ∈ S∗

p(1). But if a = β = 1 and j = r = 0 and −1 ≤ B < A ≤ 1, then
f(z) ∈ S∗[A,B], a class of Janowski starlike functions. If we put p = a = β = A = 1, B =
−1, then f(z) ∈ SS∗(1) classes of strongly starlike. By Definition 1.2, if g(z) ∈ S∗, univalent
starlike, and j = r = 0 and p = a = A = β = 1, B = −1 and ifw Re{zf ′(z)/f(z)g2(z)} > 1, then
f(z) ∈ B(2, 1) is a class Bazilevic functions of type η = 2 and order α = 1.

2. Main Results

Theorem 2.1. Let the function f(z) be of the form (1.1). If someA,B, (−1 < B < A ≤ 1), and β(/= 0)
are complex numbers and

∞∑

m=p+1

γrλ
(
m, p

)[
a(1 + B)

(
δ
(
m, j + 1

) − δ(m, j)(p − j)) − δ(m, j)(A − B)(p − j)∣∣β∣∣]km

<
∣∣β
∣∣e(A − B)δ(p, j + 1

)
,

(2.1)

then f(z) ∈ Ap(λ, r, j, β, a,A, B), where γrλ(m, p) = ((m + λ)/(p + λ))r , δ(m, j) = m!/(m− j)! and
for r, j ∈ N0, λ > 0, p ∈ N, j < p. The result is sharp.

Proof. Since the function f(z) in the theorem can be expressed in the form

f(z) = ezp +
∞∑

n=2p

kn−p+1zn−p+1 or f(z) = ezp +
∞∑

m=p+1

kmz
m, (2.2)
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wherem = n − p + 1 and km = (a,m)(b,m)/(c,m)m!, and also we have for all r, j ∈ N0,

(Ip(r, λ)f(z)
)(j) =

ep!
(
p − j)!z

p−j +
∞∑

m=p+1

(
m + λ
p + λ

)r m!
(
m − j)!kmz

m−j

= eδ
(
p, j
)
zp−j +

∞∑

m=p+1

γrλ
(
m, p

)
δ
(
m, j
)
kmz

m−j ,

(2.3)

now, assume that the condition (2.1) holds true. We show that f ∈ Ap(λ, r, j, β, a,A, B).
Equivalently, we prove that

∣∣∣∣∣∣

az
(Ip(r, λ)f(z)

)(j+1) − a(p − j)(Ip(r, λ)f(z)
)(j)

(
p − j)R(Ip(r, λ)f(z)

)(j) − Baz(Ip(r, λ)f(z)
)(j+1)

∣∣∣∣∣∣
< 1, (2.4)

where R = aB + (A − B)β. But we have

∣∣∣∣∣∣

az
(Ip(r, λ)f(z)

)(j+1) − a(p − j)(Ip(r, λ)f(z)
)(j)

(
p − j)R(Ip(r, λ)f(z)

)(j) − Baz(Ip(r, λ)f(z)
)(j+1)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

[
a
∑∞

m=p+1 γ
r
λ

(
m, p

)(
δ
(
m, j + 1

) − δ(m, j)(p − j))kmzm−j
]

[
β(A − B)δ(p, j + 1

)
ezp−j −∑∞

m=p+1 γ
r
λ

(
m, p

)(
aBC − δ(m, j)(A−B)β(p − j))kmzm−j

]

∣∣∣∣∣∣∣

<

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
a
∑∞

m=p+1 γ
r
λ

(
m, p

)(
δ
(
m, j + 1

) − δ(m, j)(p − j))km
]

[
∣∣β
∣∣e(A − B)δ(p, j+ 1

) −∑∞
m=p+1 γ

r
λ

(
m, p

)(
aBC − δ(m, j)(A− B)∣∣β∣∣(p − j))km

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

< 1.

(2.5)

where C denotes (δ(m, j + 1) − δ(m, j)(p − j)).
The last inequality is true by (2.1) and this completes the proof. The result is sharp for

the functions fm(z) defined in Δ by

fm(z)

= ezp +

∣∣β
∣∣e(A − B)δ(p, j + 1

)

γrλ
(
m, p

)[
a(1 + B)

(
δ
(
m, j + 1

) − δ(m, j)(p − j)) − δ(m, j)(A − B)(p − j)∣∣β∣∣]z
m

(2.6)

for m ≥ p + 1.
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Remark 2.2. We observe that if B /= 0, the converse of the above theorem needs not be true. For
instance, consider the function f(z) defined by

z
(Ip(r, λ)f(z)

)(j+1)
((
p − j)Ip(r, λ)f(z)

)(j) ≺ a − Sgn(B)
(
pB + (A − B)β)z

a
(
1 − Sgn(B)Bz

) , (2.7)

where Sgn(B) = 1, 0,−1 thus accordingly B > 0, B = 0 and B < 0. It is easily seen that
f(z) ∈ Ap(λ, r, j, β, a,A, B) and

km = − (1 + B) βe(A − B)δ(p, j + 1
)
Sgn(B)m−p−1Bm−p−2

[
a(1 + B)

(
δ
(
m, j + 1

)
+ δ
(
m, j
)(
p − j)) + δ(m, j)(A − B)(p − j)β]γrλ

(
m, p

)

(
m ≥ p + 1

)
(2.8)

so that

∞∑

m=p+1

γrλ
(
m, p

)
[
a(1 + B)

(
δ
(
m, j + 1

) − δ(m, j)(p − j)) − β(A − B)δ(m, j)(p − j)

βe(A − B)δ(p, j + 1
)

]
|km|

= (1 + B)
∞∑

m=p+1

(B)m−p−2 =
1 + B
1 − B > 1,

(2.9)

whereA, B are satisfying the conditions −1 ≤ B < A ≤ 1, 0 < B < 1. This establishes our claim.

Theorem 2.3. If the function f(z) ∈ Ap(λ, r, j, β, a,A, B), then

|km| ≤
∣∣β
∣∣(A − B)δ(p, j + 1

)
e

aγr
λ

(
m, p

)(
δ
(
m, j + 1

) − δ(m, j)(p − j)) , m ≥ p − 1, (2.10)

where −1 ≤ B < A ≤ 1 and 0 < a < A − B ≤ 1, and the estimate is sharp.
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Proof. We have

z
(Ip(r, λ)f(z)

)(j+1)
(
p − j)(Ip(r, λ)f(z)

)(j) =
a +
(
aB + (A − B)β)w(z)
a(1 + Bw(z))

, (2.11)

where w(z) =
∞∑

i=p+1
wi−pzi−p is defined as in the Definition 1.3. Now we can write

a
∞∑

i=p+1

γrλ
(
i, p
)(
δ
(
i, j + 1

) − δ(i, j)(p − j))kizi−j

=

⎧
⎨

⎩β(A − B)δ(p, j+ 1
)
ezp−j −

∞∑

i=p+1

γrλ
(
i, p
)(
δ
(
i, j+ 1

)
Ba − δ(i, j)(p − j)R)kizi−j

⎫
⎬

⎭

∞∑

i=p+1

wi−pzi−p,

(2.12)

where R = aB + (A − B)β. Now if we equalize the coefficients of the same power of z in both
sides, then we have

a
m∑

i=p−1
γrλ
(
i, p
)(
δ
(
i, j + 1

) − δ(i, j)(p − j))kizi−j +
∞∑

i=m+1

ciz
i−j

=

⎧
⎨

⎩β(A − B)δ(p, j + 1
)
ezp−j −

m−1∑

i=p+1

γrλ
(
i, p
)(
δ
(
i, j + 1

)
Ba − δ(i, j)(p − j)R)kizi−j

⎫
⎬

⎭w(z),

(2.13)

where ci’s are suitable constants. By multiplying each side of the above equation by its
conjugate and letting |z| = 1, r → 1−, we get

a2
m∑

i=p−1
γ2rλ
(
i, p
)(
δ
(
i, j + 1

) − δ(i, j)(p − j))2|ki|2

≤ [∣∣β∣∣(A − B)δ(p, j + 1
)
e
]2 +

m−1∑

i=p+1

γ2rλ
(
i, p
)(
δ
(
i, j + 1

)
Ba − δ(i, j)(p − j)R)2|ki|2

(2.14)

so that

a2γ2rλ
(
m, p

)(
δ
(
m, j + 1

) − δ(m, j)(p − j))2|km|2

≤ [∣∣β∣∣(A − B)δ(p, j + 1
)
e
]2 −

(
1 − a2

) m−1∑

i=p+1

γ2rλ
(
i, p
)(
δ
(
i, j + 1

)
Ba − δ(i, j)(p − j)R)2|ki|2.

(2.15)
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Since −1 < B < A ≤ 1 and 0 < a < A − B < 1, we have

|km| ≤
∣∣β
∣∣(A − B)δ(p, j + 1

)
e

aγr
λ

(
m, p

)(
δ
(
m, j + 1

) − δ(m, j)(p − j)) , m ≥ p − 1 (2.16)

and this completes the proof. Note that the estimate in (2.10) is sharp for the functions fm(z)
defined in Δ; when j = r = 0 in (1.3), then

fm(z) = exp

[∫z

0

p
(
ψ(t)R + a

)

t
(
1 + Bψ(t)

) dt
]
, m ≥ 1 + p, (2.17)

where |ψ(t)| < 1, z ∈ Δ and R = aB + (A − B)β. We can choose ψ(t) = tm.

Theorem 2.4 ([Fekete-Szego Problem]). Let the function f(z), given by (2.2), be in the class
Ap(λ, j, β, a,A, B) and μ any complex number. Then

∣∣∣kp+2 − μk2p+1
∣∣∣

≤ (A − B)δ(p, j + 1
)
e
∣∣β
∣∣

2aγr
λ

(
p + 2, p

)

×max

⎧
⎨

⎩1,

∣∣∣∣∣∣

2γr
λ

(
p + 2, p

)
δ
(
p + 2, j

)(
aγr

λ

(
p + 1, p

)
δ
(
p + 1, j

)
+ μ(A − B)δ(p, j + 1

)
eβ
)

a
(
γr
λ

(
p + 1, p

))2

∣∣∣∣∣∣

⎫
⎬

⎭.

(2.18)

Proof. On using the coefficients of zp+1 and zp+2, we get

kp+1 =
(A − B)βeδ(p, j + 1

)

aγr
λ

(
p + 1, p

)
δ
(
p + 1, j

)w1,

kp+2 =
(A − B)eβδ(p, j + 1

)

aγr
λ

(
p + 2, p

)
2δ
(
p + 2, j

)w2 −
(A − B)eβδ(p, j + 1

)

aγr
λ

(
p + 1, p

)
δ
(
p + 1, j

)w2
1.

(2.19)

By using [13] that

∣∣∣w2 − ρw2
1

∣∣∣ ≤ max
{
1,
∣∣ρ
∣∣} (2.20)
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for every complex number ρ, then we can write
∣∣∣kp+2 − μk2p+1

∣∣∣

= | 1
a
(A − B)δ(p, j + 1

)
eβ

(
w2

2γrλ
(
p + 2, p

)
δ
(
p + 2, j

) − w2
1

γrλ
(
p + 1, p

)
δ
(
p + 1, j

)
)

− μ

(
(A − B)δ(p, j + 1

)
eβ

aγrλ
(
p + 1, p

)
δ
(
p + 1, j

)
)2

w2
1 |

= | (A − B)δ(p, j + 1
)
eβ

2aγrλ
(
p + 2, p

)
δ
(
p + 2, j

)w2

− (A −B)δ(p, j + 1
)
eβaγr

λ

(
p + 1, p

)
δ
(
p + 1, j

) − μ((A − B)δ(p, j + 1
)
eβ
)2

(
aγr

λ

(
p + 1, p

)
δ
(
p + 1, j

))2 w2
1 |

=
(A − B)δ(p, j + 1

)
e
∣∣β
∣∣

2aγr
λ

(
p + 2, p

)
∣∣∣w2 − hw2

1

∣∣∣,

(2.21)

where

h =
2γr

λ

(
p + 2, p

)
δ
(
p + 2, j

)(
aγr

λ

(
p + 1, p

)
δ
(
p + 1, j

) − μ(A − B)eβδ(p, j + 1
))

a
(
γrλ
(
p + 1, p

)
δ
(
p + 1, j

))2 . (2.22)

3. Integral Operator

Now, we introduce a new integral operator which is denoted by Gη,p(z) on functions
belonging toAp as follows:

Gη,p(z) = e
(
1 − η)zp + ηp

∫z

ε

f(t)
t
dt

(
0 < η < 1, ε −→ 0+

)
, (3.1)

and we verify the effect of this operator on (1.11); with a simple calculation, we have

Gη,p(z) = e
(
1 − η)zp + ηp

⎡

⎣
∫z

ε

⎛

⎝etp−1 +
∞∑

m=p+1

kmt
m−1

⎞

⎠dt

⎤

⎦ (
0 < η < 1, ε −→ 0+

)

= e
(
1 − η)zp + ηezp +

∞∑

m=p+1

ηp

m
kmz

m

= ezp +
∞∑

m=p+1

dmz
m,

(3.2)
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where dm = (ηp/m)km. If we put r = j = 0 in (1.11), then we obtain

zf ′(z)
pf(z)

≺ a +
(
aB + (A − B)β)z
a(1 + Bz)

(3.3)

that is denoted by Ap(λ, 0, 0, β, a,A, B) = Ap(λ, β, a,A, B).
Now if we letAp,η(λ, β, a,A, B) be a class of functions Gη,p(z) analytic inΔ and defined

by (3.1) where f(z) ∈ Ap(λ, β, a,A, B). Then on using (3.1) and definition of subordination,
we have the following theorem.

Theorem 3.1. Gη,p(z) ∈ Ap,η(λ, β, a,A, B) if and only if

zcg ′
η,p(z) + z

2G′′
η,p(z) − ep2

(
1 − η)zp

pzG′
η,p − ep2

(
1 − η)zp ≺ a +

(
aB + (A − B)β)z
a(1 + Bz)

. (3.4)

Proof. The conditions (3.3) and (3.1) give

G′
η,p(z) = ep

(
1 − η)zp−1 + ηpf(z)

z
or f(z) =

zG′
η,p(z)

ηp
− e
(
1 − η)zp
η

,

f ′(z) =
1
η, p

(
G′
η,p(z) + zG′′

η,p(z)
)
− ep

η

(
1 − η)zp−1

=
1
ηp

(
Hη,p(z)

)′ − ep

η

(
1 − η)zp−1,

(3.5)

whereHη,p(z) = zG′
η,p(z). By putting f ′(z) and f(z) in (3.3), we obtain

zf ′(z)
pf(z)

=
zH ′

η,p(z) − ep2
(
1 − η)zp

Hη,p(z) − ep2
(
1 − η)zp

=
zG′

η,p(z) + z
2G′′

η,p(z) − ep2
(
1 − η)zp

pzG′
η,p(z) − ep2

(
1 − η)zp ≺ a +

(
aB + (A − B)β)z
a(1 + Bz)

.

(3.6)

With a simple calculation on Fξ(z), we have

Fξ(z) =
p + ξ
zξ

⎡

⎣
∫z

0
sξ−1

⎛

⎝esp +
∞∑

m=p+1

kms
m

⎞

⎠ds

⎤

⎦

= ezp +
∞∑

m=p+1

p + ξ
m + ξ

kmz
m

= ezp +
∞∑

p+1

bmz
m where bm =

p + ξ
m + ξ

km.

(3.7)



International Journal of Mathematics and Mathematical Sciences 11

Let Ap,ξ(λ, β, a,A, B) be the class of functions Fξ(z) analytic in Δ defined by f ∈ Ap(λ, β, a,
A, B). We can write next theorem on using (3.3) and definition of subordination.

Theorem 3.2. The Fξ(z) ∈ Ap,ξ(λ, β, a,A, B) if and only if

z
(
(ξ + 1)F ′

ξ(z) + zF
′′
ξ (z)
)

p
(
ξFξ(z) + zF ′

ξ(z)
) ≺ a +

(
aB + (A − B)β)z
a(1 + Bz)

. (3.8)

Proof. Since

Fξ(z) =
p + ξ
zξ

∫z

0
sξ−1f(s)ds, (3.9)

then we have

f(z) =
1

p + ξ

(
ξFξ(z) + zF ′

ξ(z)
)
,

f ′(z) =
1

p + ξ

(
(ξ + 1)F ′

ξ(z) + zF
′′
ξ (z)
)
.

(3.10)

Now by making substitution f ′(z) and f(z) in (3.3), we obtain

zf ′(z)
pf(z)

=

(
z/
(
p + ξ

))(
(ξ + 1)F ′

ξ(z) + zF
′′
ξ (z)
)

(
p/
(
p + ξ

))(
ξFξ(z) + zF ′

ξ(z)
)

=
z
(
(ξ + 1)F ′

ξ(z) + zF
′′
ξ (z)
)

p
(
ξFξ(z) + zF ′

ξ(z)
) ≺ a +

(
aB + (A − B)β)z
a(1 + Bz)

.

(3.11)
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