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The object of the present paper is to introduce new classes of meromorphic functions with varying
argument of coefficients defined by means of the Hadamard product (or convolution). Several
properties like the coefficients bounds, growth and distortion theorems, radii of starlikeness and
convexity, and partial sums are investigated. Some consequences of the main results for well-
known classes of meromorphic functions are also pointed out.

1. Introduction

Let ˜M denote the class of functions which are analytic in D = D(1), where

D(r) = {z ∈ C : 0 < |z| < r}, (1.1)

with a simple pole in the point z = 0. By M, we denote the class of functions f ∈ ˜M of the
form

f(z) =
1
z
+

∞
∑

n=1

anz
n (z ∈ D). (1.2)

Also, by Tε
η (η ∈ R, ε ∈ {0, 1}), we denote the class of functions f ∈ M of the form (1.2) for

which

arg(an) = επ − (n + 1)η (n ∈ N := {1, 2, 3, . . .}). (1.3)
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For η = 0,we obtain the classesT0
0 andT1

0 of functions with positive coefficients and negative
coefficients, respectively.

Motivated by Silverman [1], we define the class

Tε :=
⋃

η∈R

Tε
η. (1.4)

It is called the class of functions with varying argument of coefficients.
Let α ∈ 〈0, 1), r ∈ (0, 1〉. A function f ∈ M is said to be meromorphically convex of order

α in D(r) if

Re
(

1 +
zf ′′(z)
f ′(z)

)

< −α (z ∈ D(r)). (1.5)

A function f ∈ M is said to be meromorphically starlike of order α in D(r) if

Re
(

zf ′(z)
f(z)

)

< −α (z ∈ D(r)). (1.6)

We denote by MSc(α) the class of all functions f ∈ M, which are meromorphically convex
of order α in D and by MS∗(α), we denote the class of all functions f ∈ M, which are
meromorphically starlike of order α in D. We also set

MSc = MSc(0), MS∗ = MS∗(0). (1.7)

It is easy to show that for a function f ∈ T0
η, the condition (1.6) is equivalent to the following:

∣

∣

∣

∣

zf ′(z)
f(z)

+ 1
∣

∣

∣

∣

< 1 − α (z ∈ D(r)). (1.8)

Let B be a subclass of the class M. We define the radius of starlikeness of order α and the
radius of convexity of order α for the class B by

R∗
α(B) = inf

f∈B

(

sup
{

r ∈ (0, 1] : f is meromorphically starlike of order α in D(r)
})

;

Rc
α(B) = inf

f∈B

(

sup
{

r ∈ (0, 1] : f is meromorphically convex of order α in D(r)
})

,
(1.9)

respectively.
Let functions f, g be analytic in U := D ∪ {0}. We say that the function f is subordinate

to the function g, and write f(z) ≺ g(z) (or simply f ≺ g) if there exists a function ω analytic
in U, |ω(z)| ≤ |z| (z ∈ U), such that

f(z) = g(ω(z)) (z ∈ U). (1.10)
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In particular, if F is univalent in U, we have the following equivalence:

f(z) ≺ F(z) ⇐⇒ f(0) = F(0), f(U) ⊂ F(U). (1.11)

For functions f, g ∈ ˜M of the form

f(z) =
∞
∑

n=−1
anz

n, g(z) =
∞
∑

n=−1
bnz

n, (1.12)

by f ∗ g we denote the Hadamard product (or convolution) of f and g, defined by

(

f ∗ g
)

(z) =
∞
∑

n=−1
anbnz

n (z ∈ D). (1.13)

Let A,B be real parameters, −1 ≤ A < B ≤ 1, and let ϕ, φ be given functions from the
class M.

ByW(φ, ϕ;A,B),we denote the class of functions f ∈ M such that (ϕ∗f)(z)/= 0 (z ∈ D)
and

(

φ ∗ f
)

(z)
(

ϕ ∗ f
)

(z)
≺ 1 +Az

1 + Bz
. (1.14)

Moreover, let us define

TWε(φ, ϕ;A,B
)

:= Tε ∩W
(

φ, ϕ;A,B
)

,

TWε
η

(

φ, ϕ;A,B
)

:= Tε
η ∩W

(

φ, ϕ;A,B
)

,
(1.15)

where the functions ϕ, φ have the form

φ(z) =
1
z
+ (−1)ε+1

∞
∑

n=1

βnz
n, ϕ(z) =

1
z
+ (−1)ε

∞
∑

n=1

αnz
n (z ∈ D), (1.16)

and the sequences {αn}, {βn} are nonnegative real, with

αn + βn > 0 (n ∈ N). (1.17)

Moreover, let us put

dn := (1 + B)βn + (1 +A)αn (n ∈ N). (1.18)
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It is easy to show that

f(z) ∈ TW
(

zφ′(z), zϕ′(z);A,B
)

⇐⇒ −zf ′(z) ∈ TW
(

φ, ϕ;A,B
)

,

f(z) ∈ TW0
η

(

zφ′(z), zϕ′(z);A,B
)

⇐⇒ −zf ′(z) ∈ TW1
η

(

φ, ϕ;A,B
)

.
(1.19)

The object of the present paper is to investigate the coefficient estimates, distortion
properties and the radii of starlikeness and convexity, and partial sums for the classes
of meromorphic functions with varying argument of coefficients. Some remarks depicting
consequences of the main results are also mentioned.

2. Coefficients Estimates

First we mention a sufficient condition for functions to belong to the class W(φ, ϕ;A,B).

Theorem 2.1. Let {dn} be defined by (1.18), −1 ≤ A < B ≤ 1. If a function f of the form (1.2)
satisfies the condition

∞
∑

n=1

dn|an| ≤ B −A, (2.1)

then f belongs to the classW(φ, ϕ;A,B).

Proof. A function f of the form (1.2) belongs to the class Wε(φ, ϕ;A,B) if and only if there
exists a function ω, |ω(z)| ≤ |z| (z ∈ D), such that

(

φ ∗ f
)

(z)
(

ϕ ∗ f
)

(z)
=

1 +Aω(z)
1 + Bω(z)

(z ∈ D), (2.2)

or equivalently

∣

∣

∣

∣

∣

z
(

φ ∗ f
)

(z) − z
(

ϕ ∗ f
)

(z)

Bz
(

φ ∗ f
)

(z) −Az
(

ϕ ∗ f
)

(z)

∣

∣

∣

∣

∣

< 1 (z ∈ D). (2.3)

Thus, it is sufficient to prove that

∣

∣z
(

φ ∗ f
)

(z) − z
(

ϕ ∗ f
)

(z)
∣

∣ −
∣

∣Bz
(

φ ∗ f
)

(z) −Az
(

ϕ ∗ f
)

(z)
∣

∣ < 0 (z ∈ D). (2.4)



International Journal of Mathematics and Mathematical Sciences 5

Indeed, letting |z| = r (0 < r < 1), we have

∣

∣z
(

ϕ ∗ f
)

(z) − z
(

φ ∗ f
)

(z)
∣

∣ −
∣

∣Bz
(

φ ∗ f
)

(z) −Az
(

ϕ ∗ f
)

(z)
∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=1

(

βn + αn

)

anz
n+1

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

(B −A) −
∞
∑

n=1

(

Bβn +Aαn

)

anz
n+1

∣

∣

∣

∣

∣

≤
∞
∑

n=1

(

βn + αn

)

|an|rn+1 − (B −A) +
∞
∑

n=1

(

Bβn +Aαn

)

|an|rn+1

≤
∞
∑

n=1

dn|an|rn+1 − (B −A) < 0,

(2.5)

whence f ∈ W(φ, ϕ;A,B).

Theorem 2.2. Let f be a function of the form (1.2), with (1.3). Then f belongs to the class
TWε

η(φ, ϕ;A,B) if and only if the condition (2.1) holds true.

Proof. In view of Theorem 2.1, we need only to show that each function f from the class
TWε

η(φ, ϕ;A,B) satisfies the coefficient inequality (2.1). Let f ∈ TWε
η(φ, ϕ;A,B). Then by

(2.3) and (1.2), we have

∣

∣

∣

∣

∣

∑∞
n=1

(

βn + αn

)

anz
n+1

B −A −
∑∞

n=1 (−1)
ε(Bβn +Aαn

)

anzn+1

∣

∣

∣

∣

∣

< 1 (z ∈ D). (2.6)

Therefore, putting z = reiη (0 ≤ r < 1), and applying (1.3), we obtain

∑∞
n=1

(

βn + αn

)

|an|rn+1

B −A −
∑∞

n=1
(

Bβn +Aαn

)

|an|rn+1
< 1. (2.7)

It is clear, that the denominator of the left hand said cannot vanish for r ∈ 〈0, 1). Moreover, it
is positive for r = 0, and in consequence for r ∈ 〈0, 1). Thus, by (2.7), we have

∞
∑

n=1

[

(1 + B)βn + (1 +A)αn

]

|an|rn+1 < B −A, (2.8)

which, upon letting r → 1−, readily yields the assertion (2.1).

From Theorem 2.2, we obtain coefficients estimates for the class TWε
η(φ, ϕ;A,B).

Corollary 2.3. If a function f of the form (1.2) belongs to the class TWε
η(φ, ϕ;A,B), then

|an| ≤
B −A

dn
(n ∈ N), (2.9)
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where {dn} is defined by (1.18). The result is sharp. The functions fn,η of the form

fn,η(z) =
1
z
+

B −A

ei{(n+1)η−επ}dn

zn (z ∈ D; n ∈ N) (2.10)

are the extremal functions.

3. Distortion Theorems

From Theorem 2.2, we have the following lemma.

Lemma 3.1. Let a function f of the form (1.2) belong to the class TWε
η(φ, ϕ;A,B). If the sequence

{dn} defined by (1.18) satisfies the inequality

d1 ≤ dn (n ∈ N), (3.1)

then

∞
∑

n=1

an ≤ B −A

d1
. (3.2)

Moreover, if

nd1 ≤ dn (n ∈ N), (3.3)

then

∞
∑

n=1

nan ≤ B −A

d1
. (3.4)

Theorem 3.2. Let a function f belong to the class TWε
η(φ, ϕ;A,B). If the sequence {dn} defined by

(1.18) satisfies (3.1), then

1
r
− B −A

d1
r ≤

∣

∣f(z)
∣

∣ ≤ 1
r
+
B −A

d1
r (|z| = r < 1). (3.5)

Moreover, if (3.3) holds, then

1
r2

− B −A

d1
≤
∣

∣f ′(z)
∣

∣ ≤ 1
r2

+
B −A

d1
(|z| = r < 1). (3.6)

The result is sharp, with the extremal function f1,η of the form (2.10).
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Proof. Let a function f of the form (1.2) belong to the class TWε
η(φ, ϕ;A,B), |z| = r < 1. Since

∣

∣f(z)
∣

∣ =

∣

∣

∣

∣

∣

1
z
+

∞
∑

n=1

anz
n

∣

∣

∣

∣

∣

≤ 1
r
+

∞
∑

n=1

|an|rn

=
1
r
+ r

∞
∑

n=1

|an|rn−1 ≤
1
r
+ r

∞
∑

n=1

|an|,

∣

∣f(z)
∣

∣ =

∣

∣

∣

∣

∣

z +
∞
∑

n=1

anz
n

∣

∣

∣

∣

∣

≥ 1
r
−

∞
∑

n=1

|an|rn

=
1
r
− r

∞
∑

n=1

|an|rn−1 ≥
1
r
− r

∞
∑

n=1

|an|,

(3.7)

then by Lemma 3.1 we have (3.5). Analogously we prove (3.6).

4. The Radii of Convexity and Starlikeness

Theorem 4.1. The radius of starlikeness of order α for the class TW0
η(φ, ϕ;A,B) is given by

R∗
α

(

TW0
η

(

φ, ϕ;A,B
)

)

= inf
n∈N

(

(1 − α)dn

(n − α)(B −A)

)1/(n+1)

, (4.1)

where dn is defined by (1.18).

Proof. The function f ∈ T0
η of the form (1.2) is meromorphically starlike of order α in the disk

D(r), 0 < r ≤ 1, if and only if it satisfies the condition (1.8). Since

∣

∣

∣

∣

zf ′(z)
f(z)

+ 1
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑∞
n=1(n + 1 )anz

n+1

1 +
∑∞

n=1 anzn+1

∣

∣

∣

∣

∣

≤
∑∞

n=1(n + 1 )|an||z|n+1

1 −
∑∞

n=1|an||z|n+1
, (4.2)

putting |z| = r, the condition (1.8) is true if

∞
∑

n=1

n − α

1 − α
|an|rn+1 ≤ 1. (4.3)

By Theorem 2.2, we have

∞
∑

n=1

dn

B −A
|an| ≤ 1. (4.4)

Thus, the condition (4.3) is true if

n − α

1 − α
rn+1 ≤ dn

B −A
(n ∈ N), (4.5)
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that is, if

r ≤
(

(1 − α)dn

(n − α)(B −A)

)1/(n+1)

(n ∈ N). (4.6)

It follows that each function f ∈ TW0
η(φ, ϕ;A,B) is meromorphically starlike of order α in

the disk D(r), where r = R∗(TW0
η(φ, ϕ;A,B)) is defined by (4.1). Moreover, the radius of

starlikeness of the functions fn,η defined by (2.10) is given by

r∗n = min

{

1,
(

(1 − α)dn

(n − α)(B −A)

)1/(n+1)
}

(n ∈ N). (4.7)

Thus we have (4.1).

Theorem 4.2. The radius of convexity of order α for the class TW1
η(φ, ϕ;A,B) is given by

Rc
α

(

TW1
η

(

φ, ϕ;A,B
)

)

= inf
n∈N

(

(1 − α)dn

n(n − α)(B −A)

)1/(n+1)

, (4.8)

where dn is defined by (1.18).

Proof. The proof is analogous to that of Theorem 4.1, and we omit the details.

5. Partial Sums

Let f ∈ M be a function of the form (1.2). Motivated by Silverman [2] and Silvia [3] (see also
[4]), we define the partial sums fm defined by

fm(z) =
1
z
+

m
∑

n=1

anz
n (m ∈ N). (5.1)

In this section, we consider partial sums of functions from the class TWε
η(φ, ϕ;A,B) and

obtain sharp lower bounds for the real part of ratios of f to fm and f ′ to f ′
m.

Theorem 5.1. Letm ∈ N and let the sequence {dn}, defined by (1.18), satisfy the inequalities

B −A ≤ dn ≤ dn+1 (m ∈ N). (5.2)

If a function f belongs to the class TWε
η(φ, ϕ;A,B), then

Re
{

f(z)
fm(z)

}

≥ 1 − B −A

dm+1
(z ∈ D), (5.3)

Re
{

fm(z)
f(z)

}

≥ dm+1

B −A + dm+1
(z ∈ D). (5.4)

The bounds are sharp, with the extremal function fm+1,η of the form (2.10).
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Proof. Let a function f of the form (1.2) belong to the class TWε
η(φ, ϕ;A,B). Then by (5.2) and

Theorem 2.2, we have

m
∑

n=1

|an| +
dm+1

B −A

∞
∑

n=m+1

|an| ≤
∞
∑

n=1

dn

B −A
|an| ≤ 1. (5.5)

If we put

g(z) =
dm+1

B −A

{

f(z)
fm(z)

−
(

1 − B −A

dm+1

)}

= 1 +
(dm+1/(B −A))

∑∞
n=m+1 anz

n+1

1 +
∑m

n=1 anzn+1
(z ∈ D),

(5.6)

then it suffices to show that

Re g(z) ≥ 0 (z ∈ D), (5.7)

or

∣

∣

∣

∣

g(z) − 1
g(z) + 1

∣

∣

∣

∣

≤ 1 (z ∈ D). (5.8)

Applying (5.5), we find that

∣

∣

∣

∣

g(z) − 1
g(z) + 1

∣

∣

∣

∣

≤
(dm+1/(B −A))

∑∞
n=m+1|an|

2 − 2
∑n

n=1|an| − (dm+1/(B −A))
∑∞

n=m+1|an|
≤ 1 (z ∈ D), (5.9)

which readily yields the assertion (5.3). In order to see that f = fm+1,η gives the result sharp,
we observe that for z = reiη we have

f(z)
fm(z)

= 1 − (B −A)rm+2

dm+1

r→ 1−−→ 1 − B −A

dm+1
. (5.10)

Similarly, if we take

h(z) = (B −A + dm+1)
{

fm(z)
f(z)

− dm+1

B −A + dm+1

}

(z ∈ D), (5.11)

and make use of (5.5), we can deduce that

∣

∣

∣

∣

h(z) − 1
h(z) + 1

∣

∣

∣

∣

≤
(1 + (dm+1/(B −A)))

∑∞
n=m+1|an|

2 − 2
∑m

n=1|an| − (1 − (dm+1/(B −A)))
∑∞

n=m+1|an|
≤ 1 (z ∈ D), (5.12)

which leads us immediately to the assertion (5.4). The bound in (5.4) is sharp for eachm ∈ N,
with the extremal function f = fm+1,η, given by (2.10).
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Theorem 5.2. Let m ∈ N and let the sequence {dn}, defined by (1.18), satisfy the inequalities (5.2).
If a function f belongs to the class TWε

η(φ, ϕ;A,B), then

Re
{

f ′(z)
fm(z)

}

≥ 1 − (B −A)(m + 1)
dm+1

(z ∈ D),

Re
{

f ′
m(z)
f(z)

}

≥ dm+1

(B −A)(m + 1) + dm+1
(z ∈ D).

(5.13)

The bounds are sharp, with the extremal function fm+1,η of the form (2.10).

Proof. The proof is analogous to that of Theorem 5.1, and we omit the details.

Remark 5.3. We observe that the obtained results are true if we replace the class
TWε

η(φ, ϕ;A,B) by TWε(φ, ϕ;A,B).

6. Concluding Remarks

We conclude this paper by observing that, in view of the subordination relation (1.18), by
choosing the functions φ and ϕ, we can define new classes of functions. In particular, the
class

W
(

ϕ;A,B
)

:= W
(

−zϕ′(z), ϕ(z);A,B
)

(6.1)

contains functions f ∈ M, such that

−
z
(

ϕ ∗ f
)′(z)

(

ϕ ∗ f
)

(z)
≺ 1 +Az

1 + Bz
. (6.2)

A function f ∈ M belongs to the class

W
(

ϕ;α
)

:= W
(

ϕ; 2α − 1, α
)

(0 ≤ α < 1) (6.3)

if it satisfies the condition

Re

{

−
z
(

ϕ ∗ f
)′(z)

(

ϕ ∗ f
)

(z)

}

> α (z ∈ D). (6.4)

The class W(ϕ;α) is related to the class of starlike function of order α. In particular, we have
the following relationships:

S∗(α) = W
(

1
z(1 − z)

;α
)

,

Sc(α) = W
(

1 − 2z

z(1 − z)2
;α

)

.

(6.5)
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Let λ be a convex parameter. A function f ∈ M belongs to the class

Wλ

(

ϕ;A,B
)

:= W
(

λzϕ(z) + (λ − 1)z2ϕ′(z),
1
z
;A,B

)

(6.6)

if it satisfies the condition

λz
(

ϕ ∗ f
)

(z) + (λ − 1)z2
(

ϕ ∗ f
)′(z) ≺ 1 +Az

1 + Bz
. (6.7)

The classes W(ϕ;A,B),W(ϕ;α), and Wλ(ϕ;A,B) generalize well-known important classes,
which were investigated in earlier works; see for example [5–10].

If we apply the results presented in this paper to the classes discussed above, we can
obtain several additional results. Some of these results were obtained in earlier works; see for
example [5–10].
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