Research Article

Derivations of MV-Algebras

N. O. Alshehri

Department of Mathematics, Faculty of Science (Girl's), King Abdulaziz University, P.O. Box 126238, Jeddah 21352, Saudi Arabia

Correspondence should be addressed to N. O. Alshehri, n_alshehry@yahoo.com
Received 26 August 2010; Revised 8 November 2010; Accepted 16 December 2010
Academic Editor: Howard Bell
Copyright © 2010 N. O. Alshehri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce the notion of derivation for an MV-algebra and discuss some related properties. Using the notion of an isotone derivation, we give some characterizations of a derivation of an MV-algebra. Moreover, we define an additive derivation of an MV-algebra and investigate some of its properties. Also, we prove that an additive derivation of a linearly ordered MV-algebral is an isotone.

1. Introduction

In his classical paper [1], Chang invented the notion of MV-algebra in order to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. Recently, the algebraic theory of MV-algebras is intensively studied, see [2-5].

The notion of derivation, introduced from the analytic theory, is helpful to the research of structure and property in algebraic system. Several authors [6-9] studied derivations in rings and near rings. Jun and Xin [10] applied the notion of derivation in ring and near-ring theory to $B C I$-algebras. In [11], Szász introduced the concept of derivation for lattices and investigated some of its properties, for more details, the reader is referred to [9, 12-19].

In this paper, we apply the notion of derivation in ring and near-ring theory to MValgebras and investigate some of its properties. Using the notion of an isotone derivation, we characterize a derivation of MV-algebra. We introduce a new concept, called an additive derivation of MV-algebras, and then we investigate several properties. Finally, we prove that an additive derivation of a linearly ordered MV-algebra is an isotone.

2. Preliminaries

Definition 2.1 (see [5]). An MV-algebra is a structure ($M, \oplus, *, 0$) where \oplus is a binary operation, * is a unary operation, and 0 is a constant such that the following axioms are satisfied for
any $a, b \in M$:
(MV1) $(M, \oplus, 0)$ is a commutative monoid,
(MV2) $\left(a^{*}\right)^{*}=a$,
(MV3) $0^{*} \oplus a=0^{*}$,
$(\mathrm{MV} 4)\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a$.
If we define the constant $1=0^{*}$ and the auxiliary operations \odot, \vee, and \wedge by

$$
\begin{equation*}
a \odot b=\left(a^{*} \oplus b^{*}\right)^{*}, \quad a \vee b=a \oplus\left(b \odot a^{*}\right), \quad a \wedge b=a \odot\left(b \oplus a^{*}\right) \tag{2.1}
\end{equation*}
$$

then $(M, \odot, 1)$ is a commutative monoid and the structure $(M, \vee, \wedge, 0,1)$ is a bounded distributive lattice. Also, we define the binary operation Θ by $x \ominus y=x \odot y^{*}$. A subset X of an MV-algebra M is called subalgebra of M if and only if X is closed under the MVoperations defined in M. In any MV-algebras, one can define a partial order \leq by putting $x \leq y$ if and only if $x \wedge y=x$ for each $x, y \in M$. If the order relation \leq, defined over M, is total, then we say that M is linearly ordered. For an MV-algebra M, if we define $B(M)=\{x \in M: x \oplus x=x\}=\{x \in M: x \odot x=x\}$. Then, $(B(M), \oplus, *, 0)$ is both a largest subalgebra of M and a Boolean algebra.

An MV-algebra M has the following properties for all $x, y, z \in M$
(1) $x \oplus 1=1$,
(2) $x \oplus x^{*}=1$,
(3) $x \odot x^{*}=0$,
(4) If $x \oplus y=0$, then $x=y=0$,
(5) If $x \odot y=1$, then $x=y=1$,
(6) If $x \leq y$, then $x \vee z \leq y \vee z$ and $x \wedge z \leq y \wedge z$,
(7) If $x \leq y$, then $x \oplus z \leq y \oplus z$ and $x \odot z \leq y \odot z$,
(8) $x \leq y$ if and only if $y^{*} \leq x^{*}$,
(9) $x \oplus y=y$ if and only if $x \odot y=x$.

Theorem 2.2 (see [1]). The following conditions are equivalent for all $x, y \in M$
(i) $x \leq y$,
(ii) $y \oplus x^{*}=1$,
(iii) $x \odot y^{*}=0$.

Definition 2.3 (see [1]). Let M be an MV-algebra and I be a nonempty subset of M. Then, we say that I is an ideal if the following conditions are satisfied:
(i) $0 \in I$,
(ii) $x, y \in I$ imply $x \oplus y \in I$,
(iii) $x \in I$ and $y \leq x$ imply $y \in I$.

Proposition 2.4 (see [1]). Let M be a linearly ordered $M V$-algebra, then $x \oplus y=x \oplus z$ and $x \oplus z \neq 1$ implies that $y=z$.

Table 1

\oplus	0	a	b	1
0	0	a	b	1
a	a	a	1	1
b	b	1	b	1
1	1	1	1	1

Table 2

$*$	0	a	b	1
	1	b	a	0

3. Derivations of MV-Algebras

Definition 3.1. Let M be an MV-algebra, and let $d: M \rightarrow M$ be a function. We call d a derivation of M, if it satisfies the following condition for all $x, y \in M$

$$
\begin{equation*}
d(x \odot y)=(d x \odot y) \oplus(x \odot d y) \tag{3.1}
\end{equation*}
$$

We often abbreviate $d(x)$ to $d x$.
Example 3.2. Let $M=\{0, a, b, 1\}$. Consider Tables 1 and 2 .
Then $(M, \oplus, *, 0)$ is an MV-algebra. Define a map $d: M \rightarrow M$ by

$$
d x= \begin{cases}0 & \text { if } x=0, a, 1 \tag{3.2}\\ a & \text { if } x=b\end{cases}
$$

Since $d(a \odot b)=0$ and $(d a \odot b) \oplus(a \odot d b)=(0 \odot b) \oplus(a \odot a)=0 \oplus a=a, d$ is not derivation.
Example 3.3. Let $M=\left\{0, x_{1}, x_{2}, x_{3}, x_{4}, 1\right\}$. Consider Tables 3 and 4 .
Then, $(M, \oplus, *, 0)$ is an MV-algebra. Define a map $d: M \rightarrow M$ by

$$
d x= \begin{cases}0 & \text { if } x=0, x_{1}, x_{3} \tag{3.3}\\ x_{2} & \text { if } x=x_{2}, x_{4}, 1\end{cases}
$$

Then, it is easily checked that d is a derivation of M.
Proposition 3.4. Let M be an $M V$-algebra, and let d be a derivation on M. Then, the following hold for every $x \in M$:
(i) $d 0=0$,
(ii) $d x \odot x^{*}=x \odot d x^{*}=0$,
(iii) $d x=d x \oplus(x \odot d 1)$,
(iv) $d x \leq x$,
(v) If I is an ideal of an $M V$-algebra M, then $d(I) \subseteq I$.

Table 3

\oplus	0	x_{1}	x_{2}	x_{3}	x_{4}	1
0	0	x_{1}	x_{2}	x_{3}	x_{4}	1
x_{1}	x_{1}	x_{3}	x_{4}	x_{3}	1	1
x_{2}	x_{2}	x_{4}	x_{2}	1	x_{4}	1
x_{3}	x_{3}	x_{3}	1	x_{3}	1	1
x_{4}	x_{4}	1	x_{4}	1	1	1
1	1	1	1	1	1	1

Table 4

$*$	0	x_{1}	x_{2}	x_{3}	x_{4}	1
	x_{4}	x_{3}	x_{2}	x_{1}	0	

Proof. (i) $d 0=d(x \odot 0)=(d x \odot 0) \oplus(x \odot d 0)=x \odot d 0$.
Putting $x=0$, we get $d 0=0$.
(ii) Let $x \in M$, then

$$
\begin{equation*}
0=d 0=d\left(x \odot x^{*}\right)=\left(d x \odot x^{*}\right) \oplus\left(x \odot d x^{*}\right) \tag{3.4}
\end{equation*}
$$

and so (ii) follows from (4).
(iii) It is clear.
(iv) Let $x \in M$, from (ii), we have

$$
\begin{equation*}
1=0^{*}=\left(d x \odot x^{*}\right)^{*}=(d x)^{*} \oplus x \tag{3.5}
\end{equation*}
$$

from Theorem 2.2 we get $d x \leq x$.
(v) Let $y \in d(I)$, then $y=d(x)$ for some $x \in I$. Since $y=d(x) \leq x \in I$, thus $y \in I$ and so $d(I) \subseteq I$.

Proposition 3.5. Let d be a derivation of an MV-algebra M, and let $x, y \in M$. If $x \leq y$. Then, the following hold:
(i) $d\left(x \odot y^{*}\right)=0$,
(ii) $d y^{*} \leq x^{*}$,
(iii) $d x \odot d y^{*}=0$.

Proof. (i) Let $x \leq y$, then Theorem 2.2 implies that $x \odot y^{*}=0$, and so $d\left(x \odot y^{*}\right)=d 0=0$.
(ii) From (i), we get

$$
\begin{equation*}
0=d\left(x \odot y^{*}\right)=\left(d x \odot y^{*}\right) \oplus\left(x \odot d y^{*}\right) \tag{3.6}
\end{equation*}
$$

and by (4), we have $x \odot d y^{*}=0$. Therefore, $d y^{*} \leq x^{*}$.
(iii) If $x \leq y$, then $d x \leq y$, thus $d x \odot d y^{*} \leq y \odot d y^{*}$, also $d y^{*} \leq y^{*}$, and so $y \odot d y^{*} \leq$ $y \odot y^{*}=0$. Hence, $d x \odot d y^{*}=0$.

Proposition 3.6. Let M be an MV-algebra, and let d be a derivation on M. Then, the following hold:
(i) $d x \odot d x^{*}=0$,
(ii) $d x^{*}=(d x)^{*}$ if and only if d is the identity on M.

Proof. (i) It follows directly from Proposition 3.5(iii).
(ii) It is sufficient to show that if $d x^{*}=(d x)^{*}$, then d is the identity on M.

Assume that $d x^{*}=(d x)$, from Proposition 3.4(ii), we have $x \odot(d x)^{*}=0$, which implies that $x \leq d x$. Therefore, $d x=x$.

Definition 3.7. Let M be an MV-algebra and d be a derivation on M. If $x \leq y$ implies $d x \leq d y$ for all $x, y \in M, d$ is called an isotone derivation.

Example 3.8. Let M be an MV-algebra as in Example 3.3. It is easily checked that d is an isotone derivation of M.

Proposition 3.9. Let M be an $M V$-algebra, and let d be aderivation of M. If $d x^{*}=d x$ for all $x \in M$, then the following hold:
(i) $d 1=0$,
(ii) $d x \odot d x=0$,
(iii) If d is an isotone derivation of M, then d is zero.

Proof. (i) It follows by putting $x=0$.
(ii) It follows from Proposition 3.6(i).
(iii) Since d is an isotone, hence $d x \leq d 1$ for all $x \in M$. By (i), we have $d x \leq 0$, and so d is zero.

Definition 3.10. Let M be an MV-algebra, and let d be a derivation on M. If $d(x \oplus y)=d x \oplus d y$ for all $x, y \in M, d$ is called an additive derivation.

Example 3.11. Let M be an MV-algebra as in Example 3.3. It is easily checked that d is an additive derivation of M.

Theorem 3.12. Let M be an MV-algebra, and let d be a nonzero additive derivation of M. Then, $d(B(M)) \subseteq B(M)$.

Proof. Let $y \in d(B(M))$, thus $y=d(x)$ for some $x \in B(M)$. Then,

$$
\begin{equation*}
y \oplus y=d x \oplus d x=d(x \oplus x)=d x=y . \tag{3.7}
\end{equation*}
$$

Therefore $y \in B(M)$, this complete the proof.
Theorem 3.13. Let d be an additive derivation of a linearly ordered $M V$-algebra M. Then, either $d=0$ or $d 1=1$.

Proof. Let d be an additive derivation of a linearly ordered MV-algebra M. Hence,

$$
\begin{equation*}
d 1=d\left(x \oplus x^{*}\right)=d x \oplus d x^{*} \tag{3.8}
\end{equation*}
$$

also,

$$
\begin{equation*}
d 1=d(x \oplus 1)=d x \oplus d 1 \tag{3.9}
\end{equation*}
$$

for all $x \in M$. If $d 1 \neq 1$, then Proposition 2.4 implies that $d x^{*}=d 1$. Putting $x=1$, we get that $d 1=0$. Therefore,

$$
\begin{equation*}
0=d 1=d x \oplus d 1=d x \tag{3.10}
\end{equation*}
$$

for all $x \in M$, and so d is zero.
Proposition 3.14. Let M be a linearly ordered $M V$-algebra, and let d_{1}, d_{2} additive derivations of M. Define $d_{1} d_{2}(x)=d_{1}\left(d_{2} x\right)$ for all $x \in M$. If $d_{1} d_{2}=0$, then $d_{1}=0$ or $d_{2}=0$.

Proof. Let $d_{1} d_{2}=0, x \in M$, and suppose that $d_{2} \neq 0$. Then,

$$
\begin{equation*}
0=d_{1} d_{2} x=d_{1}\left(d_{2} x \oplus\left(x \odot d_{2} 1\right)\right)=d_{1} d_{2} x \oplus d_{1} x=d_{1} x \tag{3.11}
\end{equation*}
$$

thus $d_{1}=0$. Similarly, we can prove that $d_{2}=0$.
Proposition 3.15. Let M be a linearly ordered $M V$-algebra, and let d be a nonzero additive derivation of M. Then,

$$
\begin{equation*}
d(x \odot x)=x \oplus x, \quad \forall x \in M \tag{3.12}
\end{equation*}
$$

Proof. From Proposition 3.4(iii) and Theorem 3.13, we get that $d x=d x \oplus x$; applying (9), we have $d x \odot x=x$. Thus,

$$
\begin{align*}
d(x \oplus x) & =(d x \odot x) \oplus(d x \odot x) \\
& =x \oplus x \tag{3.13}
\end{align*}
$$

Theorem 3.16. Every nonzero additive derivation of a linearly ordered $M V$-algebra M is an isotone derivation.

Proof. Assume that d is an additive derivation of M, and $x, y \in M$. If $x \leq y$, then $x^{*} \oplus y=1$, hence

$$
\begin{equation*}
1=d 1=d\left(x^{*} \oplus y\right)=d x^{*} \oplus d y \tag{3.14}
\end{equation*}
$$

and so, $(d y)^{*} \leq d x^{*}$, from (8), we have $\left(d x^{*}\right)^{*} \leq d y$. Otherwise, $d x^{*} \leq x^{*}$, again by (8) $x \leq\left(d x^{*}\right)^{*}$. Since $d x \leq x$, we get $d x \leq d y$.

Theorem 3.17. Let M be a linearly ordered $M V$-algebra, and let d be a nonzero additive deriviation of M. Then, $d^{-1}(0)=\{x \in M \mid d x=0\}$ is an ideal of M.

Proof. From Proposition $3.4(\mathrm{i})$, we get that $0 \in d^{-1}(0)$. Let $x, y \in d^{-1}(0)$; this implies that $d(x \oplus y)=0$. And so $x \oplus y \in d^{-1}(0)$.

Now, let $x \in d^{-1}(0)$ and $y \leq x$. Using Theorem 3.16, we have that $d y \leq d x$, and so $d y=0$.

References

[1] C. C. Chang, "Algebraic analysis of many valued logics," Transactions of the American Mathematical Society, vol. 88, pp. 467-490, 1958.
[2] G. Cattaneo, R. Giuntini, and R. Pilla, "BZMV ${ }^{d M}$ algebras and Stonian MV-algebras (applications to fuzzy sets and rough approximations)," Fuzzy Sets and Systems, vol. 108, no. 2, pp. 201-222, 1999.
[3] C. C. Chang, "A new proof of the completeness of the Łukasiewicz axioms," Transactions of the American Mathematical Society, vol. 93, pp. 74-80, 1959.
[4] R. Cignoli, I. D'Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued-Reasoning, Kluwer Academic, Dodrecht, The Netherlands, 2000.
[5] S. Rasouli and B. Davvaz, "Roughness in MV-algebras," Information Sciences, vol. 180, no. 5, pp. 737747, 2010.
[6] H. E. Bell and L.-C. Kappe, "Rings in which derivations satisfy certain algebraic conditions," Acta Mathematica Hungarica, vol. 53, no. 3-4, pp. 339-346, 1989.
[7] H. E. Bell and G.N. Mason, "On derivations in near-rings," in Near-Rings and Near-Fields (Tübingen, 1985), vol. 137 of North-Holland Mathematical Studies, pp. 31-35, North-Holland, Amsterdam, The Netherlands, 1987.
[8] K. Kaya, "Prime rings with -derivations," Hacettepe Bulletin of Natural Sciences and Engineering, vol. 16-17, pp. 63-71, 1988.
[9] E. C. Posner, "Derivations in prime rings," Proceedings of the American Mathematical Society, vol. 8, pp. 1093-1100, 1957.
[10] Y. B. Jun and X. L. Xin, "On derivations of BCI-algebras," Information Sciences, vol. 159, no. 3-4, pp. 167-176, 2004.
[11] G. Szász, "Derivations of lattices," Acta Scientiarum Mathematicarum, vol. 37, pp. 149-154, 1975.
[12] Y. Çeven, "Symmetric bi-derivations of lattices," Quaestiones Mathematicae, vol. 32, no. 2, pp. 241-245, 2009.
[13] Y. Çeven and M. A. Öztürk, "On f-derivations of lattices," Bulletin of the Korean Mathematical Society, vol. 45, no. 4, pp. 701-707, 2008.
[14] Luca Ferrari, "On derivations of lattices," Pure Mathematics and Applications, vol. 12, no. 4, pp. 365-382, 2001.
[15] F. Alev, "On f-derivations of BCC-Algebras," Ars Combinatoria, vol. 97 A, pp. 377-382, 2010.
[16] Ş. A. Özbal and A. Firat, "Symmetric f bi-derivations of lattices," Ars Combinatoria, vol. 97, pp. 471477, 2010.
[17] M. A. Öztürk and Y. Çeven, "Derivations on subtraction algebras," Korean Mathematical Society. Communications, vol. 24, no. 4, pp. 509-515, 2009.
[18] M. A. Öztürk, H. Yazarl, and K. H. Kim, "Permuting tri-derivations in lattices," Quaestiones Mathematicae, vol. 32, no. 3, pp. 415-425, 2009.
[19] J. Zhan and Y. L. Liu, "On f-derivations of BCI-algebras," International Journal of Mathematics and Mathematical Sciences, no. 11, pp. 1675-1684, 2005.

