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We study the abnormal and the rigid curves of the 2-distributions of Rn satisfying everywhere the
Goursat condition. We give the directions for the rigid and the abnormal curves when the systems
satisfy the strong Goursat condition or when they have a singularity of order 2 in each dimension.

1. Introduction

Let E be a 2-distribution on Rn. We denote by

E1 = E1 = E, Ei =
[
Ei−1, Ei−1

]
, Ei = [E, Ei−1]. (1.1)

A small growth vector (sgv) of E, at a point p ∈ Rn, is the sequence

[
r1
(
p
)
, r2

(
p
)
, . . .

]
S, (1.2)

where ri(p) = dimEi(p), for every i ≥ 1.
The great growth vector, at p, is the sequence

[
m1

(
p
)
, m2

(
p
)
, . . .

]
G, (1.3)

where mj(p) = dimEj(p), for every j ≥ 1.
If the dimensions of Ei (resp., Ej) are independent of p, then the distribution is called

regular (resp., totally regular).
If the great growth vector, at a point p ∈ Rn, is [2, 3, 4, . . . , n]G, then the distribution

is called distribution satisfying the Goursat condition at p. Moreover, if E satisfies, on a
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neighborhood of p, the Goursat condition, then its annihilator, E⊥, is called Goursat system
and denoted by (GS).

The classification of the distributions, with respect to the small and great growth
vectors, was the object of many articles. The beginning was by Engel [1], where he gave
the normal form of the (GS) in dimension 4.

In an article written in 1910, Cartan [2] studied the case of dimension 5. In 1978 Giaro
et al. completed the work of Cartan about the systems of dimension 5 [3]. In such a case
2 nonequivalent models are presented. In 1981, Kumpera and Ruiz [4] gave the different
normal forms in dimension n ≤ 6.

The classification, of models, in dimensions 7 and 8 are given by [5]. The study of the
models in dimension n is also open. We say that [6], when the small and the great growth
vector are the same, we have the system (GNF).

Zhitomirskiı̆ [7] gave the asymptotic normal forms of the regular distributions and the
generic case studied in many articles, for example [8].

The normal form of themodel, satisfying at a neighborhood of a point the small growth
vector [2, 3, 4, 4, 5, 5, . . . , n − 1, n − 1, n]S, is given in [9].

2. Rigid and Abnormal Line Subdistributions of the Goursat Systems
Satisfying the Strong Condition of Goursat

The Goursat systems are given by the following theorem.

Theorem 2.1 (see [4, 5]). Let E be a 2-distribution on Rn, satisfying in each point, the condition of
Goursat, then

E⊥ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 = dx2 + x3dx1,

ω2 = dx3 + x4dx1,

ω3 = dxi3 + x5dxj3 ,
(
i3, j3

) ∈ {(4, 1), (1, 4)},
ω4 = dxi4 +X6dxj4 ,

(
i4, j4

) ∈ {(
5, j3

)
,
(
j3, 5

)}
,

...

ωn−2 = dxin−2 +Xndxjn−2 ,
(
in−2, jn−2

) ∈ {(
n − 1, jn−3

)
,
(
jn−3, n − 1

)}
,

(2.1)

where

Xl =

⎧
⎨
⎩
xl, if

(
il−2, jl−2

)
=
(
jl−3, l − 1

)
,

xl + cl, if
(
il−2, jl−2

)
=
(
l − 1, jl−3

)
,

(2.2)

for 6 ≤ l ≤ n and c6, c7, . . . , cn−2 are real arbitrary constants.

This theorem gives the different Goursat systems denoted by (GS).
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Definition 2.2. Let E be a 2-distribution on Rn, p ∈ Rn. E satisfies the strong condition of
Goursat, at p, if the small and the big growth vectors, at this point, are [2, 3, . . . , n]S and
[2, 3, . . . , n]B.

Theorem 2.3 (see [6]). Let E be a 2-distribution on Rn satisfying, in each point, the condition of
Goursat. Suppose that E satisfies the strong condition of Goursat, at a point p ∈ Rn, then there exists
a local coordinate system (x,U), around p, such that

E⊥ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 = dx2 + x3dx1,

ω2 = dx3 + x4dx1,

ω3 = dx4 + x5dx1,

ω4 = dx5 + x6dx1,

...

ωn−2 = dxn−1 + xndx1,

(2.3)

it means that E is spanned by v1 = ∂/∂xn and

v2 =
∂

∂x1
− x3

∂

∂x2
− x4

∂

∂x3
− · · · − xn

∂

∂xn−1
. (2.4)

Remark that, in this theorem, E satisfies the strong condition of Goursat, at a point p.
Such property can be extended without difficulty to a neighborhood of p. For the definitions
of abnormal and rigid curves, see [10].

Definition 2.4. Let E be a 2-distribution on M; a C1-curve γ : [α, β] → M is said to be
horizontal (or E-curve) if γ .(t) ∈ E(γ(t)), for any t ∈ [α, β].

The set of horizontal curves connecting two points a and b of M, will be denoted by
Ωa,b([α, β]). The theorem of Chow [11] certified that Ωa,b([α, β])/=φ, for any a, b ∈ M.

Definition 2.5. Let E be a 2-distribution onM,a C1-curve γ : [α, β] → M is said to be rigid, if
γ is an isolated point of Ωa,b([α, β]) for the C1-topology.

Definition 2.6. Let E be a 2-distribution on M. A line subdistribution (i.e., distribution of
dimension one) of L is said to be rigid, if any L-curve is rigid. L is said to be local rigid,
if for any p ∈ M, there exists a neighborhood U of p, such that any LU-curve is rigid.

If E is a 2-distribution on M, we denote Ωa([α, β]) the set of E-curves γ : [α, β] → M,
starting from the point a.

Definition 2.7. A curve γ ∈ Ωa([α, β]), is said to be abnormal, if the mapping end:
Ωa([α, β]) → M, defined by end (γ) = γ(β), is not a submersion at γ .
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Proposition 2.8 (see [10]). Let E be a k-distribution on M. If v1, v2, . . . , vk form a basis of E and
if γ ∈ Ωa([α, β]), such that γ .(t) = u1(t)v1 + · · · + uk(t)vk|γ(t), then the following propositions are
equivalent.

(1) γ is abnormal.

(2) There exists a lift curve Γ : [α, β] → T�M, absolutely continuous, of coordinates
(q1, q2, . . . , qn), such that

(a) Γ(t)/= 0, for any t ∈ [α, β],
(b) Γ(t) ∈ E⊥,
(c) Γ satisfies the equation (q1., q2., . . . , qn.) = u1(t)(q1, q2, . . . , qn)dv1 + · · · +

uk(t)(q1, q2, . . . , qn)dvk|γ(t).

Definition 2.9. Let E be a 2-distribution onM; a line subdistribution L is said to be abnormal,
if any L-curve is abnormal. L is said to be local abnormal, if for any p ∈ M, there exists a
neighborhood U of p, such that any LU-curve is abnormal.

Definition 2.10. Let E be a 2-distribution on M; a distribution D on M is said to be nice
with respect to E if D is an involutive distribution of codimension 2 such that Ep /⊂ Dp and
dim(E2

p ∩Dp) = 2, for any point p ∈ M.

Proposition 2.11 (see [10]). Let E be a 2-distribution on Rn and L be a line subdistribution on E.
Consider the following properties.

(a) L is locally rigid.

(b) L is locally abnormal.

(c) Locally L is the intersection of E and a nice distribution.

(d) dim(ad∞
L )p < n, for every p ∈ Rn.

Then, one has the following implication:

(a)

(c) (b) (d)

(2.5)

Zhitomirskiı̆, in [10], conjectured that (d) ⇒ (b), and he proved that (a), (b), (c), and
(d) are not equivalent in general. Now we prove that, The properties are equivalent if the
distribution satisfies the strong condition of Goursat.

Theorem 2.12. Let E be a 2-distribution on Rn, n ≥ 4, satisfying in each point the strong condition
of Goursat, then the properties (a), (b), (c), and (d) are equivalent.

Proof. By Theorem 2.3, E is spanned, on a neighborhood U, by

v1 =
∂

∂xn
, v2 =

∂

∂x1
− x3

∂

∂x2
− x4

∂

∂x3
− · · · − xn

∂

∂xn−1
. (2.6)
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Let L be a line subdistribution satisfying (d), and let u = av1 + bv2 be a generator of L.
We have

[v2, v1] =
∂

∂xn−1
, [v2, [v2, v1]] =

∂

∂xn−2
. (2.7)

Easily, by induction, we say that

[
adi

v2
, v1

]
=

∂

∂xn−i
,

[
v1,

[
adi

v2
, v1

]]
=
[

∂

∂xn
,

∂

∂xn−i

]
= 0, (2.8)

for every i = 1, 2, . . . , n − 2.
A simple induction shows that

adi
u(v1) = αi

1v1 + αi
2v2

i−1∑
j=1

αi
jad

j
v2(v1) + biadi

v2
(v1), (2.9)

where αj
i, for j = 1, 2, . . . , i, are C∞ functions on U to R. Because dim(ad∞

L )p < n, for every
p ∈ Rn, we have necessarly b = 0 and by consequently L is spanned by v1.

Prove now (d) ⇒ (c). Let Z = ker(dx1 ∧ dx2), we say easily Z is a nice distribution
(see [10]). In fact: v1(x1) = v1(x2) = 0, then v1 ∈ E ∩ Z. Otherwise [v1, v2] = −∂/∂xn−1, then
[v1, v2](x1) = [v1, v2](x2) = 0, we deduce that E2 ∩ Z = span{v1, [v1, v2]} and consequently
dim(E2 ∩ Z)p = 2.

Now cod(Z) = 2 and Z is integrable. Because v2(x1) = 0, we obtain Ep is not a subset
of Zp, for every p ∈ Rn, then Z is a nice distribution. Moreover L = E ∩ Z, then (d) ⇒ (c), by
[10].

Prove now (d) ⇒ (a). Consider the form ωn−2 of the system E⊥. We have (ωn−2)0 =
(dxn−2)0 /= 0 and

iv1dωn−2 = iv1(dxn−1 ∧ dx1) = i∂/∂xn(dxn−1 ∧ dx1) = 0. (2.10)

Otherwise [v2, [v1, v2]] = −∂/∂xn−2 then ω([v2, [v1, v2]]) = −1/= 0 and ω0 is not in E3|0. By
Theorem 5.7 of [10], L is locally rigid.

Let E be a 2-distribution of Rn, spanned by v1 and v2. LE is the line subdistribution
spanned by a vector field in the form av1 + bv2, where a and b are such that a[v1, [v1, v2]] +
b[v2, [v1, v2]] is in E2 and (a2 + b2 /= 0). We say that LE is independent of the choice of v1 and
v2. Zhitomirskiı̆ [10] proved that LE is a line subdistribution locally rigid, also by a conjecture,
it is unique, in the case where E is regular and satisfying the condition

dimE2 = 3, dimE3 = 4, (2.11)

this is the case of (GS1).
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3. Rigid and Abnormal Line Subdistributions of the Goursat Systems
Presenting in Each Dimension a Singularity of Order 2

Definition 3.1. Let S be a Goursat system. S is called presenting a transposition of order l,
l ∈ {3, 4, . . . , n − 2} if

ωl−1 = dxil−1 +Xl+1dxjl−1 ,

ωl = dxjl−1 + xl+2dxl+1.
(3.1)

Definition 3.2. If the small growth vector of a 2-distribution E on Rn, at a point p of Rn, has
the form [2, 3, . . . , s, s, . . . , s︸ ︷︷ ︸

k times

, . . . , n] (denoted by [2, 3, . . . , sk, . . . , n]), the distribution is called

a distribution presenting, in the dimension s, a singularity of order k.

Remark 3.3. If the distribution satisfies the condition of Goursat the dimensions 2, 3 and n are
of order 1 at every point.

Notation. The system of Goursat satisfying, at every point x ∈ Rn, the condition
[2, 3, 4k, 5k, . . . , (n − 1)k, n]S is denoted by (GSk).

Theorem 3.4 (see [9]). Let E be a 2-distribution on Rn, satisfying at every point the Goursat
condition, such that at x0 ∈ Rn, we have [2, 3, 42, 52, . . . , (n − 1)2, n]S. Then there exists a local
system of coordinates (x,U), around x0, such that

E⊥ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 = dx2 + x3dx1,

ω2 = dx3 + x4dx1,

ω3 = dx4 + x5dx1,

ω4 = dx5 + x6dx1,

...

ωn−3 = dxn−2 + xn−1dx1,

ωn−2 = dx1 + xndxn−1,

(3.2)

it means that E is spanned by

v1 =
∂

∂xn
, v2 = −xn

∂

∂x1
+ xnx3

∂

∂x2
+ xnx4

∂

∂x3
+ · · · + xnxn−1

∂

∂xn−2
+

∂

∂xn−1
. (3.3)

Now we want to study the rigid and the abnormal line subdistributions (directions)
for the Goursat systems (GS2).

Definition 3.5. Let E be a 2-distribution spanned by v1 and v2. The line subdistribution LE, is
the line subdistribution spanned by a vector field in the form av1 + bv2, where a and b are
such that a[v1, [v1, v2]] + b[v2, [v1, v2]] ∈ E2 and a2 + b2 /= 0.
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Theorem 3.6. In the Goursat systems (GS2), LE is the unique direction of abnormal and rigid curves.

Proof. E is spanned by

v1 =
∂

∂xn
, v2 = −xn

∂

∂x1
+ xnx3

∂

∂x2
+ xnx4

∂

∂x3
+ · · · + xnxn−1

∂

∂xn−2
+

∂

∂xn−1
, (3.4)

and E2 is spanned by v1, v2, and [v1, v2], where [v1, v2] = −∂/∂x1 + x3(∂/∂x2) + x4(∂/∂x3) +
· · · + xn−1(∂/∂xn−2).

Prove now LE is spanned by v1. In fact [v1, [v1, v2]] = 0 and [v2, [v1, v2]] = ∂/∂xn−2,
then necessarily b = 0 and LE = span{v1}. Recall that LE is a direction of rigid curves, then of
abnormal curves.

Does exist another direction field of the abnormal curves?
Let L = Vect{αv1 + βv2} be an arbitrary line subdistribution of E. Let γ : I → Rn be a

horizontal curve of L, (i.e., γ̇(t) ∈ Lγ(t)). Suppose that γ is an abnormal curve. There exists a lift
curve Γ : I → T�Rn satisfying the adjoint equation: (ṗ1, ṗ2, . . . , ṗn) = −α(p1, p2, . . . , pn)dv1 −
β(p1, p2, . . . , pn)dv2. In other hand:

(
ṗ1, . . . , ṗn

)
= −β(p1, . . . , pn

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · · 0 −1
0 0 xn 0 0 · · · 0 x3

0 0 0 xn 0 0 · · · 0 x4

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · xn xn−1

0 0 · · · · · · · · · · · · 0

0 0 · · · · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.5)

We verify that E2 = Vect{v1, v2, ∂/∂xn−1}. But Γ ⊂ (E2)⊥, then we have

pn = pn−1 = 0, (3.6)

p1 = x3p2 + x4p3 + · · · + xn−1pn−3. (I)

Suppose that β /= 0. By the adjoint equation, we have ṗn−1 = −βxnpn−2 = 0, but β /= 0,
then pn−2 = 0. Similarly ṗn−2 = −βxnpn−3 = 0, then pn−3 = 0.

Show that by induction pn−i = 0, for every i = 1, 2, . . . , n − 2.
For i = 1, the property is true. Suppose that pn−i−1 = 0, prove that pn−i = 0. By the

adjoint equation

ṗi = −βxnpi−1 = 0 (3.7)

for every i = 1, 2, . . . , n−3. we deduce that pi = 0. Finally, using (I)we have p1 = 0.We deduce
Γ = 0, impossible, then we obtain β = 0 and L is spanned by v1, by consequently L = LE and
L is locally rigid.
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Corollary 3.7. With the same conditions of Theorem 2.3, the distribution LE is the unique line
subdistribution locally rigid on E.

Proof. In fact, [v1, [v1, v2]] = 0 and a[v1, [v1, v2]] + b[v2, [v1, v2]] = b[v2, [v1, v2]] =
−b(∂/∂xn−2) ∈ E2 = span{v1, v2, ∂/∂xn−1} if b = 0, then LE = span{v1}, but the distribution
spanned by v1 is the unique locally rigid subdistribution, on E, of dimension 1.
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