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First we prove existence of a fixed point for mappings defined on a complete modular space
satisfying a general contractive inequality of integral type. Then we generalize fixed-point theorem
for a quasicontraction mapping given by Khamsi (2008) and Ciric (1974) .

1. Introduction

In [1], Branciari established that a function f defined on a complete metric space satisfying a
contraction condition of the form

∫d(fx,fy)

0
ϕ(t)dt ≤ c

∫d(x,y)

0
ϕ(t)dt (1.1)

has a unique attractive fixed point where ϕ : R
+ → R

+ is a Lebesgue-integrable mapping and
c ∈ [0, 1).

In [2], Rhoades extended this result to a quasicontraction function f . The purpose of
this paper is to extend these theorems in modular space.

First, we introduce the notion of modular space.

Definition 1.1. Let X be an arbitrary vector space over K(= R or C). A functional ρ : X →
[0,+∞) is called modular if
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(1) ρ(x) = 0 if and only if x = 0;

(2) ρ(αx) = ρ(x) for α ∈ K with |α| = 1, for all x, y ∈ X;

(3) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0, α + β = 1, for all x, y ∈ X.

If (2.14) in Definition 1.1 is replaced by

ρ
(
αx + βy

) ≤ αsρ(x) + βsρ(y) (1.2)

for α, β ≥ 0, αs + βs = 1 with an s ∈ (0, 1], then the modular ρ is called an s-convex modular;
and if s = 1, ρ is called a convex modular.

Definition 1.2. A modular ρ defines a corresponding modular space, that is, the space Xρ is
given by

Xρ =
{
x ∈ X | ρ(λx) −→ 0 as λ −→ 0

}
. (1.3)

Definition 1.3. Let Xρ be a modular space.

(1) A sequence {xn}n in Xρ is said to be

(a) ρ-convergent to x if ρ(xn − x) → 0 as n → +∞,
(b) ρ-Cauchy if ρ(xn − xm) → 0 as n,m → +∞.

(2) Xρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

(3) A subset B ⊂ Xρ is said to be ρ-closed if for any sequence {xn}n ⊂ B with xn → x

then x ∈ B. Bρ denotes the closure of B in the sense of ρ.

(4) A subset B ⊂ Xρ is called ρ-bounded if

δρ(B) = sup
x,y∈B

ρ
(
x − y) < +∞, (1.4)

where δρ(B) is called the ρ-diameter of B.

(5) We say that ρ has Fatou property if

ρ
(
x − y) ≤ lim inf ρ

(
xn − yn

)
(1.5)

whenever

xn
ρ−→ x, yn

ρ−→ y. (1.6)

(6) ρ is said to satisfy theΔ2-condition if: ρ(2xn) → 0 as n → +∞whenever ρ(xn) → 0
as n → +∞.

Remark 1.4. Note that since ρ does not satisfy a priori the triangle inequality, we cannot expect
that if {xn} and {yn} are ρ-convergent, respectively, to x and y then {xn +yn} is ρ-convergent
to x + y, neither that a ρ-convergent sequence is ρ-Cauchy.
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2. Main Result

Theorem 2.1. Let Xρ be a complete modular space, where ρ satisfies the Δ2-condition. Assume that
ψ : R

+ → [0,∞) is an increasing and upper semicontinuous function satisfying

ψ(t) < t, ∀t > 0. (2.1)

Let ϕ : [0,+∞) → [0,+∞] be a nonnegative Lebesgue-integrable mapping which is summable on
each compact subset of [0,+∞[ and such that for ε > 0,

∫ε
0 ϕ(t)dt > 0 and let f : Xρ → Xρ be a

mapping such that there are c, l ∈ R
+ where l < c,

∫ρ(c(fx−fy))

0
ϕ(t)dt ≤ ψ

(∫ρ(l(x−y))

0
ϕ(t)dt

)
, (2.2)

for each x, y ∈ Xρ. Then f has a unique fixed point in Xρ.

Proof. First, we show that for x ∈ Xρ, the sequence {ρ(c(fnx − fn−1x))} converges to 0. For
n ∈ N, we have

∫ρ(c(fnx−fn−1x))

0
ϕ(t)dt ≤ ψ

(∫ρ(l(fn−1x−fn−2x))

0
ϕ(t)dt

)

<

∫ρ(l(fn−1x−fn−2x))

0
ϕ(t)dt

<

∫ρ(c(fn−1x−fn−2x))

0
ϕ(t)dt.

(2.3)

Consequently, {∫ρ(c(fnx−fn−1x))0 ϕ(t)dt} is decreasing and bounded from below. Therefore

{∫ρ(c(fnx−fn−1x))0 ϕ(t)dt} converges to a nonnegative point a.
Now, if a/= 0,

a = lim
n→∞

∫ρ(c(fnx−fn−1x))

0
ϕ(t)dt

≤ lim
n→∞

ψ

(∫ρ(l(fn−1x−fn−2x))

0
ϕ(t)dt

)

≤ lim
n→∞

ψ

(∫ρ(c(fn−1x−fn−2x))

0
ϕ(t)dt

)
,

(2.4)

then

a ≤ ψ(a), (2.5)
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which is a contradiction, so a = 0 and

∫ρ(c(fnx−fn+1x))

0
ϕ(t)dt −→ 0+ as n −→ +∞. (2.6)

This concludes ρ(c(fnx − fn+1x)) → 0. Suppose that

lim
n→∞

sup ρ
(
c
(
fnx − fn+1x

))
= ε > 0 (2.7)

then there exist a νε ∈ N and a sequence (fnνx)ν≥νε such that

ρ
(
c
(
fnνx − fnν+1x

))
−→ ε > 0, ν −→ ∞,

ρ
(
c
(
fnνx − fnν+1x

))
≥ ε

2
, ∀ν ≥ νε,

(2.8)

then we get the following contradiction:

0 = lim
ν→∞

∫ρ(c(fnν x−fnν+1x))

0
ϕ(t)dt ≥

∫ ε/2

0
ϕ(t)dt > 0. (2.9)

Now, we prove for each x ∈ Xρ the sequence {fnx}n∈N
is a ρ-Cauchy sequence.

Assume that there is an ε > 0 such that for each ν ∈ N there exist mν, nν ∈ N that
mν > nν > ν,

ρ
(
l
(
fmνx − fnνx)) ≥ ε. (2.10)

Then we choose the sequence (mν)ν∈N
and (nν)ν∈N

such that for each ν ∈ N, mν is
minimal in the sense that

ρ
(
l
(
fmνx − fnνx)) ≥ ε. (2.11)

But

ρ
(
l
(
fhx − fnνx

))
< ε, (2.12)

for each h ∈ {nν + 1, . . . , mν − 1}.
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Now, let α ∈ R
+ be such that l/c + 1/α = 1, then we have

∫ ε

0
ϕ(t)dt ≤

∫ρ(l(fmν x−fnν x))

0
ϕ(t)dt

≤
∫ρ(c(fmν x−fnν+1x))

0
ϕ(t)dt +

∫ρ(αl(fnν+1x−fnν x))

0
ϕ(t)dt

≤ ψ
(∫ρ(l(fmν−1x−fnν x))

0
ϕ(t)dt

)
+
∫ρ(αl(fnν+1x−fnν x))

0
ϕ(t)dt

≤
∫ρ(l(fmν−1x−fnν x))

0
ϕ(t)dt +

∫ρ(αl(fnν+1x−fnν x))

0
ϕ(t)dt

≤
∫ ε

0
ϕ(t)dt +

∫ρ(αl(fnν+1x−fnν x))

0
ϕ(t)dt.

(2.13)

Thus, as ν → ∞, by Δ2-condition,
∫ρ(αl(fnν+1x−fnν x))
0 ϕ(t)dt → 0. Therefore

∫ρ(l(fmν x−fnν x))

0
ϕ(t)dt −→ ε+, ν −→ ∞. (2.14)

Now,

∫ρ(l(fmν x−fnν x))

0
ϕ(t)dt ≤

∫ρ(c(fmν+1x−fnν+1x))

0
ϕ(t)dt +

∫ρ(2αl(fmν x−fmν+1x))

0
ϕ(t)dt

+
∫ρ(2αl(fnν+1x−fnν x))

0
ϕ(t)dt

≤ ψ
(∫ρ(l(fmν x−fnν x))

0
ϕ(t)dt

)
+
∫ρ(2αl(fmν x−fmν+1x))

0
ϕ(t)dt

+
∫ρ(2αl(fnν+1x−fnν x))

0
ϕ(t)dt.

(2.15)

If ν → ∞ we get

∫ ε

0
ϕ(t)dt ≤ ψ

(∫ ε

0
ϕ(t)dt

)
, (2.16)

which is a contradiction for ε > 0. Therefore {lfnx} is a ρ-Cauchy sequence and by Δ2-
condition {fnx} is ρ-Cauchy. By the fact that Xρ is ρ-complete, there is a z ∈ Xρ such that
ρ(fnz − z) → 0 as n → ∞. Furthermore, z is the fixed point for f . In fact

ρ
(c
2
(
z − fz)) ≤ ρ(c(z − fnz)) + ρ(c(fnz − fz)) −→ 0, n −→ ∞ (2.17)

then ρ((c/2)(z − fz)) = 0 and fz = z.
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Now, assume that we have more than one fixed point for f . Let z and u be two distinct
fixed points, then

∫ρ(c(z−u))

0
ϕ(t)dt =

∫ρ(c(fz−fu))

0
ϕ(t)dt ≤ ψ

(∫ρ(l(z−u))

0
ϕ(t)dt

)

<

∫ρ(l(z−u))

0
ϕ(t)dt ≤

∫ρ(c(z−u))

0
ϕ(t)dt,

(2.18)

which is a contradiction. So z = u and the proof is complete.

Corollary 2.2 (see [1]). Let Xρ be a complete modular space, where ρ satisfies the Δ2-condition. Let
f : Xρ → Xρ be a mapping such that there exists an λ ∈ (0, 1) and c, l ∈ R

+ where l < c and for each
x, y ∈ Xρ,

∫ρ(c(fx−fy))

0
ϕ(t)dt ≤ λ

(∫ρ(l(x−y))

0
ϕ(t)dt

)
, (2.19)

then f has a unique fixed point.

Corollary 2.3 (see [3]). Let Xρ be a complete modular space, where ρ satisfies the Δ2-condition.
Assume that ψ : R

+ → [0,∞) is an increasing and upper semicontinuous function satisfying

ψ(t) < t, ∀t > 0. (2.20)

Let B be a ρ-closed subset of Xρ and T : B → B be a mapping such that there exist c, l ∈ R
+ with

c > l,

ρ
(
c
(
Tx − Ty)) ≤ ψ(ρ(l(x − y))) (2.21)

for all x, y ∈ B. Then T has a fixed point.

In the next theorem we use the following notation:

m
(
x, y

)
= max

{
ρ
(
x − y), ρ(x − Tx), ρ(y − Ty), ρ

(
1/2

(
x − Ty)) + ρ(1/2(y − Tx))

2

}
.

(2.22)
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Theorem 2.4. Let (Xρ, ρ) be a ρ-complete modular space that ρ satisfies the Δ2-condition and let
T : Xρ → Xρ be a mapping such that for each x, y ∈ Xρ,

∫ρ(Tx−Ty)

0
φ(t)dt ≤ ψ

(∫m(x,y)

0
φ(t)dt

)
, (2.23)

where φ : R
+ → R

+ and ψ : R
+ → [0,∞) are as in Theorem 2.1. Then T has a unique fixed point.

Proof. Let x ∈ Xρ, wewill show that {Tnx} is a Cauchy sequence. First, we prove that {ρ(Tnx−
Tn−1x)} converges to 0. From (2.23),

∫ρ(Tnx−Tn−1x)

0
φ(t)dt ≤ ψ

(∫m(Tn−1x,Tn−2x)

0
φ(t)dt

)
. (2.24)

By the definition ofm(x, y),

m
(
Tn−1x, Tn−2x

)
= max

{
ρ
(
Tnx − Tn−1x

)
, ρ
(
Tn−1 − Tn−2x

)
,
ρ
(
1/2

(
Tnx − Tn−2x))

2

}
,

ρ
(
1/2

(
Tnx − Tn−2x))

2
≤ ρ

(
Tnx − Tn−1x) + ρ(Tn−1 − Tn−2x)

2

≤ max
{
ρ
(
Tnx − Tn−1x

)
, ρ
(
Tn−1 − Tn−2x

)}
.

(2.25)

Hence,

m
(
Tn−1x, Tn−2x

)
= max

{
ρ
(
Tnx − Tn−1x

)
, ρ
(
Tn−1 − Tn−2x

)}
(2.26)

and therefore,

∫ρ(Tnx−Tn−1x)

0
φ(t)dt ≤ ψ

(∫m(Tn−1x,Tn−2x)

0
φ(t)dt

)

≤
∫m(Tn−1x,Tn−2x)

0
φ(t)dt

=
∫max{ρ(Tnx−Tn−1x),ρ(Tn−1−Tn−2x)}

0
φ(t)dt

= max

{∫ρ(Tnx−Tn−1x)

0
φ(t)dt,

∫ρ(Tn−1−Tn−2x)

0
φ(t)dt

}

=
∫ρ(Tn−1−Tn−2x)

0
φ(t)dt.

(2.27)
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This means that {ρ(Tnx − Tn−1x)} is decreasing and since it is bounded from below, it is a
convergent sequence. Similarly to Theorem 2.1, it is easy to show that

{
ρ
(
Tnx − Tn−1x

)}
−→ 0. (2.28)

Now, we show that {Tnx} is Cauchy. If not, then there exist an ε > 0 and subsequences
{m(p)} and {n(p)} such thatm(p) < n(p) < m(p + 1) with

ρ
(
Tm(p)x − Tn(p)x

)
≥ ε, ρ

(
2
(
Tm(p)x − Tn(p)−1x

))
< ε. (2.29)

From (2.22),

m
(
Tm(p)−1x, Tn(p)−1x

)
= max

{
ρ
(
Tm(p)−1x − Tn(p)−1x

)
,

ρ
(
Tm(p)x − Tm(p)−1x

)
, ρ
(
Tn(p)x − Tn(p)−1x

)
,

ρ
(
1/2

(
Tm(p)x − Tn(p)−1x)) + ρ(1/2(Tn(p)x − Tm(p)−1x

))
2

}
.

(2.30)

By using (2.28), we get

lim
p

∫ρ(Tm(p)x−Tm(p)−1x)

0
φ(t)dt = lim

p

∫ρ(Tn(p) x−Tn(p)−1x)

0
φ(t)dt = 0. (2.31)

On the other hand,

ρ
(
Tm(p)−1x − Tn(p)−1x

)
≤ ρ

(
2
(
Tm(p)−1x − Tm(p)x

))
+ ρ

(
2
(
Tm(p)x − Tn(p)−1x

))

≤ ρ
(
2
(
Tm(p)−1x − Tm(p)x

))
+ ε,

(2.32)

thus by the Δ2-condition,

lim
p

∫ρ(Tm(p)−1x−Tn(p)−1x)

0
φ(t)dt ≤

∫ ε

0
φ(t)dt. (2.33)
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For the last term inm(Tm(p)−1x, Tn(p)−1x) by the fact that ρ(cx) is an increasing function
of c we have

v(m,n) : =
ρ
(
1/2

(
Tm(p)x − Tn(p)−1x)) + ρ(1/2(Tn(p)x − Tm(p)−1x

))
2

≤ ρ
(
Tm(p)x − Tm(p)−1x

)
+ ρ

(
2
(
Tn(p)x − Tn(p)−1x))

2

+
ρ
(
2
(
Tm(p)x − Tn(p)−1x)) + ρ(1/2(Tm(p)x − Tn(p)−1x))

2

≤ ε + ρ
(
Tm(p)x − Tm(p)−1x

)
+ ρ

(
2
(
Tn(p)x − Tn(p)−1x))

2
.

(2.34)

Hence, from (2.28)we get

lim
p

∫v(m,n)

0
φ(t)dt ≤

∫ ε

0
φ(t)dt. (2.35)

Therefore from (2.31), (2.33), and (2.35) it can be concluded that

∫ ε

0
φ(t)dt ≤

∫ρ(Tm(p)x−Tn(p)x)

0
φ(t)dt ≤ ψ

(∫m(Tm(p)−1x,Tn(p)−1x)

0
φ(t)dt

)

<

∫m(Tm(p)−1x,Tn(p)−1x)

0
φ(t)dt ≤

∫ ε

0
φ(t)dt

(2.36)

which is a contradiction, when p is large enough. Therefore, {Tnx} is Cauchy and since Xρ is
ρ-complete there is an z ∈ Xρ that Tnx → z. Now, we should prove that z is the fixed point
for T . In fact,

∫ρ(1/2(Tz−z))

0
φ(t)dt ≤

∫ρ(Tz−Tnz)

0
φ(t)dt +

∫ρ(Tnz−z)

0
φ(t)dt

≤ ψ
(∫m(z,Tn−1z)

0
φ(t)dt

)
+
∫ρ(Tnz−z)

0
φ(t)dt −→ 0 as n −→ ∞,

(2.37)

by the definition ofm. It follows that Tz = z.
Let w ∈ Xρ be another fixed point of T . Then,

∫ρ(w−z)

0
φ(t)dt =

∫ρ(Tw−Tz)

0
φ(t)dt ≤ ψ

(∫m(w,z)

0
φ(t)dt

)

<

∫m(w,z)

0
φ(t)dt =

∫ρ(w−z)

0
φ(t)dt.

(2.38)



10 International Journal of Mathematics and Mathematical Sciences

That is because

m(w, z) = max
{
ρ(z −w), ρ(z − z), ρ(w −w),

ρ(1/2(z −w)) + ρ(1/2(w − z))
2

}

= ρ(w − z),
(2.39)

thus z = w.

Corollary 2.5 (see [2]). Let (X, d) be complete metric space, k ∈ [0, 1), f : X → X a mapping such
that, for x, y ∈ X,

∫d(f(x),f(y))

0
φ(t)dt ≤ k

∫m(x,y)

0
φ(t)dt, (2.40)

where φ : R
+ → R

+ is a Lebesgue-integrable mapping which is summable, nonnegative, and such
that

∫ ε

0
φ(t)dt > 0 ∀ε > 0, (2.41)

and where

m
(
x, y

)
= max

{
d
(
x, y

)
, d

(
x, fx

)
, d

(
y, fy

)
,
d
(
x, fy

)
+ d

(
y, fy

)
2

}
. (2.42)

Then f has a unique fixed point.

Corollary 2.6 (see [4]). Let (X, ρ) be a modular space such that ρ satisfies the Fatou property. Let
C be a ρ-complete nonempty subset of Xρ and T : C → C be quasicontraction. Let x ∈ C such that
δρ(x) <∞. Then {Tnx} ρ-converges to ω ∈ C. Here δρ(x) = sup{ρ(Tnx − Tmx);n,m ∈ N}.
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