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TheMisra-Miwa v-deformed Fock space is a representation of the quantized affine algebraUv( ̂���).
It has a standard basis indexed by partitions, and the nonzero matrix entries of the action of
the Chevalley generators with respect to this basis are powers of v. Partitions also index the
polynomial Weyl modules for Uq(��N) as N tends to infinity. We explain how the powers of v
which appear in the Misra-Miwa Fock space also appear naturally in the context of Weyl modules.
The main tool we use is the Shapovalov determinant for a universal Verma module.

1. Introduction

Fock space is an infinite dimensional vector space which is a representation of several
important algebras, as described in, for example, [1, Chapter 14]. Herewe consider the charge
zero part of Fock space, which we denote by F, and its v-deformation Fv. The space F has a
standard �-basis {|μ〉 | λ is a partition} and Fv := F⊗��(v). Following Hayashi [2], Misra
and Miwa [3] define an action of the quantized universal enveloping algebra Uv(̂���) on Fv.
The only nonzero matrix elements 〈μ|Fi|λ〉 of the Chevalley generators Fi in terms of the
standard basis occur when μ is obtained by adding a single i-colored box to λ, and these are
powers of v.

We show that these powers of v also appear naturally in the following context:
partitions with at most N parts index polynomial Weyl modules Δ(λ) for the integral
quantum group UA

q (��N). Let V be the standardN dimensional representation of UA
q (��N).

If the matrix element 〈μ|Fi|λ〉 is nonzero then, for sufficiently largeN, (ΔA(λ)⊗AV )⊗A�(q)
contains the highest weight vector of weight μ. There is a unique such highest weight
vector vμ which satisfies a certain triangularity condition with respect to an integral basis
of ΔA(λ)⊗AV . We show that the matrix element 〈μ|Fi|λ〉 is equal to vvalφ2� (vμ,vμ), where (·, ·) is
the Shapovalov form and valφ2� is the valuation at the cyclotomic polynomial φ2� .
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Our proof is computational, making use of the Shapovalov determinant [4–6]. This is
a formula for the determinant of the Shapovalov form on a weight space of a Verma module.
The necessary computation is most easily done in terms of the universal Verma modules
introduced in the classical case by Kashiwara [7] and studied in the quantum case by Kamita
[8]. The statement for Weyl modules is then a straightforward consequence.

Before beginning, let us discuss some related work. In [9], Kleshchev carefully ana-
lyzed the ��N−1 highest weight vectors in a Weyl module for ��N and used this information to
give modular branching rules for symmetric group representations. Brundan and Kleshchev
[10] have explained that highest weight vectors in the restriction of a Weyl module to ��N−1
give information about highest weight vectors in a tensor productΔ(λ)⊗V of a Weyl module
with the standardN-dimensional representation of ��N . Our computations put a new twist
on the analysis of the highest weight vectors inΔ(λ)⊗V , as we study them in their “universal”
versions and by the use of the Shapovalov determinant. Our techniques can be viewed as an
application of the theory of Jantzen [11] as extended to the quantum case by Wiesner [12].

Brundan [13] generalized Kleshchev’s [9] techniques and used this information to
give modular branching rules for Hecke algebras. As discussed in [14, 15], these branching
rules are reflected in the fundamental representation of ̂��p and its crystal graph, recovering
much of the structure of the Misra-Miwa Fock space. Using Hecke algebras at a root of
unity, Ryom-Hansen [16] recovered the full Uv(̂���) action on Fock space. To complete
the picture, one should construct a graded category, where multiplication by v in the ̂���
representation corresponds to a grading shift. Recent work of Brundan-Kleshchev [17] and
Ariki [18] explains that one solution to this problem is through the representation theory of
Khovanov-Lauda-Rouquier algebras [19, 20]. It would be interesting to explicitly describe
the relationship between their category and the present work. Another related construction
due to Brundan-Stroppel considers the case when the Fock space is replaced by ∧mV ⊗ ∧nV ,
where V is the natural ��∞ module andm,n are fixed natural numbers.

We would also like to mention very recent work of Peng Shan [21] which
independently develops a similar story to the one presented here, but using representations
of a quantum Schur algebra where we use representations of Uε(��N). The approach taken
there is somewhat different and in particular relies on localization techniques of Beı̆linson
and Bernstein [22].

This paper is arranged as follows. Sections 2 and 3 are background on the quantum
groupUq(��N) and the Fock space Fv. Sections 4 and 5 explain universal Verma modules and
the Shapovalov determinant. Section 6 contains the statement and proof of our main result
relating Fock space and Weyl modules.

2. The Quantum Group Uq(��N) and Its Integral Form UA
q (��N)

This is a very brief review, intended mainly to fix notation. With slight modifications, the
construction in this section works in the generality of symmetrizable Kac-Moody algebras.
See [23, Chapters 6 and 9] for details.

2.1. The Rational Quantum Group

Uq(��N) is the associative algebra over the field of rational functions �(q) generated by

X1, . . . , XN−1, Y1, . . . , YN−1, L±1
1 , . . . , L

±1
N , (2.1)
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with relations

LiLj = LjLi, LiL
−1
i = L−1

i Li = 1, XiYj − YjXi = δi,j
LiL

−1
i+1 − Li+1L−1

i

q − q−1 ,

LiXjL
−1
i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

qXj, if i = j,

q−1Xj, if i = j + 1,

Xj , otherwise,

LiYjL
−1
i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q−1Yj, if i = j,

qYj , if i = j + 1,

Yj , otherwise,

XiXj = XjXi, YiYj = YjYi, if
∣

∣i − j∣∣ ≥ 2,

X2
i Xj −

(

q + q−1
)

XiXjXi +XjX
2
i = Y

2
i Yj −

(

q + q−1
)

YiYjYi + YjY 2
i = 0, if

∣

∣i − j∣∣ = 1.

(2.2)

The algebraUq(��N) is a Hopf algebra with coproduct and antipode given by

Δ(Li) = Li ⊗ Li, S(Li) = L−1
i ,

Δ(Xi) = Xi ⊗ LiL
−1
i+1 + 1 ⊗Xi, S(Xi) = −XiL

−1
i Li+1,

Δ(Yi) = Yi ⊗ 1 + L−1
i Li+1 ⊗ Yi, S(Yi) = −LiL−1

i+1Yi,

(2.3)

respectively, (see [23, Section 9.1]).
As a �(q)-vector space,Uq(��N) has a triangular decomposition

Uq

(

g�N
) ∼= Uq

(

g�N
)<0 ⊗Uq

(

g�N
)0 ⊗Uq

(

g�N
)>0

, (2.4)

where the inverse isomorphism is given by multiplication (see [23, Proposition 9.1.3]). Here
Uq(��N)<0 is the subalgebra generated by the Yi for i = 1, . . . ,N−1,Uq(��N)>0 is the subalgebra
generated by the Xi for i = 1, . . . ,N − 1, and Uq(��N)0 is the subalgebra generated by the L±1

i

for i = 1, . . . ,N.

2.2. The Integral Quantum Group

Let A = �[q, q−1]. For n, k ∈ �>0 and c ∈ �, let

[n] :=
qn − q−n
q − q−1 , x(k) :=

xk

[k][k − 1] · · · [2][1] ,
[

x; c

k

]

:=
k
∏

s=1

xqc+1−s − x−1qs−1−c
qs − q−s ,

(2.5)
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in �(q, x). The restricted integral form UA
q (��N) is the A-subalgebra of Uq(��N) generated by

X
(k)
i , Y

(k)
i , L±1

i and
[

Li;c
k

]

for 1 ≤ i ≤ N, c ∈ �, k ∈ �>0. As discussed in [24, Section 6], this is
an integral form in the sense that

UA
q (��N)⊗A�

(

q
)

= Uq(��N). (2.6)

As with Uq(��N), the algebraUA
q (��N) has a triangular decomposition

UA
q (��N) ∼= UA

q (��N)<0 ⊗UA
q (��N)0 ⊗UA

q (��N)>0, (2.7)

where the isomorphism is given by multiplication (see [23, Proposition 9.3.3]). In this case,
UA
q (��N)<0 is the subalgebra generated by the Y (k)

i ,UA
q (��N)>0 is the subalgebra generated by

the X(k)
i , and UA

q (��N)0 is generated by L±1
i and

[

Li ;c
k

]

for 1 ≤ i ≤ N, c ∈ �, and k ∈ �>0.

2.3. Rational Representations

The Lie algebra ��N = MN(� ) of N × N matrices has standard basis {Eij | 1 ≤ i, j ≤
N}, where Eij is the matrix with 1 in position (i, j) and 0 everywhere else. Let � =
span{E11, E22, . . . , ENN}. Let εi ∈ �∗ be the weight of ��N given by εi(Ejj) = δi,j . Define

�∗� : = {λ = λ1ε1 + λ2ε2 + · · · + λNεN ∈ �∗ | λ1, . . . , λN ∈ Z},
(

�∗�
)+ : =

{

λ = λ1ε1 + λ2ε2 + · · · + λNεN ∈ �∗� | λ1 ≥ λ2 ≥ · · · ≥ λN
}

,

P+ : =
{

λ = λ1ε1 + λ2ε2 + · · · + λNεN ∈ (�∗�
)+ | λN ≥ 0

}

,

R+ : =
{

εi − εj | 1 ≤ i < j ≤ N},
Q : = span�(R+), Q+ := span�≥0(R

+), Q− := span�≤0(R
+)

(2.8)

to be the set of integral weights, the set of dominant integral weights, the set of dominant
polynomial weights, the set of positive roots, the root lattice, the positive part of the root lattice,
and the negative part of the root lattice, respectively.

For an integral weight λ = λ1ε1 + · · ·+ λNεN , the Verma moduleM(λ) forUq(��N) of the
highest weight λ is

M(λ) := Uq(��N)⊗Uq(��N)≥0�
(

q
)

λ, (2.9)

where �(q)λ = span�(q){vλ} is the one dimensional vector space over �(q) with Uq(��N)≥0

action given by

Xi · vλ = 0, Lj · vλ = qλjvλ, for 1 ≤ i ≤N − 1, 1 ≤ j ≤N. (2.10)
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Theorem 2.1 (see [23, Chapter 10.1]). If λ ∈ (�∗
�
)+ then M(λ) has a unique finite dimensional

quotient Δ(λ) and the map λ �→ Δ(λ) is a bijection between (�∗
�
)+, and the set of irreducible finite

dimensionalUq(��N)-modules.

A singular vector in a representation ofUq(��N) is a vector v such thatXi ·v = 0 for all i.

2.4. Integral Representations

The integral Verma module MA(λ) is the UA
q (��N)-submodule of M(λ) generated by vλ. The

integral Weyl module ΔA(λ) is the UA
q (��N)-submodule of Δ(λ) generated by vλ. Using (2.6)

and (2.4),

MA(λ)⊗A�
(

q
)

=M(λ), ΔA(λ)⊗A�
(

q
)

= Δ(λ). (2.11)

In general, ΔA(λ) is not irreducible as aUA
q (��N) module.

3. Partitions and Fock Space

We now describe the v-deformed Fock space representation of Uv(̂���) constructed by Misra
and Miwa [3] following work of Hayashi [2]. Our presentation largely follows [25, Chapter
10].

3.1. Partitions

A partition λ is a finite length nonincreasing sequence of positive integers. Associated to
a partition is its Ferrers diagram. We draw these diagrams as in Figure 1 so that, if λ =
(λ1, . . . , λN), then λi is the number of boxes in row i (rows run southeast to northwest ↖).
Say that λ is contained in μ if the diagram for λ fits inside the diagram for μ and let μ/λ
be the collection of boxes of μ that are not in λ. For each box b ∈ λ, the content c(b) is the
horizontal position of b and the color c(b) is the residue of c(b) modulo �. In Figure 1, the
numbers c(b) are listed below the diagram. The size |λ| of a partition λ is the total number of
boxes in its Ferrers diagram.

The set P+ of dominant polynomial weights from Section 2.3 is naturally identified
with partitions with at mostN parts. If λ ∈ P+, then

Δ(λ) ⊗Δ(ε1) ∼=
⊕

1≤k≤N
λ+εk∈P+

Δ(λ + εk) (3.1)

asUq(��N)-modules. The diagram of λ+εk is obtained from the diagram of λ by adding a box
on row k, and Δ(λ + εk) appears in the sum on the right side of (3.1) if and only if λ + εk is a
partition. See, for example, [26, Section 6.1, Formula 6.8] for the classical statement and [23,
Proposition 10.1.16] for the quantum case.



6 International Journal of Mathematics and Mathematical Sciences

9 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −9

0

0
0

0
0

0

0
0

0

0

0

0

0

1

1

1

1
1

1

1

1

1

1
1

2
2

2
2

2

2

2
2

2

2

2

2

Figure 1: The partition (7, 6, 6, 5, 5, 3, 3, 1) with each box containing its color for � = 3. The content c(b) of
a box b is the horizontal position of b reading right to left. The contents of boxes are listed beneath the
diagram so that c(b) is aligned with all boxes b of that content.

3.2. The Quantum Affine Algebra

Let U′
v(̂���) be the quantized universal enveloping algebra corresponding to the �-node

Dynkin diagram

· · ·

More precisely,U′
v(̂���) is the algebra generated by Ei, Fi, K

±1
i
, for i ∈ �/��, with relations

KiKj = KjKi, KiK
−1
i

= K−1
i
Ki = 1, EiFj − FjEi = δi,j

Ki −K−1
i

v − v−1 ,

KiEjK
−1
i

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v2Ej, if i = j,

v−1Ej , if i = j ± 1,

Ej , otherwise,

KiFjK
−1
i

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v−2Fj, if i = j,

vFj , if i = j ± 1,

Fj , otherwise,

EiEj = EjEi, FiFj = FjFi, if
∣

∣

∣i − j
∣

∣

∣ ≥ 2,

E2
i
Ej −

(

v + v−1
)

EiEjEi + EjE
2
i
= F2

i
Fj −

(

v + v−1
)

FiFjFi + FjF
2
i
= 0, if

∣

∣

∣i − j
∣

∣

∣ = 1.

(3.2)

See [23, Definition Proposition 9.1.1]. The algebraU′
v(̂���) is the quantum group correspond-

ing to the nontrivial central extension ̂��
′
� = ���[t, t−1] ⊕ � c of the algebra of polynomial loops

in ��� .
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3.3. Fock Space

Define v-deformed Fock space to be the �(v) vector space Fv with basis {|μ〉 | λ is a partition}.
Our Fv is only the charge 0 part of Fock space described in [27]. Fix i ∈ �/��and partitions
λ ⊆ μ such that μ/λ is a single box. Define

Ai(λ) :=
{

boxes b | b /∈ λ, b has color i and λ ∪ b is a partition
}

,

Ri(λ) :=
{

boxes b | b ∈ λ, b has color i and λ \ b is a partition
}

,

Nl

i

(

μ/λ
)

:=
∣

∣

{

b ∈ Ri(λ) | b is to the left of μ/λ
}∣

∣ − ∣∣{b ∈ Ai(λ) | b is to the left of μ/λ
}∣

∣,

Nr

i

(

μ/λ
)

:=
∣

∣

{

b ∈ Ri(λ) | b is to the right of μ/λ
}∣

∣ − ∣∣{b ∈ Ai(λ) | b is to the right of μ/λ
}∣

∣,

(3.3)

to be the set of addable boxes of color i, the set of removable boxes of color i, the left removable-addable
difference, and the right removable-addable difference, respectively.

Theorem 3.1 (see [25, Theorem 10.6]). There is an action ofU′
v(̂���) on Fv determined by

Ei|λ〉 :=
∑

c(λ/μ)=i
v−N

r

i
(λ/μ)∣

∣μ
〉

, Fi|λ〉 :=
∑

c(μ/λ)=i
vN

l

i
(μ/λ)∣

∣μ
〉

, (3.4)

where c(λ/μ) denotes the color of λ/μ and the sum is over partitions μwhich differ from λ by removing
(resp. adding) a single i-colored box.

As a U′
v(̂���)-module, Fv is isomorphic to an infinite direct sum of copies of the basic

representation V (Λ0). Using the grading of Fv where |λ〉 has degree |λ|, the highest weight
vectors in Fv occur in degrees divisible by �, and the number of the highest weight vectors
in degree �k is the number of partitions of k. Then, Fv ∼= V (Λ0) ⊗ � [x1 , x2, . . .], where xk has
degree �k, andU′

v(̂���) acts trivially on the second factor (see [27, Proposition 2.3]). Note that
we are working with the “derived” quantum group U′

v(̂���), not the “full” quantum group
Uv(̂���), which is why there are no δ-shifts in the summands of Fv.

Comment 1. Comparing with [25, Chapter 10], ourNl

i
(μ/λ) is equal to Ariki’s −Na

i
(μ/λ) and

ourNr

i
(μ/λ) is equal to Ariki’s −Nb

i
(μ/λ). However, these numbers play a slightly different

role in Ariki’s work, which is explained by a different choice of conventions.

4. Universal Verma Modules

The purpose of this section is to construct a family of representations which are universal
Verma modules in the sense that each can be “evaluated” to obtain any given Verma module.
This notion was defined by Kashiwara [7] in the classical case and was studied in the
quantum case by Kamita [8].
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4.1. Rational Universal Verma Modules

Let � := �(q, z1 , z2, . . . , zN). This field is isomorphic to the field of fractions of Uq(��N)0 via
the map

ψ : Uq(��N)0 −→ � , defined by ψ
(

L±1
i

)

= z±1i . (4.1)

For each μ ∈ �∗
�
, define a �(q)-linear automorphism σμ : � → � by

σμ(zi) := q(μ,εi)zi, for 1 ≤ i ≤ N, (4.2)

where (·, ·) is the inner product on �∗
�
defined by (εi, εj) = δi,j . Let � μ = span�{vμ+} be the

one-dimensional vector space over � with basis vector v+μ andUq(��N)≥0 action given by

Xi · vμ+ = 0, for 1 ≤ i ≤N − 1, a · vμ+ = σμ
(

ψ(a)
)

vμ+, for a ∈ Uq(��N)0. (4.3)

The μ-shifted rational universal Verma module μ˜M is the Uq(��N)-module

μ
˜M := Uq(��N)⊗Uq(��N)≥0 � μ . (4.4)

The universal Verma module μ
˜M is actually a module overUq(��N)⊗Uq(��N) 0 ˜Uq(��N)0, where

˜Uq(��N)0 is the field of fractions of Uq(��N)0. However, if we identify ˜Uq(��N)0 with � using
the map ψ, the action of ˜Uq(��N)0 on μ

˜M is not by multiplication, but rather is twisted by
the automorphism σμ. It is to keep track of the difference between the action ofUq(��N)0 and
multiplication that we use different notation for the generators of � and Uq(��N)0 (i.e., zi
versus Li).

4.2. Integral Universal Verma Modules

The field � contains anA-subalgebra

R generated by z±1i ,

[

zi; c

k

]

, (1 ≤ i ≤N, c ∈ �, k ∈ �>0), (4.5)

which is isomorphic toUA
q (��N)0 via the restriction of the map ψ in (4.1). The integral universal

Verma module μ˜MR is the UA
q (��N)-submodule of μ˜M generated by vμ+. By restricting (4.4),

μ
˜MR = UA

q (��N)⊗UA
q (��N )≥0 Rμ, (4.6)

where Rμ is the R-submodule of � μ spanned by vμ+. In particular, μ˜MR is a free R-module.
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4.3. Evaluation

Let evR
λ
: R → A be the map defined by

evR
λ (zi) = q

(λ,εi), evR
λ

[

zi; c

n

]

=

[

q(λ,εi); c

n

]

, (4.7)

where (·, ·) is the inner product on �∗ defined by (εi, εj) = δi,j . There is a surjective UA
q (��N)-

module homomorphism “evaluation at λ”

evλ:μ˜MR −→MA(μ + λ
)

defined by evλ
(

a · vμ+
)

:= a · vμ+λ, ∀a ∈ UA
q (��N). (4.8)

For fixed λ, the maps evR
λ and evλ extend to a map from the subspace of � and

μ
˜M=μ˜MR⊗R� , respectively, where no denominators evaluate to 0.Where it is clear we denote

both these extended maps by evλ.

Example 4.1. Computing the action of Li on vμ+ and vμ+λ,

Li · vμ+ = q(μ,εi)zivμ+, Li · vμ+λ = evλ
(

q(μ,εi)zi
)

vμ+λ = q(μ,εi)q(λ,εi)vμ+λ = q(μ+λ,εi)vμ+λ.

(4.9)

4.4. Weight Decompositions

Let ˜V be a Uq(��N)⊗AR-module. For each ν ∈ �∗Z , we define the ν-weight space of ˜V to be

˜Vν :=
{

v ∈ ˜V : Li · v = q(ν,εi)ziv
}

. (4.10)

The universal Verma module μ
˜MR is a Uq(��N)⊗AR-module, where the second factor acts as

multiplication. The weight space μ
˜Mη /= 0 if and only if η = μ − ν with ν in the positive part

Q+ of the root lattice. These nonzero weight spaces and the weight decomposition of μ˜M can
be described explicitly by

μ
˜MR

μ−ν = U
A
q (��N)<0−ν · Rμ,

μ
˜MR =

⊕

ν∈Q+

μ
˜MR

μ−ν. (4.11)

Here,UA
q (��N)<0−ν is defined using the grading of Uq(��N)<0 with Fi ∈ Uq(��N)<0−(εi−εi+1).

4.5. Tensor Products

Let ˜V be a UA
q (��N)⊗AR-module and W a UA

q (��N)-module. The tensor product ˜V⊗AW is
a UA

q (��N)⊗AR-module, where the first factor acts via the usual coproduct and the second
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factor acts by multiplication on ˜V . In the case when ˜V and W both have weight space
decompositions, the weight spaces of ˜V⊗AW are

(

˜V⊗AW
)

ν
=
⊕

γ+η=ν

˜Vγ⊗AWη. (4.12)

We also need the following.

Proposition 4.2. The tensor product of a universal Verma module with a Weyl module satisfies

(

μ
˜MR ⊗A ΔA(ν)

)

⊗R� ∼=
(

⊕

γ

(μ+γ ˜MR)
⊕

dimΔA(ν)γ

)

⊗R� . (4.13)

Proof. Fix ν ∈ P+. In general,M(λ + μ) ⊗ Δ(ν) has a Verma filtration (see, e.g., [28, Theorem
2.2]) and if λ + μ + γ is dominant for all γ such that Δ(ν)γ /= 0 then

M
(

λ + μ
) ⊗Δ(ν) ∼=

⊕

γ

M
(

λ + μ + γ
)

⊕

dimΔ(ν)γ , (4.14)

which can be seen by, for instance, taking central characters. The proposition follows since
this is true for a Zariski dense set of weights λ.

5. The Shapovalov Form and the Shapovalov Determinant

5.1. The Shapovalov Form

The Cartan involution ω : Uq(��N) → Uq(��N) is the �(q)-algebra anti-involution of Uq(��N)
defined by

ω
(

L±1
i

)

= L±1
i , ω(Xi) = YiLiL−1

i+1, ω(Yi) = L−1
i Li+1Xi. (5.1)

The map ω is also a coalgebra involution. An ω-contravariant form on aUq(��N)-module V is
a symmetric bilinear form (·, ·) such that

(u, a · v) = (ω(a) · u, v), for u, v ∈ V, a ∈ Uq(��N). (5.2)

It follows by the same argument used in the classical case [4] that there is an ω-
contravariant form (the Shapovalov form) on each Verma module M(λ) and this is unique
up to rescaling. The radical of (·, ·) is the maximal proper submodule of M(λ), so Δ(λ) =
M(λ)/Rad(·, ·) for all λ ∈ P+. In particular, (·, ·) descends to an ω-contravariant form on
Δ(λ).

Since ω fixes UA
q (��N) ⊆ Uq(��N), there is a well-defined notion of an ω-contravariant

form on a UA
q (��N) module. In particular, the restriction of the Shapovalov form on Δ(λ) to

ΔA(λ) is ω-contravariant.
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5.2. Universal Shapovalov Forms

There are surjective maps ofA-algebras p− : UA
q (��N)<0 → �(q) and p+ : UA

q (��N)>0 → �(q)
defined by p−(Fi) = 0 and p+(Ei) = 0, for 1 ≤ i ≤N. Using the triangular decomposition (2.7),
there is anA-linear surjection

π0 := p− ⊗ Id ⊗ p+ : UA
q (��N) ∼= UA

q (��N)<0⊗AUA
q (��N)0⊗AUA

q (��N)>0 −→ UA
q (��N)0. (5.3)

The standard universal Shapovalov form is theR-bilinear form (·, ·)μ
˜MR :μ˜MR⊗μ˜MR → R defined

by

(

a1 · vμ+, a2 · vμ+
)

μ
˜MR =

(

σμ ◦ ψ ◦ π0
)

(ω(a2)a1) (5.4)

for all a1, a2 ∈ UR
q (��N)<0. Here, ψ and σμ are as in (4.1) and (4.2). Since

(

a1a2 · vμ+, a3 · vμ+
)

μ
˜MR =

(

σμ ◦ ψ ◦ π0
)

(ω(a2)ω(a1)a3) =
(

a2 · vμ+, ω(a1)a3 · vμ+
)

μ
˜MR

(5.5)

for a1, a2, a3 ∈ Uq(��N), the form (·, ·)μ
˜MR is ω-contravariant. As with the usual Shapovalov

form, distinct weight spaces are orthogonal, whereweight spaces are defined as in Section 4.4.
Evaluation at λ gives anA-valued ω-contravariant form (·, ·)MA(μ+λ) onM

A(μ + λ) by

(evλ(u1), evλ(u2))MA(μ+λ) = evλ
(

(u1, u2)μ˜MR
)

for u1, u2 ∈μ ˜MR. (5.6)

The form (·, ·)μ
˜MR can be extended by linearity to an ω-contravariant form (·, ·)μ

˜M on μ
˜M.

5.3. The Shapovalov Determinant

Let ˜V be a (UA
q (��N)⊗AR)-module with a chosen ω-contravariant form. Let Bη be an R basis

for the η-weight space ˜Vη of ˜V . Let det ˜VBη be the determinant of the form evaluated on the
basis Bη. Changing the basis Bη changes the determinant by a unit in R, and we sometimes
write det ˜Vη to mean the determinant calculated on an unspecified basis (det ˜Vη which is only
defined up to multiplication by unit in R). The Shapovalov determinant is

det ˜MR
η := det

(

(

bi, bj
)

˜MR

)

bi,bj∈Bη
. (5.7)

Define the partition function p : �∗ → �≥0 by

p
(

γ
)

:= dimM(0)γ . (5.8)

Then, p(γ) = dimM(λ)γ+λ for any λ, and η /∈Q− implies that p(η) = 0 and det ˜MR
η = 1.
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Theorem 5.1 (see [5, Proposition 1.9A], [6, Theorem 3.4], [4]). For any weight η,

det ˜MR
η = cη

∏

1≤i<j≤N
m>0

(

ziz
−1
j − q2m+2i−2jz−1i zj

)p(η+mεi−mεj)
, (5.9)

where cη is a unit in R⊗A �(q) = Q(q)[z±11 , . . . , z
±1
N ].

Proposition 5.2. Fix μ, η ∈ �∗
�
with η −μ ∈ Q−. Choose anA-basis Bη−μ forUA

q (��N)η−μ. Consider

the R-bases ˜Bη−μ := {b · v+ | b ∈ Bη−μ} for ˜MR
η−μ and μ

˜Bη := {b · vμ+ | b ∈ Bη−μ} for μ
˜MR

η . Then

det
μ
˜M

R
(μ ˜Bη) = σμ(det ˜M

R
˜Bη−μ

).

Proof. For b, b′ ∈ Bη−μ,

(b · vμ+, b′ · vμ+)μ
˜MR = σμ ◦ ψ ◦ π0

(

ω
(

b′
)

b
)

= σμ
((

b · v0+, b′ · v0+
)

˜MR
)

. (5.10)

The result follows by taking determinants.

5.4. Contravariant Forms on Tensor Products

If V and W are UA
q (��N)-modules with ω-contravariant forms (·, ·)V and (·, ·)W , define an

A-bilinear form (·, ·)W⊗V by (w1 ⊗ v1, w2 ⊗ v2)W⊗V = (w1, w2)W (v1, v2)V . Similarly, for a
UA
q (��N)⊗A R module ˜W with R-bilinear ω-contravariant form (·, ·)

˜W , define a R-bilinear
form (·, ·)

˜W⊗�(q)V on ˜W⊗�(q)V by

(u1 ⊗ v1, u2 ⊗ v2)˜W⊗�(q)V = (u1, u2)˜W (v1, v2)V . (5.11)

Since ω is a coalgebra involution (i.e., Δ(ω(a)) = (ω ⊗ ω)Δ(a), for a ∈ Uq(��N)), the forms
(·, ·)V⊗W and (·, ·)μ

˜M⊗Q(q)V
are ω-contravariant.

In the case when ˜W=μ˜MR, evaluation of the ω-contravariant form (·, ·)μ
˜MR⊗AV at λ

gives an ω-contravariant form (·, ·)MA(μ+λ)⊗AV :

(u1 ⊗ v1, u2 ⊗ v2)MA(μ+λ)
⊗

AV
= evλ

(

(u1 ⊗ v1, u2 ⊗ v2)μ˜M⊗

AV

)

= (evλ(u1) ⊗ v1, evλ(u2) ⊗ v2)M(μ+λ)
⊗

AV
,

(5.12)

for u1, u2∈μ˜M and v1, v2 ∈ V . As in Section 4.3, this form can be extended to theA-submodule
of the rational module where no denominators evaluate to zero.
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6. The Misra-Miwa Formula for Fi from UA
q (��N)

Representation Theory

Let us prepare the setting for our main result (Theorem 6.1). Fix � ≥ 2 and a partition λ. Let
N be a positive integer greater than the number of parts of λ. All calculations below are in
terms of representations of UA

q (��N).

(1) Let V = ΔA(ε1) be the standard N-dimensional module. Since ΔA(λ)⊗A�(q) =
Δ(λ), (3.1) implies

(

ΔA(λ)⊗AV
)

⊗A�
(

q
) �

⊕

ΔA
(

λ + εkj
)

⊗A�
(

q
)

, (6.1)

where the sum is over those indices 1 = k1 < k2 < · · · < kmλ ≤ N for which λ + εkj is
a partition. For ease of notation, let μ(j) = λ + εkj .

(2) Fix an A-basis {v1, . . . , vN} of V where vk has weight εk and Yi(vk) = δi,kvk+1.
Recursively, define singular weight vectors vμ(j) in (ΔA(λ) ⊗ V )⊗A�(q) by

(i) vμ(1) = vλ ⊗ v1
(ii) for each k, the submodule Wk of (Δ(λ)⊗AV )⊗A�(q) generated by {vλ ⊗ vi |

1 ≤ i ≤ k} contains all weight vectors of (Δ(λ)⊗AV )⊗A�(q) of weight greater
than or equal to λ + εk. Thus, using (6.1), for each 1 ≤ j ≤ mλ there is a one-
dimensional space of singular vectors of weight μ(j) in Wkj , and this is not
contained in Wkj−1 (since kj > kj−1). This implies that there unique singular
vector vμ(j) of weight μ(j) in

vλ ⊗ vkj +
⊕

1≤i<j
Uq(��N)vμ(i) ⊆

(

ΔA(λ)⊗AV
)

⊗A�
(

q
)

, (6.2)

where we recall thatUq(��N) = UA
q (��N)⊗A�(q).

(3) There is a unique ω-contravariant form on ΔA(λ) normalized so that (vλ, vλ) = 1
and a unique ω-contravariant form on V normalized so that (v1, v1) = 1. As in
Section 5.4, define a ω-contravariant form on (ΔA(λ)⊗AV )⊗A�(q) by (u1 ⊗w1, u2 ⊗
w2) = (u1, u2)(w1, w2). For each 1 ≤ j ≤ mλ, define an element rj(λ) ∈ �(q) by

rj(λ) :=
(

vμ(j) , vμ(j)

)

. (6.3)

Theorem 6.1. The Misra-Miwa operators Fi from Section 3.3 satisfy

Fi|λ〉 =
∑

c(b(j))=i
vvalφ2� rj(λ)

∣

∣

∣μ(j)
〉

, (6.4)
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where b(j) is the box μ(j)/λ, c(b(j)) is the color of box b(j) as in Figure 1, φ2� is the 2�th cyclotomic
polynomial in q, and valφ2� r is the number of factors of φ2� in the numerator of r minus the number of
factors of φ2� in the denominator of r.

The proof of Theorem 6.1 will occupy the rest of this section. We will first prove a
similar statement, Proposition 6.6, where the role of the Weyl modules is played by the
universal Verma modules from Section 4. For ease of notation, let ˜MR denote the module
0
˜MR from Section 4.2.

Definition 6.2. Recursively define singular weight vectors vεk+ ∈ (˜MR⊗AV )⊗R� and elements
sk ∈ � for 1 ≤ k ≤N by

(i) vε1+ = v+ ⊗ v1,
(ii) since {v+ ⊗ vj | 1 ≤ j ≤ N} generates ˜MR⊗AV as a UA

q (��N)≤0 module,
Proposition 4.2 implies that, for each 1 ≤ k ≤ N, there is a unique singular vector
vεk+ in v+⊗vk+⊕1≤j<kU�q (��N)vεj+ ⊆ (˜MR⊗AV )⊗R� , whereU�q (��N) := Uq(��N)⊗(q)�

and the factor of � acts by multiplication on ˜MR.

Let sk = (vεk+, vεk+).

The sk are quantized versions of the Jantzen numbers first calculated in [11, Section 5]
and quantized in [12]. It follows immediately from the definition that s1 = 1.

Lemma 6.3. For any weight η, up to multiplication by a power of q,

∏

1≤k≤N
s
p(η−εk)
k

=
∏

1≤k≤N

det ˜MR
η−εk

σεk det ˜M
R
η−εk

, (6.5)

where, as in Section 5.3, det ˜MR
η−εk is the determinant of the Shapovalov form evaluated on an R-basis

for the η − εk weight space of ˜MR.

Comment 2. In order for Lemma 6.3 to hold as stated, for each 1 ≤ k ≤ N, one must calculate
the det ˜MR

η−εk in the numerator and denominator with respect to the sameR-basis. The power
of q which appears depends on this choice of R-bases.

Proof of Lemma 6.3. For each γ ∈ span �≤0(R
+) fix an R-basis Bγ for UR

q (��N)<0γ . Consider the

following three � -bases for ((˜MR⊗AV )η)⊗R� :

Aη :=
{

(b · v+) ⊗ vk | b ∈ Bη−εk , 1 ≤ k ≤N},
Cη :=

{

b · (v+ ⊗ vk) | b ∈ Bη−εk , 1 ≤ k ≤N},
Dη :=

{

b · vεk+ | b ∈ Bη−εk , 1 ≤ k ≤N}.
(6.6)

Let det(˜MR⊗AV )B denote the determinant of (·, ·)(˜MR⊗AV )η
calculated on B, where B is one of

Aη, Cη, or Dη. Let det
ν
˜M

R
Bη−ν denote det

ν
˜M

R
η calculated with respect to the basis Bη−ν · vν+.
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By the definition of the ω-contravariant form on ˜MR⊗AV (see Section 4.5),

det
(

˜MR ⊗ V
)

Aη

=
N
∏

k=1

(

det ˜MR
Bη−εk

)dimVεk (detVεk)
dim ˜MR

η−εk . (6.7)

For 1 ≤ k ≤N, Vεk is one dimensional and detVεk is a power of q. Hence, up to multiplication
by a power of q, (6.7) simplifies to

det
(

˜MR⊗AV
)

Aη

=
N
∏

k=1

det ˜MR
Bη−εk

. (6.8)

Notice that UA
q (��N)<0 · vεk+ is isomorphic to εk ˜M, and Dη is the union of R-bases for

each of these submodules. For each 1 ≤ k ≤N, and each η ∈ �∗Z define an R basis of εk ˜Mη by

εk ˜Bη :=
{

b · vεk+ | b ∈ Bη−εk
}

. (6.9)

Using (vεk+, vεk+) = sk,

det
(

˜MR ⊗ V
)

Dη

=
N
∏

k=1

s
dim (εk ˜MR

η )
k det

εk
˜M

R
(εk ˜Bη) =

N
∏

k=1

s
p(η−εk)
k σεk

(

det ˜MR
˜Bη−εk

)

, (6.10)

where the last equality uses Proposition 5.2. Here, as in Section 5.3, det
εk
˜M

R
(εk ˜Bη) is the

Shapovalov determinant calculated with respect to the basis εk ˜Bη.
The change of basis from Aη to Cη is unitriangular and the change of basis from Cη to

Dη is unitriangular. Thus, det(˜MR⊗AV )Aη
= det(˜MR⊗AV )Dη

, and so the right sides of (6.8)
and (6.10) are equal. The lemma follows from this equality by rearranging.

Lemma 6.4. Up to multiplication by a power of q,

sk =
∏

1≤j<k

⎛

⎜

⎝

zjz
−1
k

− q2+2j−2kz−1j zk
σεj

(

zjz
−1
k

− q2+2j−2kz−1j zk
)

⎞

⎟

⎠. (6.11)
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Proof. Fix 1 ≤ k ≤ N. Setting η = εk in Lemma 6.3 and applying Theorem 5.1 we see that, up
to multiplication by a power of q,

∏

1≤x≤N
s
p(εk−εx)
x =

∏

1≤x≤N

det ˜MR
εk−εx

σεx det ˜M
R
εk−εx

=
∏

1≤x≤N

∏

1 ≤ i < j ≤N
m > 0

⎛

⎜

⎝

cεk−εx
(

ziz
−1
j − q2m+2i−2jz−1i zj

)

σεx(cεk−εx)σεx
(

ziz
−1
j − q2m+2i−2jz−1i zj

)

⎞

⎟

⎠

p(εk−εx+mεi−mεj)

,

(6.12)

where, for each 1 ≤ x ≤N, cεk−εx is a unit in �(q)[z
±1
1 , . . . , z±1N ]. The value p(εk −εx +mεi−mεj)

is 0 unlessm = 1 and x ≤ i < j ≤ k. If i > x, then σεx acts as the identity on ziz−1j − q2+2i−2j z−1i zj ,
so the corresponding factors in the numerator and denominator cancel. Hence, we need only
consider factors on the right hand side where m = 1, i = x, and x < j ≤ k. If x > k, then
εk − εx /∈Q−, and hence p(εk − εx) = 0, so on the left hand since we only need to consider those
factors where 1 ≤ x ≤ k. Up to multiplication by a power of q, the expression reduces to

∏

1≤x≤k
s
p(εk−εx)
x =

∏

1≤x<k

(

cεk−εx
σεx(cεk−εx)

)p(εk−εj)
∏

x<j≤k

⎛

⎜

⎝

zxz
−1
j − q2+2x−2jz−1x zj

σεx

(

zxz
−1
j − q2+2x−2jz−1x zj

)

⎞

⎟

⎠

p(εk−εj)

=
∏

1<j≤k

⎛

⎜

⎝

∏

1≤x<j

zxz
−1
j − q2+2x−2jz−1x zj

σεx

(

zxz
−1
j − q2+2x−2jz−1x zj

)

⎞

⎟

⎠

p(εk−εj)

.

(6.13)

The last two expressions are equal because they are each a product over pairs (x, j) with
1 ≤ x < j ≤ k, and the factors of cεk−εx/(σεx(cεk−εx)) have been dropped because they are
powers of q. Using the fact that s1 = 1 and making the change of variables j → x and x → j
on the right side, (6.13) becomes

∏

1<x≤k
s
p(εk−εx)
x =

∏

1<x≤k

⎛

⎜

⎝

∏

1≤j<x

zjz−1x − q2+2j−2xz−1j zx
σεj

(

zjz
−1
x − q2+2j−2xz−1j zx

)

⎞

⎟

⎠

p(εk−εx)

. (6.14)

For k ≥ 2, the lemma now follows by induction. For k = 1, the result simply says that s1 = 1,
which we already know.
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Figure 2: The partition enclosed by the thick lines is λ = (10, 10, 8, 8, 8, 6, 6, 6, 6,1, 1). If k = 6 then
A(λ, < 6) = {a1, a3}, R(λ, < 6) = {g2, g5}, and evλ(s6) = ([2]/[3])([3]/[4])([4]/[5])([7]/[8])([8]/[9]) =
([2]/[5])([7]/[9]) = ([c(g5)−c(b)][c(g2)−c(b)])/([c(a3)−c(b)][c(a1)−c(b)]). The factors in the numerator
of the first expression are displayed. These are the q-integers corresponding to the hook lengths of the boxes
in the same column as the addable box b in row 6.

Proposition 6.5. Let λ be a partition. Let A(λ, < k) (resp. R(λ, < k)) be the set of boxes which can
be added to (resp. removed from) λ on rows λj with j < k such that the result is still a partition. Let
b = (λ + εk)/λ and let c(·) be as in Figure 1. Then, up to multiplication by a power of q,

evλ(sk) =

⎧

⎪

⎨

⎪

⎩

∏

r∈R(λ,<k)[c(r) − c(b)]
∏

a∈A(λ,<k)[c(a) − c(b)]
, if λ + εk is a partition,

0, if λ + εk is not a partition.
(6.15)

Proof. For 1 ≤ j ≤ N, let gj be the last box in row j of λ. By Lemma 6.4, up to multiplication
by a power of q,

evλ(sk) = evλ

⎛

⎜

⎝

∏

1≤j<k

zjz
−1
k

− q2+2j−2kz−1j zk
σεj

(

zjz
−1
k − q2+2j−2kz−1j zk

)

⎞

⎟

⎠ =
∏

1≤j<k

[

c
(

gj
) − c(b)]

[

c
(

gj
) − c(b) + 1

] , (6.16)

where the last equality is a simple calculation from definitions. The denominator on the right
side is never zero, and the numerator is zero exactly when λk = λk−1, so that λ+εk is no longer
a partition. If λj = λj+1 for any j < k, then there is cancellation, giving (6.15). See Figure 2.

Proposition 6.6. LetNl

j
(μ/λ) be as in Section 3.3. For any partition λ,

valφ2� evλ(sk) =N
l

i

(

μ/λ
)

, if μ = λ + εk is a partition, and μ/λ is an i colored box,

evλ(sk) = 0, otherwise.
(6.17)
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Proof. By Proposition 6.5, evλ(sk) = 0 if λ + εk is not a partition. If λ + εk is a partition, then

{

b ∈ A(λ, < k) : c(b) = c
(

μ/λ
)}

=
{

b ∈ Ai(λ) | b is to the left of μ/λ
}

,

{

b ∈ R(λ, < k) : c(b) = c(μ/λ)} = {b ∈ Ri(λ) | b is to the left of μ/λ
}

,
(6.18)

where the notation is as in Section 3.3. Since

[x] =
qx − q−x
q − q−1 = q−x

(

q − q−1
)−1∏

d|2x
φd, (6.19)

[x] is divisible by φ2� if and only if x is divisible by �, and [x] is never divisible by φ2
2� . The

result now follows from Proposition 6.5.

Proof of Theorem 6.1. Fix λ and 1 ≤ k ≤ mλ. From definitions, (evλ ⊗ 1)vεkj + = vμ(j) . Thus, using
(5.12),

rj(λ) =
(

vμ(j) , vμ(j)

)

=
(

(evλ ⊗ 1)vεkj +, (evλ ⊗ 1)vεkj +
)

= evλ
(

vεkj +, vεkj +
)

= evλ
(

skj

)

. (6.20)

The result now follows from Proposition 6.6.
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