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The notion of (L,M)-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a
generalization of Klement’s fuzzy σ-algebras. In our definition of (L,M)-fuzzy σ-algebras, each
L-fuzzy subset can be regarded as an L-measurable set to some degree.

1. Introduction and Preliminaries

In 1980, Klement established an axiomatic theory of fuzzy σ-algebras in [1] in order to prepare
a measure theory for fuzzy sets. In the definition of Klement’s fuzzy σ-algebra (X, σ), σ was
defined as a crisp family of fuzzy subsets of a set X satisfying certain set of axioms. In 1991,
Biacino and Lettieri generalized Klement’s fuzzy σ-algebras to L-fuzzy setting [2].

In this paper, when both L and M are complete lattices, we define an (L,M)-fuzzy
σ-algebra on a nonempty set X by means of a mapping σ : LX → M satisfying three axioms.
Thus each L-fuzzy subset of X can be regarded as an L-measurable set to some degree.

When σ is an (L,M)-fuzzy σ-algebra onX, (X, σ) is called an (L,M)-fuzzymeasurable
space. An (L, 2)-fuzzy σ-algebra is also called an L-σ-algebra. A Klement σ-algebra can be
viewed as a stratified [0, 1]-σ-algebra. A Biacino-Lettieri L-σ-algebra can be viewed as a
stratified L-σ-algebra. A (2,M)-fuzzy σ-algebra is also called an M-fuzzifying σ-algebra. A
crisp σ-algebra can be regarded as a (2, 2)-fuzzy σ-algebra.

Throughout this paper, both L and M denote complete lattices, and L has an order-
reversing involution’. X is a nonempty set. LX is the set of all L-fuzzy sets (or L-sets for
short) on X. We often do not distinguish a crisp subset A of X and its character function χA.
The smallest element and the largest element inM are denoted by ⊥M and �M, respectively.

The binary relation ≺ in M is defined as follows: for a, b ∈M, a ≺ b if and only if for
every subsetD ⊆M, the relation b � supD always implies the existence of d ∈ D with a � d
[3]. {a ∈M : a ≺ b} is called the greatest minimal family of b in the sense of [4], denoted by
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β(b). Moreover, for b ∈ M, we define α(b) = {a ∈ M : a≺opb}. In a completely distributive
lattice M, there exist α(b) and β(b) for each b ∈M, and b =

∨
β(b) =

∧
α(b) (see [4]).

In [4], Wang thought that β(0) = {0} and α(1) = {1}. In fact, it should be that β(0) = ∅
and α(1) = ∅.

For a complete lattice L, A ∈ LX and a ∈ L, we use the following notation:

A[a] = {x ∈ X : A(x) � a}. (1.1)

If L is completely distributive, then we can define

A[a] = {x ∈ X : a�∈α(A(x))}. (1.2)

Some properties of these cut sets can be found in [5–10].

Theorem 1.1 (see [4]). LetM be a completely distributive lattice and {ai : i ∈ Ω} ⊆M. Then

(1) α(
∧

i∈Ωai) =
⋃

i∈Ω α(ai), that is, α is an
∧ −⋃ map;

(2) β(
∨

i∈Ωai) =
⋃

i∈Ω β(ai), that is, β is a union-preserving map.

For a ∈ L and D ⊆ X, we define two L-fuzzy sets a ∧D and a ∨D as follows:

(a ∧D)(x) =

⎧
⎨

⎩

a, x ∈ D;

0, x�∈D.
(a ∨D)(x) =

⎧
⎨

⎩

1, x ∈ D;

a, x�∈D.
(1.3)

Then for each L-fuzzy set A in LX , it follows that

A =
∨

a∈L

(
a ∧A[a]

)
. (1.4)

Theorem 1.2 (see [5, 7, 10]). If L is completely distributive, then for each L-fuzzy set A in LX , we
have

(1) A =
∨

a∈L(a ∧A[a]) =
∧

a∈L(a ∨A[a]);

(2) for all a ∈ L, A[a] =
⋂

b∈β(a) A[b];

(3) for all a ∈ L, A[a] =
⋂

a∈α(b) A
[b].

For a family of L-fuzzy sets {Ai : i ∈ Ω} in LX , it is easy to see that

(
∧

i∈Ω
Ai

)

[a]

=
⋂

i∈Ω
(Ai)[a]. (1.5)

If L is completely distributive, then it follows [7] that

(
∧

i∈Ω
Ai

)[a]

=
⋂

i∈Ω
(Ai)[a]. (1.6)
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Definition 1.3. Let X be a nonempty set. A subset σ of [0, 1]X is called a Klement fuzzy σ-
algebra if it satisfies the following three conditions:

(1) for any constant fuzzy set α, α ∈ σ;

(2) for any A ∈ [0, 1]X , 1 −A ∈ σ;

(3) for any {An : n ∈ N} ⊆ σ,
∨

n∈N An ∈ σ.

The fuzzy sets in σ are called fuzzy measurable sets, and the pair (X, σ) a fuzzy measurable
space.

Definition 1.4. Let L be a complete lattice with an order-reversing involution ′ and X a
nonempty set. A subset σ of LX is called an L-σ-algebra if it satisfies the following three
conditions:

(1) for any a ∈ L, constant L-fuzzy set a ∧ χX ∈ σ;

(2) for any A ∈ LX , A′ ∈ σ;

(3) for any {An : n ∈ N} ⊆ σ,
∨

n∈N An ∈ σ.

The L-fuzzy sets in σ are called L-measurable sets, and the pair (X, σ) an L-measurable space.

2. (L,M)-Fuzzy σ-Algebras

L. Biacino and A. Lettieri defined that an L-σ-algebra σ is a crisp subset of LX . Now we
consider an M-fuzzy subset σ of LX .

Definition 2.1. Let X be a nonempty set. A mapping σ : LX → M is called an (L,M)-fuzzy
σ-algebra if it satisfies the following three conditions:

(LMS1) σ(χ∅) = �M;

(LMS2) for any A ∈ LX , σ(A) = σ(A′);

(LMS3) for any {An : n ∈ N} ⊆ LX , σ(
∨

n∈N An) ≥
∧

n∈N σ(An).

An (L,M)-fuzzy σ-algebra σ is said to be stratified if and only if it satisfies the following
condition:

(LMS1)∗ ∀a ∈ L, σ(a ∧ χX) = �M.
If σ is an (L,M)-fuzzy σ-algebra, then (X, σ) is called an (L,M)-fuzzy measurable

space.
An (L, 2)-fuzzy σ-algebra is also called an L-σ-algebra, and an (L, 2)-fuzzy measurable

space is also called an L-measurable space.
A (2,M)-fuzzy σ-algebra is also called anM-fuzzifying σ-algebra, and a (2,M)-fuzzy

measurable space is also called an M-fuzzifying measurable space.
Obviously a crisp measurable space can be regarded as a (2, 2)-fuzzy measurable

space.
If σ is an (L,M)-fuzzy σ-algebra, then σ(A) can be regarded as the degree to which A

is an L-measurable set.
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Remark 2.2. If a subset σ of LX is regarded as a mapping σ : LX → 2, then σ is an L-σ-algebra
if and only if it satisfies the following conditions:

(LS1) χ∅ ∈ σ;

(LS2) A ∈ σ ⇒ A′ ∈ σ;

(LS3) for any {An : n ∈ N} ⊆ σ,
∨

n∈N An ∈ σ.

Thus we easily see that a Klement σ-algebra is exactly a stratified [0, 1]-σ-algebra, and a
Biacino-Lettieri L-σ-algebra is exactly a stratified L-σ-algebra.

Moreover, when L = 2, a mapping σ : 2X → M is an M-fuzzifying σ-algebra if and
only if it satisfies the following conditions:

(MS1) σ(∅) = �M;

(MS2) for any A ∈ 2X , σ(A) = σ(A′);

(MS3) for any {An : n ∈ N} ⊆ 2X , σ(
∨

n∈N An) ≥
∧

n∈N σ(An).

Example 2.3. Let (X, σ) be a crisp measurable space. Defineχσ : 2X → [0, 1] by

χσ(A) =

⎧
⎨

⎩

1, A ∈ σ;

0, A�∈σ.
(2.1)

Then it is easy to prove that (X,χσ) is a [0, 1]-fuzzifying measurable space.

Example 2.4. Let X be a nonempty set and σ : 2X → [0, 1] a mapping defined by

σ(A) =

⎧
⎨

⎩

1, A ∈ {∅, X};
0.5, A�∈{∅, X}.

(2.2)

Then it is easy to prove that (X, σ) is a [0, 1]-fuzzifying measurable space. If A ∈ 2X with
A�∈{∅, X}, then 0.5 is the degree to which A is measurable.

Example 2.5. Let X be a nonempty set and σ : [0, 1]X → [0, 1] a mapping defined by

σ(A) =

⎧
⎨

⎩

1, A ∈ {χ∅, χX

}
;

0.5, A�∈
{
χ∅, χX

}
.

(2.3)
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Then it is easy to prove that (X, σ) is a ([0, 1], [0, 1])-fuzzy measurable space. If A ∈ [0, 1]X

with A�∈{χ∅, χX}, then 0.5 is the degree to which A is [0, 1]-measurable.

Proposition 2.6. Let (X, σ) be an (L,M)-fuzzy measurable spaces. Then for any {An : n ∈ N} ⊆ LX ,
σ(
∧

n∈N An) ≥
∧

n∈N σ(An).

Proof. This can be proved from the following fact:

σ

(
∧

n∈N
An

)

= σ

(
∨

n∈N
(An)′

)

≥
∧

n∈N
σ
(
(An)′

)
=
∧

n∈N
σ(An). (2.4)

The next two theorems give characterizations of an (L,M)-fuzzy σ-algebra.

Theorem 2.7. A mapping σ : LX → M is an (L,M)-fuzzy σ-algebra if and only if for each a ∈
M \ {⊥M}, σ[a] is an L-σ-algebra.

Proof. The proof is obvious and is omitted.

Corollary 2.8. A mapping σ : 2X → M is an M-fuzzifying σ-algebra if and only if for each a ∈
M \ {⊥M}, σ[a] is a σ-algebra.

Theorem 2.9. If M is completely distributive, then a mapping σ : LX → M is an (L,M)-fuzzy
σ-algebra if and only if for each a ∈ α(⊥M), σ[a] is an L-σ-algebra.

Proof.

Necessity. Suppose that σ : LX → M is an (L,M)-fuzzy σ-algebra and a ∈ α(⊥M). Now we
prove that σ[a] is an L-σ-algebra.

(LS1) By σ(χ∅) = �M and α(�M) = ∅, we know that a�∈α(σ(χ∅)); this implies that χ∅ ∈ σ[a].

(LS2) If A ∈ σ[a], then a�∈α(σ(A)) = α(σ(A′)); this shows that A′ ∈ σ[a].

(LS3) If {Ai : i ∈ Ω} ⊆ σ[a], then for all i ∈ Ω, a�∈α(σ(Ai)). Hence a�∈
⋃

i∈Ω α(σ(Ai)). By
σ(
∨

i∈Ω Ai) ≥
∧

i∈Ωσ(Ai), we know that

α

(

σ

(
∨

i∈Ω
Ai

))

⊆ α

(
∧

i∈Ω
σ(Ai)

)

=
⋃

i∈Ω
α(σ(Ai)). (2.5)

This shows that a�∈α(σ(
∨

i∈Ω Ai)). Therefore,
∨

i∈Ω Ai ∈ σ[a]. The proof is
completed.

Corollary 2.10. If M is completely distributive, then a mapping σ : 2X → M is an M-fuzzifying
σ-algebra if and only if for each a ∈ α(⊥M), σ[a] is a σ-algebra.
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Now we consider the conditions that a family of L-σ-algebras forms an (L,M)-fuzzy
σ-algebra. By Theorem 1.2, we can obtain the following result.

Corollary 2.11. IfM is completely distributive, and σ is an (L,M)-fuzzy σ-algebra, then

(1) σ[b] ⊆ σ[a] for any a, b ∈M \ {⊥M} with a ∈ β(b);

(2) σ[b] ⊆ σ[a] for any a, b ∈ α(⊥M) with b ∈ α(a).

Theorem 2.12. Let M be completely distributive, and let {σa : a ∈ α(⊥M)} be a family of L-σ-
algebras. If σa =

⋂{σb : a ∈ α(b)} for all a ∈ α(⊥M), then there exists an (L,M)-fuzzy σ-algebra σ
such that σ[a] = σa.

Proof. Suppose that σa =
⋂{σb : a ∈ α(b)} for all a ∈ α(⊥M). Define σ : LX → M by

σ(A) =
∧

a∈M
(a ∨ σa(A)) =

∧
{a ∈M : A�∈σa}. (2.6)

By Theorem 1.2, we can obtain that σ[a] = σa.

Corollary 2.13. Let M be completely distributive, and let {σa : a ∈ α(⊥M)} be a family of σ-
algebras. If σa =

⋂{σb : a ∈ α(b)} for all a ∈ α(⊥M), then there exists an M-fuzzifying σ-algebra σ
such that σ[a] = σa.

Theorem 2.14. Let M be completely distributive, and let {σa : a ∈M \ {⊥M}} be a family of L-σ-
algebra. If σa =

⋂{σb : b ∈ β(a)} for all a ∈M \ {⊥M}, then there exists an (L,M)-fuzzy σ-algebra
σ such that σ[a] = σa.

Proof. Suppose that σa =
⋂{σb : b ∈ β(a)} for all a ∈M \ {⊥M}. Define σ : LX → M by

σ(A) =
∨

a∈M
(a ∧ σa(A)) =

∨
{a ∈M : A ∈ σa}. (2.7)

By Theorem 1.2, we can obtain σ[a] = σa.

Corollary 2.15. Let M be completely distributive, and let {σa : a ∈ M \ {⊥M}} be a family of σ-
algebra. If σa =

⋂{σb : b ∈ β(a)} for all a ∈M \ {⊥M}, then there exists anM-fuzzifying σ-algebra
σ such that σ[a] = σa.

Theorem 2.16. Let {σi : i ∈ Ω} be a family of (L,M)-fuzzy σ-algebra on X. Then ∧
i∈Ω

σi is an

(L,M)-fuzzy σ-algebra on X, where
∧

i∈Ω σi : LX → M is defined by (
∧

i∈Ω σi)(A) =
∧

i∈Ω σi(A).

Proof. This is straightforward.
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3. (L,M)-Fuzzy Measurable Functions

In this section, we will generalize the notion of measurable functions to fuzzy setting.

Theorem 3.1. Let (Y, τ) be an (L,M)-fuzzy measurable space and f : X → Y a mapping. Define a
mapping f←L (τ) : LX → M by for all A ∈ LX ,

f←L (τ)(A) =
∨{

τ(B) : f←L (B) = A
}
, where ∀x ∈ X, f←L (B)(x) = B

(
f(x)

)
. (3.1)

Then (X, f←L (τ)) is an (L,M)-fuzzy measurable space.

Proof. (LMS1) holds from the following equality:

f←L (τ)
(
χ∅
)
=
∨{

τ(B) : f←L (B) = χ∅
}
= τ
(
χ∅
)
= �M. (3.2)

(LMS2) can be shown from the following fact: for all A ∈ LX ,

f←L (τ)(A) =
∨{

τ(B) : f←L (B) = A
}

=
∨{

τ
(
B′
)
: f←L

(
B′
)
= f←L (B)′ = A′

}

= f←L (τ)
(
A′
)
.

(3.3)

(LMS3) for any {An : n ∈ N} ⊆ LX , by

f←L (τ)

(
∨

n∈N
An

)

=
∨
{

τ(B) : f←L (B) =
∨

n∈N
An

}

≥
∨
{

τ

(
∨

n∈N
Bn

)

: f←L (Bn) = An

}

≥
∧

n∈N
f←L (τ)(An)

(3.4)

we can prove (LMS3).

Definition 3.2. Let (X, σ) and (Y, τ) be (L,M)-fuzzy measurable spaces. A mapping f : X →
Y is called (L,M)-fuzzy measurable if σ(f←L (B)) ≥ τ(B) for all B ∈ LY .

An (L, 2)-fuzzy measurable mapping is called an L-measurable mapping, and a
(2,M)-fuzzy measurable mapping is called anM-fuzzifying measurable mapping.

Obviously a Klement fuzzy measurable mapping can be viewed as an [0, 1]-
measurable mapping.

The following theorem gives a characterization of (L,M)-fuzzymeasurable mappings.
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Theorem 3.3. Let (X, σ) and (Y, τ) be two (L,M)-fuzzy measurable spaces. A mapping f : X → Y
is (L,M)-fuzzy measurable if and only if f←L (τ)(A) ≤ σ(A) for all A ∈ LX .

Proof.

Necessity. If f : X → Y is (L,M)-fuzzy measurable, then σ(f←L (B)) ≥ τ(B) for all B ∈ LY .
Hence for all B ∈ LY , we have

f←L (τ)(A) =
∨{

τ(B) : f←L (B) = A
}

≤
∨{

σ
(
f←L (B)

)
: f←L (B) = A

}

= σ(A).

(3.5)

Sufficiency. If f←L (τ)(A) ≤ σ(A) for all A ∈ LX , then τ(B) ≤ f←L (τ)(f←L (B)) ≤ σ(f←L (B)) for all
B ∈ LY ; this shows that f : X → Y is (L,M)-fuzzy measurable.

The next three theorems are trivial.

Theorem 3.4. If f : (X, σ) → (Y, τ) and f : (Y, τ) → (Z, ρ) are (L,M)-fuzzy measurable, then
g ◦ f : (X, σ) → (Z, ρ) is (L,M)-fuzzy measurable.

Theorem 3.5. Let (X, σ) and (Y, τ) be (L,M)-fuzzy measurable spaces. Then a mapping f :
(X, σ) → (Y, τ) is (L,M)-fuzzy measurable if and only if f : (X, σ[a]) → (Y, τ[a]) is L-measurable
for any a ∈M \ {⊥M}.

Theorem 3.6. Let M be completely distributive, and let (X, σ) and (Y, τ) be (L,M)-fuzzy
measurable spaces. Then a mapping f : (X, σ) → (Y, τ) is (L,M)-fuzzy measurable if and only
if f : (X, σ[a]) → (Y, τ [a]) is L-measurable for any a ∈ α(⊥M).

Corollary 3.7. Let (X, σ) and (Y, τ) be M-fuzzifying measurable spaces. Then a mapping f :
(X, σ) → (Y, τ) is M-fuzzifying measurable if and only if f : (X, σ[a]) → (Y, τ[a]) is measurable
for any a ∈M \ {⊥M}.

Corollary 3.8. Let M be completely distributive, and let (X, σ) and (Y, τ) be M-fuzzifying
measurable spaces. Then a mapping f : (X, σ) → (Y, τ) is M-fuzzifying measurable if and only
if f : (X, σ[a]) → (Y, τ [a]) is measurable for any a ∈ α(⊥M).

4. (I, I)-Fuzzy σ-Algebras Generated by I-Fuzzifying σ-Algebras

In this section, B will be used to denote the σ-algebra of Borel subsets of I = [0, 1].

Theorem 4.1. Let (X, σ) be an I-fuzzifying measurable space. Define a mapping ζ(σ) : IX → I by

ζ(σ)(A) =
∧

B∈B
σ
(
A−1(B)

)
. (4.1)
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Then ζ(σ) is a stratified (I, I)-fuzzy σ-algebra, which is said to be the (I, I)-fuzzy σ-algebra generated
by σ.

Proof. (LMS1) For any B ∈ B and for any a ∈ I, if a ∈ B, then (a ∧ χX)
−1(B) = X; if a�∈B, then

(a ∧ χX)
−1(B) = ∅. However, we have that σ((a ∧ χX)

−1(B)) = 1. This shows that ζ(σ)(a∧χX) =
1.

(LMS2) for all A ∈ IX and for all B ∈ B, we have

ζ(σ)
(
A′
)
=
∧

B∈B
σ
(
(1 −A)−1(B)

)

=
∧

B∈B
σ({x ∈ X : 1 −A(x) ∈ B})

=
∧

B∈B
σ({x ∈ X : ∃b ∈ B, s.t. A(x) = 1 − b})

=
∧

B∈B
σ
(
A−1(B)

)

= ζ(σ)(A).

(4.2)

(LMS3) for any {An : n ∈ N} ⊆ LX and for all B ∈ B, by

ζ(σ)

(
∨

n∈N
An

)

=
∧

B∈B
σ

⎛

⎝

(
∨

n∈N
An

)−1
(B)

⎞

⎠

=
∧

B∈B
σ

(
⋃

n∈N
A−1n (B)

)

≥
∧

B∈B

∧

n∈N
σ
(
A−1n (B)

)

=
∧

n∈N

∧

B∈B
σ
(
A−1n (B)

)
=
∧

n∈N
ζ(σ)(An),

(4.3)

we obtain ζ(σ)(
∨

n∈NAn) ≥
∧

n∈Nζ(σ)(An).

Corollary 4.2. Let (X, σ) be a measurable space. Define a subset ζ(σ) ⊆ IX(can be viewed as a
mapping ζ(σ) : IX → 2) by

ζ(σ) =
{
A ∈ IX : ∀B ∈ B, A−1(B) ∈ σ

}
. (4.4)

Then ζ(σ) is a stratified I-σ-algebra.

From Corollary 4.2, we see that the functor ζ in Theorem 4.1 is a generalization of
Klement functor ζ.
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Theorem 4.3. Let (X, σ) and (Y, τ) be two I-fuzzifying measurable spaces, and f : X → Y is a
map. Then f : (X, σ) → (Y, τ) is I-fuzzifying measurable if and only if f : (X, ζ(σ)) → (Y, ζ(τ)) is
(I, I)-fuzzy measurable.

Proof.

Necessity. Suppose that f : (X, σ) → (Y, τ) is I-fuzzifying measurable. Then σ(f−1(A)) ≥
τ(A) for any A ∈ 2X . In order to prove that f : (X, ζ(σ)) → (Y, ζ(τ)) is (I, I)-fuzzy
measurable, we need to prove that ζ(σ)(f←L (A)) ≥ ζ(τ)(A) for any A ∈ IX .

In fact, for any A ∈ IX , by

ζ(σ)
(
f←L (A)

)
=
∧

B∈B
σ
((

f←L (A)
)−1(B)

)
=
∧

B∈B
σ
((

A ◦ f)−1(B)
)

=
∧

B∈B
σ
(
B ◦A ◦ f) =

∧

B∈B
σ
(
f−1
(
A−1(B)

))

≥
∧

B∈B
τ
(
A−1(B)

)
= ζ(τ)(A),

(4.5)

we can prove the necessity.

Sufficiency. Suppose that f : (X, ζ(σ)) → (Y, ζ(τ)) is (I, I)-fuzzy measurable. Then
ζ(σ)(f←I (A)) ≥ ζ(τ)(A) for any A ∈ IX . In particular, it follows that ζ(σ)(f←I (A)) ≥ ζ(τ)(A)
for anyA ∈ 2X . In order to prove that f : (X, σ) → (Y, τ) is I-fuzzifying measurable, we need
to prove that σ(f−1(A)) ≥ τ(A) for any A ∈ 2X . In fact, for any A ∈ 2X and for any B ∈ B,
if 0, 1 ∈ B, then A−1(B) = X; if 0, 1�∈B, then A−1(B) = ∅; if only one of 0 and 1 is in B, then
A−1(B) = A or A−1(B) = A′. However, we have

σ
(
f←I (A)

)
= σ
(
f←I (A)

)

= σ
(
f←I (A)

) ∧ σ(f←I (A)′
)

=
∧

B∈B
σ
((

f←L (A)
)−1(B)

)

= ζ(σ)
(
f←L (A)

)

≥ ζ(τ)(A)

= ζ(τ)(A) ∧ ζ(τ)(A′)

=
∧

B∈B
τ
(
A−1(B)

)
= τ(A).

(4.6)

This shows that f : (X, σ) → (Y, τ) is I-fuzzifying measurable.

Corollary 4.4. Let (X, σ) and (Y, τ) be two measurable spaces, and f : X → Y is a mapping. Then
f : (X, σ) → (Y, τ) is measurable if and only if f : (X, ζ(σ)) → (Y, ζ(τ)) is I-measurable.
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Systems Research Series, Birkhäuser, Basel, Switzerland; Stuttgart and Halsted Press, New York, NY,
USA, 1975.

[7] F.-G. Shi, “The theory and applications of Lβ-nested sets and Lα-nested sets and its applications,”
Fuzzy Systems and Mathematics, vol. 9, no. 4, pp. 65–72, 1995 (Chinese).

[8] F.-G. Shi, “L-fuzzy sets and prime element nested sets,” Journal of Mathematical Research and Exposition,
vol. 16, no. 3, pp. 398–402, 1996.

[9] F.-G. Shi, “Theory of molecular nested sets and its applications,” Yantai Normal University Journal, vol.
1, pp. 33–36, 1996 (Chinese).

[10] F.-G. Shi, “L-fuzzy relations and L-fuzzy subgroups,” Journal of Fuzzy Mathematics, vol. 8, no. 2, pp.
491–499, 2000.


