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There are different notions of hyperrings (R,+, ·). In this paper, we extend the isomorphism
theorems to hyperrings, where the additions and the multiplications are hyperoperations.

1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [1] at the 8th Congress of
Scandinavian Mathematicians. This theory has been subsequently developed by Corsini
[2–4], Mittas [5, 6], Stratigopoulos [7], and by various authors. Basic definitions and
propositions about the hyperstructures are found in [3, 4, 8]. Krasner [9] has studied the
notion of hyperfields, hyperrings, and then some researchers, namely, Ameri [10], Dašić
[11], Davvaz [12], Gontineac [13], Massouros [14], Pianskool et al. [15], Sen and Dasgupta
[16], Vougiouklis [8, 17], and others followed him.

Hyperrings are essentially rings with approximately modified axioms. There are
different notions of hyperrings (R,+, ·). If the addition + is a hyperoperation and the
multiplication · is a binary operation, then the hyperring is called Krasner (additive)
hyperring [9]. Rota [18] introduced a multiplicative hyperring, where + is a binary operation
and the multiplication · is a hyperoperation. De Salvo [19] studied hyperrings in which the
additions and the multiplications were hyperoperations. These hyperrings were also studied
by Barghi [20] and by Asokkumar and Velrajan [21–23]. In 2007, Davvaz and Leoreanu-Fotea
[24] published a book titled Hyperring Theory and Applications. Davvaz [12] extended that
the isomorphism theorems to Krasner hyperrings, provided the hyperideals considered in
the isomorphism theorems are normal.

In this paper, we extend the isomorphism theorems to hyperrings, in which both the
additions and the multiplications are hyperoperations. Also, it is observed that if I is an
hyperideal of a hyperring R and (I,+) is a normal subcanonical hypergroup of (R,+), then
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R/I is a ring, and hence the quotient hyperrings considered in the isomorphism theorems by
Davvaz in [12] are rings.

2. Basic Definitions and Notations

This section provides some basic definitions that have been used in the sequel. A
hyperoperation ◦ on a nonempty set H is a mapping of H × H into the family of nonempty
subsets of H (i.e., x ◦ y ⊆ H, for every x, y ∈ H). The definitions are found in references
[3, 4, 8, 24]. A hypergroupoid is a nonempty set H equipped with a hyperoperation ◦. For any
two nonempty subsets A and B of a hypergroupoidH and for x ∈ H, A ◦ B, we mean the set
⋃

a∈A
b∈B

(a ◦ b), A ◦ x = A ◦ {x}, and x ◦ B = {x} ◦ B.
A hypergroupoid (H, ◦) is called a semihypergroup if x ◦ (y ◦ z) = (x ◦ y) ◦ z for every

x, y, z ∈ H (the associative axiom). A hypergroupoid (H, ◦) is called a quasihypergroup if
x◦H = H◦x = H for every x ∈ H (the reproductive axiom). A reproductive semihypergroup
is called a hypergroup (in the sense of Marty). A comprehensive review of the theory of
hypergroups appears in [3].

Definition 2.1. A nonempty set H with a hyperoperation + is said to be a canonical hypergroup
if the following conditions hold:

(i) for every x, y ∈ H, x + y = y + x,

(ii) for every x, y, z ∈ H, x + (y + z) = (x + y) + z,

(iii) there exists 0 ∈ H (called neutral element ofH) such that 0 + x = {x} = x + 0 for all
x ∈ H,

(iv) for every x ∈ H, there exists a unique element denoted by −x ∈ H such that 0 ∈
x + (−x) ∩ (−x) + x,

(v) for every x, y, z ∈ H, z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

Example 2.2. Consider the setH = {0, x, y}. Define a hyperaddition + onH as in the following
table. Then, (H,+) is a canonical hypergroup.

+ 0 x y

0 0 x y
x x {0, x} y
y y y

{
0, x, y

}

(2.1)

The following elementary facts in a canonical hypergroup H easily follow from the
axioms.

(i) −(−a) = a for every a ∈ H,

(ii) 0 is the unique element such that for every a ∈ H, there is an element −a ∈ H with
the property 0 ∈ a + (−a),

(iii) −0 = 0,

(iv) −(a + b) = −a − b for all a, b ∈ H.
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For any subset A of a canonical hypergroup H, −A denotes the set {−a : a ∈ A}. A
nonempty subset N of a canonical hypergroup of H is called a subcanonical hypergroup of H
ifN is a canonical hypergroup under the same hyperoperation as that ofH. Equivalently, for
every x, y ∈ N, x − y ⊆ N. In particular, for any x ∈ N, x − x ⊆ N. Since 0 ∈ x − x, it follows
that 0 ∈ N.

Definition 2.3. An equivalence relation ρ defined on a canonical hypergroup (H,+) is called
strongly regular if for all x, y ∈ H and xρy implies that for every p ∈ H, for every a ∈ x + p
and for every b ∈ y + p one has aρb.

Definition 2.4. A subcanonical hypergroup A of a canonical hypergroup H is said to be
normal if x +A − x ⊆ A for all x ∈ A.

Definition 2.5. The heart of a canonical hypergroup H is the union of the sums (x1 − x1) +
(x2 −x2) + (x3 −x3) + · · ·+ (xn −xn), where xi ∈ H and n is a natural number and it is denoted
by ωH .

Definition 2.6. Let H1 and H2 be two canonical hypergroups. A mapping φ from H1 into H2

is called a homomorphism from H1 into H2 if (i) φ(a + b) ⊆ φ(a) + φ(b) for all a, b ∈ H1 and
(ii) φ(0) = 0 hold. The mapping φ is called a good or strong homomorphism if (i) φ(a + b) =
φ(a) + φ(b) for all a, b ∈ H1 and (ii) φ(0) = 0 hold.

A homomorphism (resp., strong homomorphism) φ from a canonical hypergroup
H1 to a canonical hypergroup H2 is called an isomorphism (resp., strong isomorphism) if
φ is one to one and onto. If H1 is strongly isomorphic to H2, then we denote it by
H1

∼= H2.

Definition 2.7. Let φ be a homomorphism from canonical hypergroup H1 into a canonical
hypergroup H2. Then, the set {x ∈ H1 : φ(x) = 0} is called kernel of φ and is
denoted by Kerφ, and the set {φ(x) : x ∈ H1} is called Image of φ and is denoted by
Imφ.

It is clear that Kerφ is a subcanonical hypergroup of H1 and Imφ is a subcanonical
hypergroup ofH2. The definition of a hyperring given below is equivalent to one formulated
by De Salvo [19] (see Corsini [3]) and studied by Barghi [20].

Definition 2.8. A hyperring is a triple (R,+, ·), where R is a nonempty set with a hyperaddition
+ and a hypermultiplication · satisfying the following axioms:

(1) (R,+) is a canonical hypergroup,

(2) (R, ·) is a semihypergroup such that x ·0 = 0 ·x = 0 for all x ∈ R, (i.e, 0 is a bilaterally
absorbing element),

(3) The hypermultiplication · is distributive with respect to the hyperoperation +. That
is, for every x, y, z ∈ R, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z.

In a hyperring if the hypermultiplication is a binary operation, then it is called as
Krasner or additive hyperring. Also, in the Definition 2.8, if the hyperaddition is a binary
operation, then it is called asmultiplicative hyperring.
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Example 2.9. Let R = {0, 1} be a set with two hyperoperations defined as follows:

+ 0 1

0 {0} {1}
1 {1} {0, 1}

· 0 1

0 {0} {0}
1 {0} {0, 1}

(2.2)

Then, (R,+, ·) is a hyperring.

Definition 2.10. Let R be a hyperring, and let I be a nonempty subset of R. I is called a left
(resp., right) hyperideal of R if (I,+) is a canonical subhypergroup of R and for every a ∈ I
and r ∈ R, ra ⊆ I (resp., ar ⊆ I). A hyperideal of R is one which is a left as well as a right
hyperideal of R.

If I, J are left (resp., right) hyperideals of a hyperring R, then I + J , I ∩ J are left (resp.,
right) hyperideal of R. If I, J are hyperideals of a hyperring R, then I +J , I ∩J are hyperideals
of R.

Definition 2.11. Let R1 and R2 be two hyperrings. A mapping φ from R1 into R2 is called a
homomorphism if (i) φ(a + b) ⊆ φ(a) + φ(b); (ii) φ(ab) ⊆ φ(a)φ(b) and (iii) φ(0) = 0 hold for
all a, b ∈ R1. The mapping φ is called a good homomorphism or a strong homomorphism if (i)
φ(a + b) = φ(a) + φ(b); (ii) φ(ab) = φ(a)φ(b) and (iii) φ(0) = 0 hold for all a, b ∈ R1.

Definition 2.12. A homomorphism (resp., strong homomorphism) φ from hyperring R1 into a
hyperring R2 is said to be an isomorphism (resp., strong isomorphism) if φ is one to one and onto.
If R1 is strongly isomorphic to R2, then it is denoted by R1

∼= R2.

Remark 2.13. Let φ be a homomorphism from a hyperring R1 into a hyperring R2. Then Kerφ
is a hyperideal of R1 and Imφ is a hyperideal of R2.

3. Canonical Hypergroups

Let N be a subcanonical hypergroup of a canonical hypergroup H. In this section, we
construct quotient canonical hypergroup H/N and prove that when N is normal, H/N is
an abelian group.

Proposition 3.1. Let H be a canonical hypergroup, and let N be a subcanonical hypergroup of H.
For any two elements a, b ∈ H, if we define a relation a ∼ b if a ∈ b + N, then ∼ is an equivalence
relation on H.

Proof. Let a ∈ H. Since a = a + 0 ∈ a +N, the relation ∼ is reflexive. Let a, b ∈ H. If a ∈ b +N,
then a ∈ b + n for some n ∈ N. That is, b ∈ a − n ⊆ a + N. So, ∼ is a symmetric relation.
Suppose that a, b, c ∈ H such that a ∼ b and b ∼ c, then a ∈ b +N and b ∈ c +N. Therefore,
a ∈ b + n, and b ∈ c +m, for some n,m ∈ N. So, a ∈ c +m + n ⊆ c +N. Hence a ∼ c. Therefore,
the relation ∼ is transitive.

Remark 3.2. Let N be a subcanonical hypergroup of a canonical hypergroup H. We denote
the equivalence class determined by the element x ∈ H by the equivalence relation ∼ by x. It
is clear that x = x +N.
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Proposition 3.3. Let H be a canonical hypergroup, and let N be a normal subcanonical hypergroup
of H. Then, for x, y ∈ N, the following are equivalent:

(1) y ∈ x +N,

(2) x − y ⊆ N,

(3) (x − y) ∩N/= ∅.

Proof. (1) implies (2).
Since y ∈ x+N, we have y−x ⊆ x+N−x. SinceN is normal subcanonical hypergroup

ofH, we get x +N − x ⊆ N. Thus, y − x ⊆ N. That is, −(y − x) ⊆ N, and hence x − y ⊆ N.
(2) implies (3) is obvious.
(3) implies (1).

Since (x − y) ∩N/= ∅, there exists a ∈ x − y and a ∈ N. Therefore, −y + x ⊆ −y + a + y ⊆ N. If
z ∈ −y + x, then z ∈ N. Therefore, −y ∈ z − x. That is, y ∈ x − z ⊆ x +N.

Remark 3.4. LetH be a canonical hypergroup, and letN be a subcanonical hypergroup ofH.
WhenN is normal, the equivalence relation defined in the Proposition 3.1 coincides with the
the equivalence relation defined by Davvaz [12]. Further, the Propositions 3.1 and 3.3 are true
when the hyperaddition on the canonical hypergroup H is not commutative. Also, for any
x ∈ H, we have (−x) = −(x).

Theorem 3.5. Let H be a canonical hypergroup, N be a subcanonical hypergroup of H. Then for
x, y ∈ H, the sets A = {z : z ∈ x + y}, B = {z : z ∈ x + y} and C = {z : z ⊆ x + y} are equal.

Proof. Let z ∈ A. Then z ∈ x + y. Since x ∈ x and y ∈ y we have z ∈ x + y. Thus A ⊆ B.
Suppose z ∈ B, then z ∈ x + y. That is, z ∈ t + n for some t ∈ x + y and n ∈ N. Therefore z = t,
where t ∈ x + y. Since t ∈ A, we get z ∈ A. Thus B ⊆ A. Hence A = B.

If z ∈ A, then z ∈ x+y. Therefore, z ⊆ x+y +N = x+N +y +N = x+y. HenceA ⊆ C.
On the other hand if z ∈ C, then z ⊆ x + y. Since z ∈ z ⊆ x + y, we get z ∈ s + n for some
s ∈ x + y and n ∈ N. Thus z = s. Since s ∈ A, we get C ⊆ A. Hence A = C.

Remark 3.6. Let H be a canonical hypergroup, and let N be a subcanonical hypergroup of
H. Then, we denote the collection of all equivalence classes {x : x ∈ H} induced by the
equivalence relation ∼ byH/N.

Theorem 3.7. LetH be a canonical hypergroup, and letN be a subcanonical hypergroup ofH. If we
define x ⊕ y = {z : z ∈ x + y} for all x, y ∈ H/N, thenH/N is a canonical hypergroup.

Proof. If x1, y1, x2, y2 ∈ H such that x1 = x2 and y1 = y2, then x2 ∈ x1 +N and y2 ∈ y1 +N. Let
z2 ∈ x2 + y2 ⊆ (x1 +N) + (y1 +N). Since H is commutative, z2 ∈ z1 + i for some z1 ∈ x1 + y1

and for some i ∈ N. That is, z2 +N = z1 +N. Hence, x2 ⊕ y2 ⊆ x1 ⊕ y1. Also, since x1 ∈ x2 +N
and y1 ∈ y2 +N, by a similar argument, we get, x1 ⊕ y1 ⊆ x2 ⊕ y2. Hence, x1 ⊕ y1 = x2 ⊕ y2.
Thus, hyperaddition ⊕ is well defined.

Let x, y, z ∈ H/N. If u ∈ (x⊕y)⊕ z, then u ∈ p⊕ z for some p ∈ x⊕y. That is, u = a for
some a ∈ p + z. Also, p = b for some b ∈ x + y. Now, a ∈ p + z ⊆ b +N + z = b + z +N. That is,
a ∈ v+N for some v ∈ b+z ⊆ (x+y)+z = x+(y+z). So, v ∈ x+t for some t ∈ y+z. This means
that a = v and v ∈ x ⊕ t. Since t ∈ y ⊕ z, we have u = a = v ∈ x ⊕ t ⊆ x ⊕ (y ⊕ z). This means
that u ∈ x ⊕ (y ⊕ z). Hence (x ⊕ y) ⊕ z ⊆ x ⊕ (y ⊕ z). Similarly, we get x ⊕ (y ⊕ z) ⊆ (x ⊕ y) ⊕ z.
Hence, x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z. Thus, the hyperaddition is associative.
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Consider the element 0 = 0 +N ∈ H/N. Now, for any x ∈ H, we have x ⊕ 0 = {z : z ∈
x + 0} = x. Similarly, 0 ⊕ x = x. Thus, 0 is the zero element of H/N.

Let x ∈ H, then x⊕(−x) = {z : z ∈ x+(−x) = x−x}. Since 0 ∈ x−x, we get 0 ∈ x⊕(−x).
Similarly, we can show that 0 ∈ (−x) ⊕ x. Let x ∈ H/N, and suppose that y ∈ H/N is such
that 0 ∈ y ⊕ x, then 0 = a, where a ∈ y + x. That is, y ∈ a− x ⊆ N − x, and hence y = −x. Thus,
the element x ∈ H/N has a unique inverse −x ∈ H/N.

Suppose that z ∈ x⊕y, then z = a, where a ∈ x+y. This implies x ∈ a−y ⊆ z+N−y. That
is, x ∈ r+N, where r ∈ z−y. Thus, x = r ∈ z⊕(−y). Similarly, we can show y ∈ (−x)⊕z. Since
H is commutative, it is obvious that H/N is also commutative. Thus, H/N is a canonical
hypergroup.

Corollary 3.8. Let φ be a strong homomorphism from canonical hypergroup H1 into a canonical
hypergroup H2, thenH1/Kerφ is a canonical hypergroup.

Remark 3.9. Let H be a canonical hypergroup, and let A be a subcanonical hypergroup of H.
We denote the subset {x ∈ H : x − x ⊆ A} of H by SA.

Proposition 3.10. Let H be a canonical hypergroup, and let A be a subcanonical hypergroup of H.
Then, SA is a subcanonical hypergroup of H containing A.

Proof. Let x ∈ A. Since A is a subcanonical hypergroup of H, x − x ⊆ A. This implies x ∈ SA.
Therefore, A ⊆ SA. Since A/= ∅, the set SA is nonempty.

Let x, y ∈ SA. For r ∈ x−y, we get r−r ⊆ (x−y)−(x−y) = (x−x)+(y−y) ⊆ A+A = A.
Hence, r ∈ SA. That is, x−y ⊆ SA. Therefore, SA is a subcanonical hypergroup ofH containing
A.

Definition 3.11. Let (H,+) be a canonical hypergroup, and letA be a subcanonical hypergroup
of H. A is called a subgroup of H if (A,+) is a group. That is, x + y is a singleton set for all
x, y ∈ A.

Example 3.12. The set H = {0, a, b, c} with the following hyperoperation + is a canonical
hypergroup

+ 0 a b c

0 {0} {a} {b} {c}
a {a} {0, b} {a, c} {b}
b {b} {a, c} {0, b} {a}
c {c} {b} {a} {0}

(3.1)

In this example {0, c}, {0} are subgroups of H and ωH = {0, b} whereas in the
Example 2.2, {0} is the subgroup of H and ωH = H.

Proposition 3.13. Let H be a canonical hypergroup. Then, S{0} is the subgroup of H containing all
subgroups of H.

Proof. By the Proposition 3.10, S{0} is the subcanonical hypergroup of H. Let x, y ∈ S{0}.
Consider the set x+y. If u, v ∈ x+y, then u−v ⊆ (x+y)− (x+y) = (x−x)+(y−y) = 0+0 = 0.
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Hence, u = v. This means that the set x + y has only one element. Thus, S{0} is a subgroup
of H. Suppose, A is any subgroup of H, then for any x ∈ A that we have x − x = 0. That is,
x ∈ S{0}. Hence, A ⊆ S{0}. Thus, S{0} contains all subgroups of H.

Corollary 3.14. Let H be a canonical hypergroup. Then, H is an abelian group if and only if S{0} =
H.

Proposition 3.15. Let H be a canonical hypergroup, and let A be a subcanonical hypergroup of H.
Then, A is normal if and only if SA = H.

Proof. Let A be normal. Then, for x ∈ H, x + 0 − x ⊆ A. That is, x ∈ SA. Hence, SA = H.
Conversely, if SA = H, then for x ∈ H, we get x +A − x = x − x +A ⊆ A +A = A. Thus, A is
normal.

Proposition 3.16. The heart ωH of a canonical hypergroup H is a normal subcanonical hypergroup
of H.

Proof. If x, y ∈ ωH , then x ∈ (x1 − x1) + (x2 − x2) + (x3 − x3) + · · · + (xn − xn) and
y ∈ (y1 − y1) + (y2 − y2) + (y3 − y3) + · · · + (ym − ym), where xi, yj ∈ H and m,n are natural
numbers. Thus x − y ∈ (x1 − x1) + (x2 − x2) + (x3 − x3) + · · · + (xn − xn) + (y1 − y1) + (y2 − y2) +
(y3 − y3) + · · · + (ym − ym) ⊆ ωH . Now, for any element h ∈ ωH , there exists natural number
n and elements xi ∈ H such that h ∈ (x1 − x1) + (x2 − x2) + (x3 − x3) + · · · + (xn − xn).
Then, for any x ∈ H, x + h − x = x − x + h ⊆ x − x + (x1 − x1) + (x2 − x2) + (x3 −
x3) + · · · + (xn − xn) ⊆ ωH . Hence, heart ωH is a normal subcanonical hypergroup of
H.

Proposition 3.17. A subcanonical hypergroup A of a canonical hypergroup H is normal if and only
if A contains the heart ωH of the canonical hypergroup H.

Proof. Let A be a normal subcanonical hypergroup of the canonical hypergroup H. Then x +
i − x ⊆ A for every x ∈ H, and i ∈ A. In particular, when i = 0 ∈ A, we get x − x ⊆ A for every
x ∈ H. Since A is a subcanonical hypergroup of H, the union of the sums (x1 − x1) + (x2 −
x2) + (x3 − x3) + · · · + (xn − xn) ⊆ A for xi ∈ H and n is a natural number. That is, ωH ⊆ A.
Conversely, assume that subcanonical hypergroup A contains the heart ωH of the canonical
hypergroup H. For x ∈ H and i ∈ A, x + i − x = x − x + i ⊆ ωH +A ⊆ A +A = A. Hence, A is
a normal subcanonical hypergroup.

From Propositions 3.16 and 3.17, we have the following proposition.

Proposition 3.18. In a canonical hypergroupH,ωH is the smallest normal subcanonical hypergroup.

Proposition 3.19. Let A,B be subcanonical hypergroups of a canonical hypergroup H such that
A ⊆ B, then SA ⊆ SB.

Proof. Let x ∈ SA. Then, x − x ⊆ A. That is, x ∈ SB. Hence, SA ⊆ SB.

Proposition 3.20. Let A,B be subcanonical hypergroups of a canonical hypergroup H such that
A ⊆ B. If A is normal, then B is also normal.

Proof. If A is normal, then by Proposition 3.15, SA = H. Since A ⊆ B, by Proposition 3.19,
SA ⊆ SB. Hence, H = SB. By Proposition 3.15, B is normal.



8 International Journal of Mathematics and Mathematical Sciences

Corollary 3.21. Let A,B be subcanonical hypergroups of a canonical hypergroup H such that A is
normal, then the subcanonical hypergroup A + B is also normal.

Corollary 3.22. Let H be a canonical hypergroup such that (0) is normal, then all the subcanonical
hypergroups are normal.

Theorem 3.23. Let H be a canonical hypergroup. Then, the following are equivalent:

(i) H is an abelian group,

(ii) (0) is a normal subcanonical hypergroup of H,

(iii) ωH = (0).

Proof. By Corollary 3.14, a canonical hypergroup H is an abelian group if and only if S{0} =
H. By Proposition 3.15, S{0} = H if and only if (0) is a normal subcanonical hypergroup
of H. Hence, a canonical hypergroup H is an abelian group if and only if (0) is a normal
subcanonical hypergroup of H.

By Proposition 3.18, ωH is the smallest normal subcanonical hypergroup of H.
Therefore, (0) is normal if and only if ωH = (0).

Corollary 3.24. H is an abelian group if and only if all subcanonical hypergroups ofH are normal.

Theorem 3.25. LetH be a canonical hypergroup, and letN be a normal subcanonical hypergroup of
H. Then, H/N is an abelian group.

Proof. For the quotient canonical hypergroup H/N, the zero element is N. Since (x + N) +
N + (−x + N) = (x + N − x) + N ⊆ N + N = N for all x ∈ H, we have {N} is a normal
subcanonical hypergroup inH/N. By Theorem 3.23,H/N is an abelian group.

Remark 3.26. If N is a normal subcanonical hypergroup of a canonical hypergroup H, then
the relation ∼ defined in Proposition 3.1, is a strongly regular equivalence relation. Hence, by
Theorem 31 in [3], H/N is an abelian group. However, we have proved Theorem 3.25 in a
different way.

4. Isomorphism Theorems of Canonical Hypergroups

In this section, we prove the isomorphism theorems of canonical hypergroups.

Theorem 4.1 (First Isomorphism Theorem). Let φ be a strong homomorphism from a canonical
hypergroup H1 into a canonical hypergroup H2 with kernel K. Then, H1/K is strongly isomorphic
to Imφ.

Proof. Define a map f : H1/K → Imφ by f(x) = φ(x) for all x ∈ H1. Suppose that x = y,
where x, y ∈ H, then x ∈ y. That is, x ∈ y+k for some k ∈ K. Hence, φ(x) ∈ φ(y+k) = φ(y)+
φ(k) = φ(y) + 0 = φ(y). So φ(x) = φ(y). Hence, f(x) = f(y). Thus, the map f is well defined.

If x, y ∈ H1, then

f
(
x ⊕ y

)
= f

({
z : z ∈ x + y

})

=
{
f(z) : z ∈ x + y

}

=
{
φ(z) : z ∈ x + y

}
.

(4.1)
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Also,

f(x) + f
(
y
)
= φ(x) + φ

(
y
)

= φ
(
x + y

)

=
{
φ(z) : z ∈ x + y

}
.

(4.2)

Thus, f(x⊕y) = f(x)+f(y). Moreover, f(0) = φ(0) = 0. Hence, f is a strong homomorphism.
Suppose that x, y ∈ H1/K such that f(x) = f(y), then φ(x) = φ(y). This means that

0 ∈ φ(x) − φ(y) = φ(x − y). That is, φ(z) = 0 for some z ∈ x − y. Since φ(z) = 0, we get
z ∈ K. Now, z ∈ x − y ⇒ x ∈ z + y ⇒ x ∈ y +K. Then, by Proposition 3.3 x = y and hence
f is one to one. Clearly, f is onto. Thus, f is a strong isomorphism. That is, H1/K is strongly
isomorphic to Imφ.

Corollary 4.2. Let φ be a strong homomorphism from a canonical hypergroup H1 onto a canonical
hypergroup H2 with kernel K. Then, H1/K is isomorphic toH2.

Theorem 4.3 (Second Isomorphism Theorem). If M and N are subcanonical hypergroups of a
canonical hypergroup H, thenN/(M ∩N) ∼= (M +N)/M.

Proof. It is clear that we can consider the subcanonical hypergroup M + N of the canonical
hypergroupH as a canonical hypergroupM+N for whichM is a subcanonical hypergroup.
Similarly, the subcanonical hypergroup N of the canonical hypergroup H as a canonical
hypergroup N for which (M ∩N) is a subcanonical hypergroup.

Define g : N → (M + N)/M by g(b) = b + M for every b ∈ N. For all a, b ∈ N,
g(a + b) = g({x : x ∈ a + b}) = {g(x) : x ∈ a + b} = {x +M : x ∈ a + b} = (a +M) ⊕ (b +M) =
g(a) ⊕ g(b). Moreover, g(0) = 0. Thus, g is a strong homomorphism.

Now, x + M ∈ (M + N)/M implies that x ∈ y + M for some y ∈ M + N. That
is, y ∈ a + b for some a ∈ M, b ∈ N. Since y ∈ b + M, we get y + M = b + M. Thus,
g(b) = b + M = y + M = x + M. Thus, g is onto. Let b ∈ N. Then, b ∈ Ker g ⇔ g(b) = 0 ⇔
b + M = 0 + M ⇔ b ∈ M. Thus, b ∈ Ker g if and only if b ∈ M ∩ N. Hence, by the First
Isomorphism Theorem, N/(M ∩N) ∼= (M +N)/M.

Theorem 4.4 (Third Isomorphism Theorem). If M and N are subcanonical hypergroup of a
canonical hypergroup H such thatM ⊆ N, thenH/N ∼= (H/M)/(N/M).

Proof. Define a map h : H/N → H/M by h(x + N) = x + M. Then, h is a strong
onto homomorphism of canonical hypergroup with kernel N/M. Therefore, by the First
Isomorphism Theorem of canonical hypergroups, H/N ∼= (H/M)/(N/M).

5. Isomorphism Theorems of Hyperrings

Let R be a hyperring, and let I be a hyperideal of R. Since I is a subcanonical hypergroup
of R,R/I = {x : x ∈ R} is a canonical hypergroup under the hyperaddition defined in the
Theorem 3.7. In this section, we define a hypermultiplication on R/I and prove that R/I is a
hyperring.

Theorem 5.1. If we define x ⊗ y = {z : z ∈ xy} for all x, y ∈ R/I, then R/I is a hyperring.
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Proof. If x1, y1, x2, y2 ∈ R such that x1 = x2 and y1 = y2, then x2 ∈ x1 + I and y2 ∈ y1 + I. Let
z2 ∈ x2y2 ⊆ (x1 + I)(y1 + I) ⊆ x1y1 + I. Then, z2 ∈ z1 + i for some z1 ∈ x1y1 and for some i ∈ I.
That is, z2 + I = z1 + I and so x2 ⊗ y2 ⊆ x1 ⊗ y1. Similarly, we get, x1 ⊗ y1 ⊆ x2 ⊕ y2. Hence,
x1 ⊕ y1 = x2 ⊗ y2. Thus, hypermultiplication ⊗ is well defined.

Suppose, x, y, z ∈ R/I. Then,

x ⊗ (
y ⊗ z

)
= x ⊗ {

a : a ∈ yz
}

=
{
s : s ∈ xa, a ∈ yz

}

=
{
s : s ∈ x

(
yz

)}

=
{
s : s ∈ (

xy
)
z
}

=
{
s : s ∈ bz, b ∈ xy

}

=
{
s : s ∈ xy

} ⊗ z

=
(
x ⊗ y

) ⊗ z

(5.1)

Thus, we get x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z. Hence, hypermultiplication is associative. Further,

x ⊗ (
y ⊕ z

)
= x ⊗ {

p + I : p ∈ y + z
}

=
{
q + I : q ∈ xp, p ∈ y + z

}

=
{
q + I : q ∈ x

(
y + z

)}

=
{
q + I : q ∈ xy + xz

}
.

(5.2)

Also,

(
x ⊗ y

) ⊕ (x ⊗ z) =
{
a + I : a ∈ xy

} ⊕ {b + I : b ∈ xz}
=
{
c + I : c ∈ a + b, a ∈ xy, b ∈ xz

}

=
{
c + I : c ∈ xy + xz

}
.

(5.3)

Hence, x⊗ (y ⊕z) = (x⊗y)⊕ (x⊗z). Similarly, we can show that (x⊕y)⊗z = (x⊗z)⊕ (x⊗z).
Therefore, hypermultiplication is distributive with respect to the hyperaddition. Thus, R/I is
a hyperring.

Corollary 5.2. Let φ be a strong homomorphism from hyperring R1 into a hyperring R2, then
R1/Kerφ is a hyperring.

Remark 5.3. If R is a Krasner hyperring and I is a hyperideal of R, then R/I is also a Krasner
hyperring. Further if (I,+) is a normal subcanonical hypergroup of R, then by the Theorems
3.23 and 5.1, R/I is a ring. Hence, the quotient hyperrings considered in [12] are just rings.
So, in the isomorphism theorems proved in [12], all the quotient hyperrings considered are
rings. However, we prove the isomorphism theorems of hyperrings in which the additions
and the multiplications are hyperoperations.
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If R is a hyperring, and I is a hyperideal of R, and (I,+) is a normal subcanonical
hypergroup of R, then R/I is a multiplicative hyperring.

Theorem 5.4 (First Isomorphism Theorem). Let φ be a strong homomorphism from a hyperring
R1 into a hyperring R2 with kernel K. Then, R1/K is strongly isomorphic to Imφ.

Proof. Define a map f : R1/K → Imφ by f(x) = φ(x) for all x ∈ R1.
By Theorem 4.1, this map f is a strong isomorphism from canonical hypergroup R1/K

onto Imφ. Now,

f
(
x ⊗ y

)
= f

({
z : z ∈ xy

})

=
{
f(z) : z ∈ xy

}

=
{
φ(z) : z ∈ xy

}
,

f(x)f
(
y
)
= φ(x)φ

(
y
)

= φ
(
xy

)

=
{
φ(z) : z ∈ xy

}
.

(5.4)

Thus, f(x ⊗ y) = f(x)f(y). Hence, f is a strong hyperring isomorphism.

Corollary 5.5. Let φ be a strong homomorphism from a hyperring R1 onto a hyperring R2 with kernel
K. Then, R1/K is strongly isomorphic to R2.

Theorem 5.6 (Second Isomorphism Theorem). If I and J are hyperideals of a hyperring R, then
J/(I ∩ J) ∼= (I + J)/I.

Proof. We can consider the hyperideal I + J of the hyperring R as a hyperring I + J for which
I is a hyperideal. Similarly, hyperideal J of the hyperring R as a hyperring J for which (I ∩ J)
is a hyperideal.

Define g : J → (I + J)/I by g(b) = b + I for every b ∈ J . By Theorem 4.3, g is strong
isomorphism from canonical hypergroup J onto the canonical hypergroup (I + J)/I. Now,
g(ab) = g({x : x ∈ ab}) = {g(x) : x ∈ ab} = {x+I : x ∈ ab} = (a+I)(b+I) = g(a)g(b). Thus, g
is strong isomorphism from hyperring J onto the hyperring (I+J)/I. Also, from Theorem 4.3,
Ker g = I ∩ J . Hence, by First Isomorphism Theorem of hyperrings, J/(I ∩ J) ∼= (I + J)/I.

Theorem 5.7 (Third Isomorphism Theorem). If I and J are hyperideals of a hyperring R such that
I ⊆ J , then R/J ∼= (R/I)/(J/I).

Proof. Define a map h : R/J → R/M by h(x + I) = x + J . Then, h is a strong onto
homomorphism of hyperring with kernel J/I. Therefore, by the First Isomorphism Theorem
of hyperrings, R/J ∼= (R/I)/(J/I).

References

[1] F. Marty, “Sur une generalization de la notion de groupe,” in Proceedings of the 8th Congress des
Mathematiciens Scandinaves, pp. 45–49, Stockholm, Sweden, 1934.

[2] P. Corsini, “Hypergroupes réguliers et hypermodules,” vol. 20, pp. 121–135, 1975.



12 International Journal of Mathematics and Mathematical Sciences

[3] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, Italian, 1993.
[4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, vol. 5 of Advances in Mathematics,

Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
[5] J. Mittas, “Hypergroupes canoniques,”Mathematica Balkanica, vol. 2, pp. 165–179, 1972.
[6] J. Mittas, “Hyperanneaux et certaines de leurs propriétés,” vol. 269, pp. A623–A626, 1969.
[7] D. Stratigopoulos, “Certaines classes d’hypercorps et d’hyperanneaux,” in Hypergroups, Other

Multivalued Structures and Their Applications, pp. 105–110, University of Udine, Udine, Italy, 1985.
[8] T. Vougiouklis,Hyperstructures and Their Representations, Hadronic PressMonographs inMathematics,

Hadronic Press, Palm Harbor, Fla, USA, 1994.
[9] M. Krasner, “A class of hyperrings and hyperfields,” International Journal of Mathematics and

Mathematical Sciences, vol. 6, no. 2, pp. 307–311, 1983.
[10] R. Ameri and T. Nozari, “A new characterization of fundamental relation on hyperrings,” International

Journal of Contemporary Mathematical Sciences, vol. 5, no. 13–16, pp. 721–738, 2010.
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