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This paper introduces the concept of an approach merotopological space and studies its category-
theoretic properties. Various topological categories are shown to be embedded into the category
whose objects are approach merotopological spaces. The order structure of the family of all
approachmerotopologies on a nonempty set is discussed. Employing the theory of bunches, bunch
completion of an approach merotopological space is constructed. The present study is a unified
look at the completion of metric spaces, approach spaces, nearness spaces, merotopological spaces,
and approach merotopological spaces.

1. Introduction

Some of the applications of nearness-like structures within topology are unification,
extensions, homology, and connectedness. The categories of R0-topological spaces, uniform
spaces [1, 2], proximity spaces [2, 3], and contiguity spaces [4, 5] are embedded into the
category of nearness spaces. The study of proximity, contiguity, and merotopic spaces in
the more generalized setting of L-fuzzy theory can be seen in [6–13]. In [14], the notion of
an approach space was introduced via different equivalent set of axioms to measure the
degree of nearness between a set and a point. While developing the theory of approach
spaces, Lowen et al. many a time employed tools from nearness-like structures. The notion of
“distance” in approach spaces is closely related to the notion of nearness; further proximity
and nearness concepts arise naturally in the context of approach spaces as can be seen in [15–
18]. Hence it became mandatory looking into the nearness-like concepts in approach theory,
more clearly. With the same spirit, Lowen and Lee [19]made an attempt to measure how near
a collection of sets is and, in the process, axiomatized the two equivalent concepts: approach
merotopic and approach seminearness structures, respectively, to measure the degree of
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smallness and nearness of an arbitrary collection of sets, and therefore generalized approach
spaces in a sense. In 2004, Bentley and Herrlich [20] gave the idea of merotopological
spaces as a supercategory of many of the above mentioned categories. They also constructed
the functorial completion of merotopological spaces employing the theory of bunches in
merotopological spaces. In [21], we axiomatized the notion of approach nearness by adding
to the axioms of an approach merotopy the axiom relating a collection of sets and the
closure induced by the respective approach merotopy; and we analogously obtained cluster
completion of an approach nearness space.

Prerequisites for the paper are collected in Section 2. In Section 3, we axiomatize
approach merotopological spaces. The category AMT of approach merotopological spaces
and their respective morphisms is shown to be a topological construct and a supercategory
of some of the known topological categories, including the category of topological spaces
and continuous maps. Order structure of the family of all approach merotopologies on X
is also discussed. In Section 4, bunch completion of an approach merotopological space is
constructed, employing the theory of bunches. The concept of regularity in an approach
merotopic space is introduced to obtain a relationship between cluster and bunch completion
of an approach nearness space. Indeed, it is shown that cluster completion is a retract of the
bunch completion of a regular approach nearness space (X, ν).

2. Preliminaries and Basic Results

Let X be a nonempty ordinary set. The power set of X is denoted by P(X) and the family of
all subsets of P(X) is denoted by P2(X). We denote by ℵ0 the first infinite cardinal number,
by |A| the cardinality of A where A ⊆ X, and by J an arbitrary index set. For A, B subsets of
P(X), A ∨ B ≡ {A ∪ B : A ∈ A, B ∈ B}; A corefines B (written as A ≺ B) if and only if for all
A ∈ A there exists B ∈ B such that B ⊆ A. ForA ⊆ P(X), stack(A) = {A ⊆ X : B ⊆ A for some
B ∈ A} and secA = {B ⊆ X : A ∩B /= ∅, for allA ∈ A} = {B ⊆ X : X −B /∈ stack(A)}. Observe
that sec2A = stack (A), for allA ∈ P2(X). A grill on X is a subset G of P(X) satisfying ∅/∈G;
if A ∈ G and A ⊆ B, then B ∈ G; and if A ∪ B ∈ G, then A ∈ G or B ∈ G. For basic definitions
and results of merotopic spaces and nearness spaces, we refer to [1].

Definition 2.1 (see [20]). A merotopological space is the triple (X, ξ, cl), where ξ is a merotopy
and cl is a Kuratowski closure operator on X such that {cl(A) : A ∈ A} ∈ ξ ⇒ A ∈ ξ, for all
A ∈ P2(X).

Definition 2.2 (see [19, 21]). A function ν : P2(X) → [0,∞] is called an approach merotopy on
X if for any A,B ∈ P2(X) the following conditions are satisfied:

(AM1) A ≺ B ⇒ ν(A) ≤ ν(B),

(AM2)
⋂A /= ∅ ⇒ ν(A) = 0,

(AM3) ∅ ∈ A ⇒ ν(A) = ∞,

(AM4) ν(A ∨ B) ≥ ν(A) ∧ ν(B).

The pair (X, ν) is called an approach merotopic space. For an approach merotopic space (X, ν),
we define clν(A) = {x ∈ X : ν({{x}, A}) = 0}, for all A ⊆ X. Then clν is a Čech closure
operator on X.
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An approach merotopy ν on X is called an approach nearness on X [21] if the following
condition is satisfied:

(AN5) ν({clν(A) : A ∈ A}) ≥ ν(A).

In this case, clν is a Kuratowski closure operator on X. Denote cl(A) = {cl(A) : A ∈ A}.

Definition 2.3 (see [21]). Let A ∈ P2(X) and ν be an approach merotopy on X. Then we say
that A is

(i) near in ν if ν(A) = 0,

(ii) ν-clan ifA is a near grill,

(iii) ν-closed if ν({{A} ∪ B}) = 0, for all B ⊆ A ⇒ A ∈ A,

(iv) ν-cluster ifA is a ν-closed ν-clan.

For any approach merotopic spaces (X, νX) and (Y, νY ), a map f : X → Y is called a
contraction if νY (f(A)) ≤ νX(A), for all A ∈ P2(X), or equivalently νX(f−1(B)) ≥ νY (B), for
all B ∈ P2(Y ). For any approach merotopies ν1 and ν2 on X, ν2 ≤ ν1 (ν1 is finer than ν2, or ν2 is
coarser than ν1) if the identity mapping 1X : (X, ν1) → (X, ν2) is a contraction (see [19]). For
standard definitions in the theory of categories we refer to [22], for approach spaces we refer
to [14], and for lattices see [23].

3. Approach Merotopological Spaces

In this section, we introduce approach merotopological spaces and establish some category-
theoretic results for them. Lattice structure of the family of all approach merotopologies onX
is also discussed.

Definition 3.1. An approach merotopological space is a triple (X, ν, cl), where ν is an approach
merotopy onX and cl is a Kuratowski closure operator onX such that the following condition
is satisfied:

(AM5) ν(cl(A)) ≥ ν(A), for all A ∈ P2(X).

We call ν to be an approach merotopology with respect to the closure operator cl on X.

Example 3.2. (i) Let (X, ν, cl) be an approachmerotopological space and letG(X) be the family
of all grills on X. Define νg : P2(X) → [0,∞] as follows:

νg(A) = inf{ν(G) : A ≺ G, G ∈ G(X)}, ∀A ∈ P2(X). (3.1)

Then νg is an approach merotopology with respect to cl on X (see [19, 24]).
(ii) Let (X, cl) be a topological space. Then (X, νg, cl) is an approach merotopological

space, where νg is defined as in the above example in which ν : G(X) → [0,∞] can be
defined in the following ways for G ∈ G(X).

(a) ν(G) = 0, if
⋂
cl(G)/= ∅; and ν(G) = sup{| cl(G)| : G ∈ G and | cl(G)| < ℵ0},

otherwise.

(b) ν(G) = 0, if
⋂
cl(G)/= ∅; and ν(G) = supG∈G|stack(cl(G))|, otherwise.
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(c) ν(G) = 0, if
⋂
cl(G)/= ∅; and ν(G) = | cl(G)|, otherwise.

(d) ν(G) = 0, if
⋂
cl(G)/= ∅; and ν(G) = infG∈sec cl(G)|G|, otherwise.

(e) ν(G) = 0, if
⋂
cl(B)/= ∅ for every finite subset B of G; and ν(G) = inf{|G| : G ∈

sec cl(G)}, otherwise.

(f) ν(G) = 0, if
⋂
cl(G)/= ∅ or each element of G is infinite; and ν(G) = sup{|G| : G ∈ G)

and |G| < ℵ0}, otherwise. (In this case, cl is a T1-closure operator on X.)

Observe that if (X, cl) is a symmetrical topological space (i.e., x ∈ cl({y}) ⇒ y ∈
cl({x}), for all x, y ∈ X), then clν = cl in all of the above cases (note that a T1-space is already
a symmetrical topological space).

(iii) Let f : (X, clX) → (Y, clY ) be a closed and continuous map. Define ν : G(X) →
[0,∞] as follows: for G ∈ G(X), ν(G) = 0, if

⋂{clY (f(G)) : G ∈ G})/= ∅; and ν(G) =
infG∈sec cl(G)|G|, otherwise. Then (X, νg, clX) is an approach merotopological space. Further
if y ∈ clY (f(x)) ⇒ f(x) ∈ clY ({y}) for all y ∈ Y and x ∈ X, then clν = clX.

(iv) Let (X, ν, cl) be an approach merotopological space. Define νc : P2(X) → [0,∞]
as follows: for A ∈ P2(X),

νc(A) = sup{ν(B) : B ⊆ A, |B| < ℵ0}. (3.2)

Then νc is an approach merotopology with respect to the closure cl on X.
(v) Let (X, cl) be a topological space and r ∈ (0,∞]. Define νr : P2(X) → [0,∞]

as follows: for A ∈ P2(X), νr(A) = 0, if
⋂
cl(A)/= ∅; νr(A) = ∞, if ∅ ∈ A; and νr(A) = r,

otherwise. Then νr is an approach merotopology with respect to the closure cl on X.
(vi) The function νd : P2(X) → [0,∞] this is defined as follows: for A ∈

P2(X), νd(A) = 0, if
⋂A /= ∅, and νd(A) = ∞, otherwise, is an approach merotopology with

respect to the discrete closure operator cld on X and clν = cld. We call (X, νd, cld) the discrete
approach merotopological space.

(vii) The function νi : P2(X) → [0,∞] this is defined as follows: for A ∈
P2(X), νi(A) = 0, if ∅/∈A, and νi(A) = ∞, otherwise, is an approach merotopology with
respect to the indiscrete closure operator cli on X and clν = cli.We call (X, νi, cli) the indiscrete
approach merotopological space.

Having established the existence of an adequate number of approach merotopologies
on X (taking several values in [0,∞]), it is now relevant to study the category AMT having
objects as approach merotopological spaces. A morphism in AMT is a map f : X → Y
which is both continuous (with respect to the topologies) and contraction (with respect to the
approach merotopies). We denote by TOP the category of topological spaces and continuous
maps. Also let T : AMT → TOP and M : AMT → AMER denote the forgetful functors that
keep the topology but forget the approach merotopy, and keep the approach merotopy but
forget the topology, respectively.

Proposition 3.3. Let (X, ν, cl) be an approach merotopological space. Then cl(A) ⊆ clv(A) for all
A ⊆ X, where clv denotes the closure operator induced by the approach merotopy ν on X.

Proof. Let A ⊆ X and x ∈ cl(A). Then ν({cl({x}), cl(A)}) = 0 which yields ν({{x}, A}) = 0
and hence x ∈ clν(A).
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Theorem 3.4. The category AMT is a topological construct.

Proof. Let ((Yj, νj , clj))j∈J be a family of approach merotopological spaces indexed by J, and
let (fj : T(X) → T(Yj))j∈J be a source in TOP. Define ν : P2(X) → [0,∞] as follows: for
A ∈ P2(X),

ν(A) = sup

{
n

inf
i=1

sup
j∈J

νj
(
fj(Ai)

)
: (A)ni=1 ∈ C(A)

}

, (3.3)

where C(A) is the collection of all finite families (Ai)
n
i=1 ⊆ P2(X) such thatA1∨A2∨· · ·∨An ≺

A. Then ν is an approach merotopy on X (see [19, Theorem 3.8]). Let cl denote the closure
induced by the initial topology on X and (Ai)

n
i=1 ∈ C(A). Then (cl(A))ni=1 ∈ C(cl(A)). Also

since fj is continuous for all j ∈ J, therefore νj(fj(Ai)) ≤ νj(fj(cl(Ai))), for all (Ai)
n
i=1 ∈ C(A)

which in turn yields ν(A) ≤ ν(cl(A)). Hence (X, ν, cl) is an approach merotopological space.
To show that the source is initial, let (Z, νZ, clZ) be an approach merotopological space and
g : T(Z) → T(X) be a continuous map such that, for every j ∈ J, the map fj ◦g : Z → Yj is an
AMT-morphism. Then g : M(Z) → M(X) is a contraction since (fj : M(X) → M(Yj))j∈ J is
initial inAMER (see [19, Theorem 3.8]). Thus (X, ν, cl) is the initial source inAMT and hence
AMT is a topological construct.

Corollary 3.5. Let ((Yj, νj , clj))j∈J be a family of approach merotopological spaces. Then (fj : X →
Yj)j∈J is an initial source in AMT if and only if (fj : T(X) → T(Yj))j∈J is initial in TOP and
(fj : M(X) → M(Yj))j∈J is initial in AMER.

Proposition 3.6. Let ((Xj, νj , clj))j∈J be a family of approach merotopological spaces and (fj : Xj →
X)j∈J be a sink in AMT. Then (fj : Xj → X)j∈J is a final sink in AMT if and only if both of the
following conditions hold:

(i) (fj : T(Xj) → T(X))j∈J is final in TOP,

(ii) the approach merotopology with respect to the closure operator cl induced by the final
topology on X is defined as follows: for A ∈ P2(X),

ν(A) =

⎧
⎪⎨

⎪⎩

0, if
⋂

cl(A)/= ∅,
inf
j∈J

νj
(
f−1
j (cl(A))

)
, otherwise.

(3.4)

Proof. To prove that ν is an approach merotopy with respect to cl on X, we will prove only
(AM5). For this, let

⋂
cl(A)/= ∅. Then there exists x ∈ X such that A ⊆ {A ⊆ X : x ∈ cl(A)}.

Hence ν(cl(A)) = 0 = ν(A). To show that (fj : Xj → X)j∈J is final, let (Z, νZ, clZ) be an
approachmerotopological space and let g : X → Z be amap such that, for every j ∈ J, g◦fj :
Xj → Z is an AMT-morphism. Then g : X → Z is continuous since (fj : T(Xj) → T(X))j∈J
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is final in TOP. Also forA ⊆ P(X) with
⋂
cl(A) = ∅,

ν(A) = inf
j∈J

νj
(
f−1
j (cl(A))

)

≥ inf
j∈J

νZ
(
g
(
fj
(
f−1
j (cl(A))

)))

≥ νZ
(
g(cl(A))

)

≥ νZ
(
g(A)

)
.

(3.5)

On the other hand, if
⋂
cl(A)/= ∅, then there exists x ∈ X such that g(x) ∈ g(cl(A)) ⊆

clZ(g(A)), for all A ∈ A. Hence νZ(g(A)) = 0. Thus, g : (X, ν) → (Z, νZ) is a contraction
implying that (X, ν, cl) is the final approach merotopological space.

Let ρ be a metric on X. Define νρ : P2(X) → [0,∞] as follows: forA ∈ P2(X),

νρ(A) = inf
x∈X

sup
A∈A

inf
y∈A

ρ
(
x, y

)
. (3.6)

Then νρ is an approach merotopology with respect to the closure cl induced by ρ on X and
clνρ = cl . Also for any metric spaces (X, ρ) and (Y, ρ′), f : (X, ρ) → (Y, ρ′) is a nonexpansive
map if and only if f : (X, νρ, clνρ) → (Y, νρ′ , clνρ′ ) is an AMT-morphism. Thus the category
MET of metric spaces and nonexpansive maps is embedded as a full subcategory into AMT
by the functor F : MET → AMT defined as follows: F((X, ρ)) = (X, νρ, clνρ) and F(f) = f.

Proposition 3.7. The category TOP is a bireflective full subcategory of AMT.

Proof. Let (X, ν, cl) be any approach merotopological space. Set r = sup{ν(A) : A ∈
P2(X), ν(A)/= 0 and ∅/∈A} and νr is defined as in Example 3.2 (v). Then νr ∧ν is an approach
merotopology on X with respect to the closure operator cl,which is coarser than ν. Therefore
for any approach merotopological space (X, ν, cl), the identity mapping 1X : (X, ν, cl) →
(X, νr ∧ ν, cl) is the TOP-bireflection of (X, ν, cl).

Remark 3.8. (i) There is a full embedding of TOP into AMT that is defined by associating
to a topological space X, the approach merotopy νr as defined in Example 3.2 (v). Thus a
topological space can be viewed as an approach merotopological space having the approach
merotopy νr. Thus following this convention, the forgetful functor T : AMT → TOP shall be
viewed as keeping the topology but replacing the approach merotopy with that of νr.

(ii) It is known that an approach nearness space always induces a Kuratowski closure
operator on the underlying space. Thus by adjoining to an approach nearness space (X, ν), the
topology given by the closure operator clν induced by ν, we can obtain a full embedding of
ANEAR (the category of approach nearness spaces and contractions) into AMT. (Observe
that every contraction is a continuous map with respect to the closures induced by the
approach merotopies.) Therefore it is clear that an approach nearness space (X, ν) can be
regarded as a special approach merotopological space (X, ν, cl) for which cl = clν. Hence
approach merotopological spaces are generalization of approach nearness spaces. Also since
the underlying topology of an approach nearness space is always symmetric, therefore if



International Journal of Mathematics and Mathematical Sciences 7

we restrict the category TOP to the category STOP having objects symmetrical topological
spaces, then the full embedding ofTOP intoAMT is actually the full embedding of STOP into
ANEAR. Moreover for every approach merotopic space (X, ν), if we associate the discrete
closure operator cl on X, then we obtain an approach merotopological space (X, ν, cl). Thus
the category AMER can also be embedded into AMT.

(iii) Let δ be an approach space. Then the function νδ : P2(X) → [0,∞] that is defined
as follows: for A ∈ P2(X),

νδ(A) = inf
x∈X

sup
A∈A

δ(x,A) (3.7)

is an approach merotopy on X. Also for any approach spaces (X, δ) and (Y, δ′), f : (X, δ) →
(Y, δ′) is a contraction map if and only if f : (X, νδ) → (Y, νδ′) is a contraction. So we get the
functor F : AP → AMER defined as follows: F((X, δ)) = (X, νδ) and F(f) = f. Therefore AP
is a full subcategory of AMER (cf. [17, 19]). As a consequence, AMT is also a supercategory
of AP.

In Remark 3.8, we have established that a topological space can be regarded as an
approach merotopological space by associating the approach merotopy νr with the topology
on X. It should be clarified here that, in general for an approach merotopological space
(X, ν, cl), the topology on X is not determined by its approach merotopy ν; it happens so
for a topological space only if (X, cl) is a symmetrical topological space. Thus, in general,
for an approach merotopological space (X, ν, cl), cl need not be equal to clν. This fact can be
supported by the following example: consider R with {∅,R}∪{[0, n] : n ∈ N} as the collection
of all closed sets. Then (R, cl) is a non-symmetric and T0-space, where cl is the closure operator
associated with the topology on R defined as above. Further let the approach merotopy νi on
R be indiscrete. Then (R, νi, cl) is an approachmerotopological space. Also observe that (R, νi)
is an approach nearness space but clνi /= cl .

Remark 3.9. Let MERTOP denote the category of all merotopological spaces and their
respective morphisms (see [20]). It is easy to verify that, for any merotopological space
(X, ξ, cl), the pair (X, νξ, cl) is an approach merotopological space (where νξ is the induced
approach merotopy on X defined as follows: for A ∈ P2(X), ν(A) = 0, if A ∈ ξ; and
ν(A) = ∞, otherwise. Also for any merotopic spaces (X, ξ) and (Y, ξ′), f : (X, ξ) → (Y, ξ′)
is a merotopic map if and only if f : (X, νξ) → (Y, νξ′) is a contraction. Thus MERTOP is
embedded as a full subcategory in AMT by the functor F : MERTOP → AMT such that
F((X, ξ, cl)) = (X, νξ, cl) and F(f) = f.

An approach merotopological space (X, ν, cl) is induced by a merotopological space
(X, ξ, cl) if and only if ν(P2(X)) ⊆ {0,∞}. Also for any approach merotopological space
(X, ν, cl), the triples (X, ξν, cl) and (X, ξν, cl),where

ξν =
{
A ∈ P2(X) : ν(A) = 0

}
,

ξν =
{
A ∈ P2(X) : ν(A) < ∞

}
,

(3.8)

are merotopological spaces; and if f : (X, ν) → (Y, ν′) is a contraction, then f : (X, ξν) →
(Y, ξν

′
) and f : (X, ξν) → (Y, ξν′) are merotopic maps. So this defines the functors G :

AMT → MERTOP by G((X, ν, cl)) = (X, ξν, cl) and G(f) = f and G′ : AMT →
MERTOP by G′((X, ν, cl)) = (X, ξν, cl) and G′(f) = f. Hence we can conclude that the
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categoryMERTOP is a bicoreflective and bireflective subcategory of AMT: for any approach
merotopological space (X, ν, cl), the identity mappings 1X : (X, νξν , cl) → (X, ν, cl) and
1X : (X, ν, cl) → (X, νξν , cl) are the MERTOP-bicoreflection and MERTOP-bireflection of
(X, ν, cl), respectively. Further in [20], Bentley and Herrlich embedded TOP in MERTOP as
its full bicoreflective subcategory. Therefore TOP can be embedded as a full subcategory in
AMT both bicoreflectively and bireflectively.

Next, let us introduce ordering between approach merotopological spaces and discuss
their order structure. The exact meet and join of a family of merotopologies on X are
constructed.

Definition 3.10. Let ν and ν′ be approach merotopologies with respect to the closures cl and
cl’ on X, respectively. Define the ordering “≤” as follows: (X, ν, cl) ≤ (X, ν′, cl′) if ν ≤ ν′ and
the topology induced by cl is weaker than the topology induced by cl’ on X.

Theorem 3.11. The family of all approach merotopologies on X forms a completely distributive
complete lattice with respect to the partial order “≤”. The zero of this lattice is the indiscrete approach
merotopology νi with respect to the closure cli induced by the indiscrete topology (called indiscrete
closure) onX and the unit is the discrete approach merotopology νd with respect to the discrete closure
cld induced by the discrete topology (called discrete closure) on X.

Proof. Let {(Xj, νj , clj) : j ∈ J} (where J is an arbitrary index set) be a family of approach
merotopological spaces. If τj denotes the topology induced by clj for all j ∈ J, then supj∈Jτj =⋂{Vα : Vα is a topology on X and τj ⊆ Vα, for all j ∈ J}. Let cl denote the closure operator
induced by supj∈Jτj . Then for A ⊆ X, cl(A) =

⋂{B ⊆ X : A ⊆ B and B is supj∈Jτj-closed}.
Define νsup : P2(X) → [0,∞] as follows: for A ∈ P2(X),

νsup(A) = sup

{
n

inf
i=1

sup
j∈J

νj(Ai) : (Ai)ni=1 ∈ C(A)

}

, (3.9)

where C(A) is the collection of all finite families (Ai)
n
i=1 ⊆ P2(X) such thatA1∨A2∨· · ·∨An ≺

A. Then νsup with respect to the closure operator cl is an approach merotopology on X and
is the supremum of the family of merotopologies {νj : j ∈ J} with respect to the closures
{clj : j ∈ J} on X, respectively (techniques of the proof are similar to those of Theorem 3.4).
Now we construct the infimum of the given family. Define νinf : P2(X) → [0,∞] as follows:
for A ∈ P2(X),

vinf(A) = inf
j∈J

v
j

(cl(A)), (3.10)

where cl : P(X) → P(X) is defined as follows: for A ⊆ X, cl(A) =
⋂{B ⊆ X : A ⊆ B and

clj(B) = B, for all j ∈ J}. Then νinf is an approach merotopology with respect to the closure cl
on X which is also the infimum of the merotopologies {νj : j ∈ J}with respect to the closures
{clj : j ∈ J} on X, respectively (proof follows similarly as in Proposition 3.6).
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4. Completion of Approach Merotopological Spaces

In this section, we construct bunch completion of any approach merotopological space.
The concept of regularity in an approach merotopic space is introduced to establish a
relationship between the bunch completion and the cluster completion (constructed in
[22]) of an approach nearness space in the classical theory. For regularity in a merotopic
space, we refer to [1]. It is noteworthy to discuss here that clusters and bunches
of an approach merotopological space are essentially the clusters and bunches of the
associated merotopology ξν = {A ∈ P(LX) : ν(A) = 0}. Similar is the case with the
definition of bunch completeness of an approach merotopological space. But in this section,
using these definitions, we have constructed the completion (X+, ν+, clX+) of an approach
merotopological space (X, ν, cl). Observe that ν+ takes several values in [0,∞] if ν does so,
and the completion of ξν, that is, ξ+ν , is not, in general, equal to ν+. A similar type of study
can also be seen in [17], where Lowen et al. had constructed the completion of a T0-approach
space (X, δ) using the clusters of δwhich are precisely the clusters of the associatedmerotopic
space.

Definition 4.1. Let (X, ν, cl) be an approach merotopological space. A nonempty grill G on X

is said to be a ν-bunch if ν(G) = 0 and cl(G) ∈ G ⇒ G ∈ G.

By a ν-cluster A in an approach merotopological space (X, ν, cl), we mean that A is a
ν-cluster of the approach merotopic space (X, ν).

Proposition 4.2. Let (X, ν, cl) be an approach merotopological space. Then every ν-cluster is a
maximal near ν-bunch.

Proof. Let C be a ν-cluster. Then clearly C is a near element in ν. Let cl(G) ∈ C. Then
ν({cl(C), cl(G)}) = 0, for all C ∈ C which by (AM5) yields that ν({C,G}) = 0, for all C ∈ C.
Consequently G ∈ C as C is ν-closed.

For any approach merotopological space (X, ν, cl), let X+ denote the family of all ν-
bunches onX. It must be clarified here that a ν-bunch need not be a ν-cluster. For example, let
G(m) = {A ⊆ X : | cl(A)| ≥ m} where m is an infinite cardinal number. Consider the approach
merotopological space (X, ν, cl) of the last case of Example 3.2 (ii) (f). Then for m > c (where
c is the cardinality of the set R of all real numbers), G(m) is a ν-bunch which is not a ν-cluster
because G(m) is a proper subset of G(ℵ0) and ν(G(ℵ0)) = 0.

Theorem 4.3. Let (X, ν, cl) be an approach merotopological space and let clX+ denote the operator
defined by clX+(ω) = {B ∈ X+ :

⋂
ω ⊆ B}, for all ω ⊆ X+. Then clX+ is a Kuratowski closure

operator on X+.

Proof. Clearly clX+(∅) = ∅ and ω ⊆ clX+(ω), where ω ⊆ X+. Let B ∈ clX+(ω1 ∪ ω2) but
B/∈ clX+(ω1) ∪ clX+(ω2). Then

⋂
ω1 ∩

⋂
ω2 ⊆ B but

⋂
ω1 /⊆ B and

⋂
ω2 /⊆ B. Therefore there

existA ∈ ⋂
ω1 and B ∈ ⋂

ω2 such thatA/∈B and B /∈B,which givesA∪B /∈B.AlsoA ∈ A and
B ∈ B, for everyA ∈ ω1 and B ∈ ω2, and consequentlyA∪B ∈ ⋂

(ω1 ∪ω2),which contradicts
that

⋂
(ω1 ∪ω2) ⊆ B. Thus B ∈ clX+(ω1)∪ clX+(ω2).Hence clX+(ω1 ∪ω2) ⊆ clX+(ω1)∪ clX+(ω2).

For the reverse inclusion, let B/∈ clX+(ω1 ∪ ω2). Then
⋂
ω1 /⊆ B and

⋂
ω2 /⊆ B, giving that

B/∈ clX+(ω1) ∪ clX+(ω2). Finally let B ∈ clX+(clX+(ω)) but B/∈ clX+(ω). Then
⋂
clX+(ω) ⊆ B but

⋂
ω /⊆ B. Therefore there exists A ∈ ⋂

ω such that A/∈B which implies that A/∈ ⋂
clX+(ω)
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and thus
⋂
ω /⊆ N, for some N ∈ ω. Consequently N/∈ω, which is not possible. Hence

clX+(clX+(ω)) = clX+(ω).

It can be easily verified that, for any approach merotopological space (X, ν, cl), the
family {A ⊆ X : x ∈ cl(A)} is a ν-bunch. Therefore we can define the map eX : X → X+ as
follows: for x ∈ X, eX(x) = {A ⊆ X : x ∈ cl(A)}.

Theorem 4.4. The map F : AMT → AMT defined by F((X, ν, cl)) = (X+, ν+, clX+) and F(f) =
f+, where ν+ : P2(X+) → [0,∞] is defined as follows: for Ω ∈ P2(X+), ν+(Ω) = ν(

⋃{⋂ω : ω ∈
Ω}), and f+ : X+ → Y+ (when f : X → Y ) is defined as follows: for B ∈ X+, f+(B) = {A ⊆ Y :
f(B) ⊆ cl(A), for some B ∈ B}, is a functor. Moreover, e : 1 → F is a natural transformation from
the identity functor.

Proof. First we will show that (X+, ν+, clX+) is an approach merotopological space. Let Ω, I ∈
P2(X+) and Ω ≺ I. Then

⋃{⋂ω : ω ∈ Ω} ≺ ⋃{⋂λ : λ ∈ I}. Thus ν+(Ω) ≤ ν+(I). If
⋂
Ω/= ∅, then there exists A ∈ ⋂

Ω and therefore
⋂
ω ⊆ A, for every ω ∈ Ω. Consequently

⋃{⋂ω : ω ∈ Ω} ⊆ A which yields ν+(Ω) = 0. Condition (AM3) follows by the convention
∅ ∈ ⋂ ∅. Now

ν+(Ω ∨ I) = ν
(⋃{⋂

ω : ω ∈ Ω ∨ I
})

≥ ν
(⋃{⋂

ω : ω ∈ Ω
}
∨
⋃{⋂

ω : ω ∈ I
})

≥ ν
(⋃{⋂

ω : ω ∈ Ω
})

∧ ν
(⋃{⋂

ω : ω ∈ I
})

= ν+(Ω) ∧ ν+(I).

(4.1)

For (AM5) we have to show that
⋃{⋂ω : ω ∈ Ω} ⊆ ⋃{⋂ clX+(ω) : clX+(ω) ∈ clX+(Ω)}, where

clX+(Ω) = {clX+(ω) : ω ∈ Ω}. Let A ∈ ⋃{⋂ω : ω ∈ Ω}. Then A ∈ ⋂
ω, for some ω ∈ Ω. So,

A ∈ A for every A ∈ clX+(ω) as
⋂
ω ⊆ A, for each A ∈ clX+(ω). Thus A ∈ ⋃{⋂ clX+(ω) :

clX+(ω) ∈ clX+(Ω)}.Hence (X+, ν+, clX+) is an approach merotopological space.
Next let f : X → Y be an AMT-morphism. Then we will show that f+ : X+ → Y+

is an AMT-morphism. That f+ is a map follows from the fact that cl(f+(B)) ≺ f(B), for all
B ∈ P2(X). For the continuity of f+ : X+ → Y+, let ω ⊆ X+ and B ∈ clX+(ω) andA ∈ ⋂

f+(ω).
Then A ∈ f+(C), for every C ∈ ω. Consequently f(B) ⊆ cl(A), for some B ∈ B and hence
⋂
f+(ω) ⊆ f+(B) which in turn gives that f+ : X+ → Y+ is continuous. Now to show that

f+ : X+ → Y+ is a contraction, let Ω ∈ P2(X+) and A ∈ ⋃{⋂ f+(ω) : f+(ω) ∈ f+(Ω)}. Then
there is an A ∈ ⋂

f+(ω0), for some ω0 ∈ Ω. Thus for every B ∈ ω0, there is a B ∈ B such that
f(B) ⊆ cl(A). Since

⋂
f(B) ⊆ f(B), therefore cl(

⋃{⋂ f+(ω) : f+(ω) ∈ f+(Ω)}) ≺ f(
⋃{⋂ω :

ω ∈ Ω}). Thus ν+Y (f
+(Ω)) ≤ ν+X(Ω) and f+ : (X+, ν+X, clX+) → (Y+, ν+Y , clY+) is an AMT-

morphism. Hence F is well defined. Clearly F preserves identity. To show that F is a functor,
we finally show that, for AMT-morphisms f : X → Y and g : Y → Z, (g ◦ f)+ = g+ ◦ f+. Let
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B ∈ X+. Then

(
g ◦ f)+(B) = {

G ⊆ Z : there is a B ∈ B such that
(
g ◦ f)(B) ⊆ clZ(G)

}

=
{
G ⊆ Z :

(
g ◦ f)−1(clZ(G)) ∈ B

}

= f+
({

G ⊆ Z : g−1(clZ(G)) ∈ B
})

=
(
g+ ◦ f+)(B).

(4.2)

Now to prove that e : 1 → F is a natural transformation, we will first show that eX :
X → X+ is an AMT-morphism. For this, letA ⊆ X andA ∈ eX(cl(A)). Then

⋂
eX(cl(A)) ⊆ A

and thus A ∈ A because A ∈ X+. So, A ∈ clX+eX(A). Therefore eX(cl(A)) ⊆ clX+(eX(A)) and
hence eX : X → X+ is continuous. Also since

⋂
eX(A) ⊆ A for all A ∈ A ∈ X+, therefore

⋃{⋂ eX(A) : A ∈ A} ⊆ A which in turn yields that ν+(eX(A)) ≤ ν(A). Hence eX : X → X+

is an AMT-morphism. Finally let x ∈ X and B ∈ eY (f(x)). Then f(x) ∈ clY (B) and therefore
f−1(clY (B)) ∈ eX(x) which gives B ∈ (f+ ◦ eX)(x). On the other hand if B ∈ f+(eX(x)), then
there exists C ∈ eX(x) such that f(C) ⊆ clY (B). Consequently f(x) ∈ clY (B) and B ∈ eY (f(x)).
Hence f+ ◦ eX = eY ◦ f.

Definition 4.5. (i) Let (X, νX, clX) and (Y, νY , clY ) be approach merotopological spaces. A
mapping f : (X, νX, clX) → (Y, νY , clY ) is said to be strict in AMT if {clY (f(A)) : A ⊆ X}
is a base for closed subsets of Y (i.e., strict in TOP (see [25])), and νY (B) ≤ sup{νX(A) :
cl(f(A)) ≺ B}, for all B ∈ P2(X) (i.e., strict in AMER).

(ii) Further, f said to be initial in AMT if f−1(clY (f(A))) ⊆ clX(A) for allA ⊆ X (called
initial in TOP), and νX(A) ≤ νY (f(A)) for all A ∈ P2(X) (called initial in AMER).

Observe that an initial map f : X → Y is strict in AMER if and only if the
approach merotopy νY on Y is defined as: νY (B) = sup{νX(A) : clY (f(A)) ≺ B}, for all
B ∈ P2(Y ). Also for any initial map f : (X, νX, clX) → (Y, νY , clY ) in AMER, there is a
strict approach merotopology μY with respect to the closure operator clY on Y defined as:
μY (B) = sup{νX(A) : clY (f(A)) ≺ B}, for all B ∈ P2(Y ).

Proposition 4.6. Let (X, ν, cl) be an approach merotopological space. Then

(i) the map eX : X → X+ is initial and strict;

(ii) clX+(eX(X)) = X+;

(iii) e+X : X+ → X++ is an injective map.

Thus X+ can be regarded as a dense subspace of X++.

Proof. (i) Let A ⊆ X and x ∈ e−1X (clX+(eX(A))). Then we have eX(x) ∈ clX+(eX(A)), that is
⋂

eX(A) ⊆ eX(x) which yields x ∈ cl(A). Therefore eX : X → X+ is initial in TOP. That eX
is initial in AMER, follows immediately by the relation A ⊆ ⋃{⋂ω : ω ∈ eX(A)}, for all
A ∈ P2(X). Thus eX : X → X+ is initial in AMT. For strictness in TOP, we refer to [20]. For
strictness in AMER, let Ω ⊆ P(X+) and A =

⋃{⋂ω : ω ∈ Ω}. Then clX+(eX(A)) ≺ Ω. Thus
ν+(Ω) = sup{ν(A) : clX+(eX(A)) ≺ Ω} as eX is initial in AMER.

(ii) Clearly clX+(eX(X)) ⊆ X+. Let A ∈ ⋂
eX(X). Then X = cl(A) implying that A ∈ B,

for all B ∈ X+.Hence clX+(eX(X)) = X+.
(iii) See [20, Proposition 22].
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Definition 4.7. An approach merotopological space (X, ν, cl) is said to be bunch complete if
⋂
cl(B)/= ∅, for all B ∈ X+.

Proposition 4.8. An approach merotopological space (X, ν, cl) is bunch complete if and only if for
every grill G on one X such that one ν(G) = 0, has

⋂
cl(G)/= ∅.

Proof. Let (X, ν, cl) be bunch complete and let G be a grill on X such that ν(G) = 0. Then
G ⊆ {G ⊆ X : cl(G) ∈ G}. Thus ⋂ cl(G)/= ∅. Converse is obvious.

Proposition 4.9. Let (X, ν, cl) be an approach merotopological space. Then (X+, ν+, clX+) is a bunch
complete approach merotopological space and (X+, clX+) is a T0-space.

Proof. That (X+, ν+, clX+) is an approach merotopological space follows from Theorem 4.4. Let
Ω be a ν+-bunch and B =

⋃{⋂ω : ω ∈ Ω}. Then B is a ν-bunch: letA∪B ∈ B. Then there exists
ω0 ∈ Ω such thatA∪B ∈ ⋂

ω0.Consequentlyω0 ⊆ clX+(eX(A∪B)) = clX+(eX(A))∪clX+(eX(B)).
Since Ω is a grill on X+, therefore clX+(eX(A)) ∪ clX+(eX(B)) ∈ Ω which in turn gives that
clX+(eX(A)) ∈ Ω or clX+(eX(B)) ∈ Ω. Also A ∈ ⋂

clX+(eX(A)) ∈ Ω and B ∈ ⋂
clX+(eX(B)) ∈ Ω

yield that A ∈ B or B ∈ B. Now we will show that
⋂
clX+(Ω)/= ∅, for which it is sufficient

to note that
⋂
ω ⊆ B, for all ω ∈ Ω. Thus ν+ is bunch complete. Now let B1,B2 ∈ X+ and

B1 ∈ clX+({B2}) and B2 ∈ clX+({B1}). Then B1 ⊆ B2 and B2 ⊆ B1. Hence clX+ is a T0-closure
operator on X+.

Remark 4.10. Since any topological space (X, cl) can be viewed as an approach merotopo-
logical space (X, νr, cl), following the convention established previously, therefore each
topological space (X, cl) is bunch complete.

The following theorem shows that the bunch completionX+ ofX possesses a universal
mapping property that shows it to be very large.

Theorem 4.11. Let (X, νX, clX) be an approach merotopological space and let eX : X → X+ be the
canonical mapping into the bunch completion. If f : X → W is an initial AMT-morphism into the
approach merotopological space (W,νW, clW) such that clW(f(X)) = W, then the map v : W → X+

that is defined as follows: for w ∈ W,v(w) = {A ⊆ X : w ∈ clW(f(A))}, is such that v ◦ f = eX.
Moreover,

(i) v : W → X+ is an AMT-morphism

(ii) if f : X → W is strict, then v : W → X+ is initial, strict and clX+(v(w)) = X+.

Proof. That v : W → X+ is a map follows from the assumption that f : X → W is initial.
Let A ∈ eX(x). Then x ∈ clX(A) and therefore f(x) ∈ clW(f(A)), that is, A ∈ v(f(x)). Hence
v ◦ f = eX.

(i) For the continuity of v, let B ⊆ W and w ∈ clW(B) but v(w)/∈ clX+(v(B)). Then
⋂
v(B) /⊆ v(w), that is, there exists A ∈ ⋂

v(B) such that A/∈ v(w). Consequently
B /⊆ clW(f(A)), and thus there is b ∈ B such thatA/∈ v(b), a contradiction. Therefore
v(w) ∈ clX+(v(B)) and v(clW(B)) ⊆ clX+(v(B)), for all B ⊆ W. Hence v : W → X+

is continuous. Now we will show that v is a contraction. Let C ∈ P2(W) and I =
⋃{⋂v(C) : C ∈ C}. Then clW(f(I)) ≺ C. By the initiality of f, ν+(v(C)) ≤ νW(C).
Hence v is a contraction.
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(ii) It can be verified that if clW(f(A)) ≺ B, then clX+(eX(A)) ≺ v(B), for all A ∈ P2(X)
and B ∈ P2(W). So, νX(A) ≤ ν+(v(B)), for all A ∈ P2(X) such that clW(f(A)) ≺
B, since eX : X → X+ is initial. Thus sup{νX(A) : clW(f(A)) ≺ B} ≤ ν+(v(B))
implying that νW(B) ≤ ν+(v(B)), since f is strict in AMER. Hence v : M(W) →
M(X+) is initial in AMER. To show that v : T(X) → T(X+) is initial in TOP, we
refer to [20].

Now to show that v is strict, first we will show that clX+(eX(I)) ≺ Ω, where I =
⋃{⋂ω : ω ∈ Ω}. On the contrary, suppose that clX+(eX(I)) /≺ Ω. Then there exists B ∈ I
such that ω /⊆ clX+(eX(B)), for all ω ∈ Ω, that is, for every ω ∈ Ω, there is E ∈ ω such
that E/∈ clX+(eX(B)), that is, for every ω ∈ Ω, there is E ∈ ω such that B /∈E. Consequently,
B /∈ ⋂

ω for all ω ∈ Ω, and thus B /∈I, a contradiction. Hence clX+(eX(I)) ≺ Ω. Since
v ◦ f = eX, therefore νW(f(I)) ≤ sup{νW(C) : clX+(v(C)) ≺ Ω}. But by the initiality of
f, ν+(Ω) ≤ sup{νW(C) : clX+(v(C)) ≺ Ω} giving that v is initial.

Finally for denseness of v, we know that clW(f(X)) = W, which gives v(clW(f(X))) =
v(W). But v(clW(f(X))) = clX+((v ◦ f)(X)) = clX+(eX(X)) = X+. Hence v(W) = X+ and
therefore clX+(v(W)) = X+.

We now concentrate on approach nearness spaces. In [21], we have constructed the
cluster completion (X∗, ν∗) of an approach nearness space (X, ν) (whereX∗ is the family of all
ν-clusters) by defining ν∗ in the same way as ν+ and the map eX : X → X∗ similarly as in the
case of bunch completion. Since each approach nearness space can be viewed as an approach
merotopological space, therefore, by Proposition 4.9, we can obtain a bunch completion of
an approach nearness space. Also X∗ ⊆ X+ by Proposition 4.2. We introduce the property of
regularity in approach merotopic spaces and prove that X∗ is a retract of X+ for a regular
approach nearness space (X, ν). For this, we first consider the following.

Lowen and Lee [19] also gave an equivalent description of an approach merotopy on
X (by generalizing the concept of micromeric collections of a nonempty set) as a function
γ : P2(X) → [0,∞] such that the following conditions are satisfied for any A,B ∈ P2(X):

(AM1′) A ≺ B ⇒ γ(A) ≥ γ(B),
(AM2′) there exists A ∈ A such that |A| ≤ 1 ⇒ γ(A) = 0,

(AM3′) γ(∅) = ∞,

(AM4′) γ(A ∪ B) ≥ γ(A) ∧ γ(B).

The function γ is called an approach merotopy on X and (X, γ) is an approach merotopic space.
The relation between an approach merotopy γ (generalizing micromeric collections) and an
approach merotopy ν (generalizing near collections) on X is given by γ �→ νγ and ν �→ γν,
where, for any A ∈ P2(X), νγ(A) = γ(secA) and γν(A) = ν(secA).

Definition 4.12. An approach merotopic space (X, ν) is called regular if one of the following
equivalent conditions holds:

(i) ν(A) = ν({B ⊆ X : there is A ∈ A satisfying ν({A,X−B}) > 0}), for allA ∈ P2(X);

(ii) γ(A) = ν({B ⊆ X : for all A ∈ A, ν({A,B}) = 0}), for all A ∈ P2(X);

(iii) ν(A) = γ({B ⊆ X : for all A ∈ A, ν({A,B}) = 0}), for all A ∈ P2(X);

(iv) γ(A) = γ({B ⊆ X : there is A ∈ A satisfying ν({A,X−B}) > 0}), for allA ∈ P2(X).
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The above equivalences hold by noting that sec {B ⊆ X : there is A ∈ A satisfying
ν({A,X − B}) > 0} = {B ⊆ X : for all A ∈ A, ν({A,B}) = 0} and by the following transitions:
ν(A) = γ(secA) and γ(A) = ν(secA), for all A ∈ P2(X).

Definition 4.13. An approach merotopic space (X, ν) is called separated if, for all A ∈ P2(X),

ν({A ⊆ X : ν({A} ∪ A) = 0}) ≤ ν(A) ∨ γ(A). (4.3)

Proposition 4.14. Every regular approach merotopic space is separated.

Proof. Let (X, ν) be a regular approach merotopic space. Then since {A ⊆ X : ν({A} ∪ A) =
0} ⊆ {B ⊆ X : for all A ∈ A, ν({A,B}) = 0}, therefore

ν({A ⊆ X : ν({A} ∪ A) = 0}) ≤ ν({B ⊆ X : ∀A ∈ A, ν({A,B}) = 0})
= γ(A) ≤ ν(A) ∨ γ(A).

(4.4)

A morphism f in TOP is a retraction if and only if there exists a topological retraction
r and a homeomorphism h such that f = h ◦ r. In other words, the retractions in TOP are (up
to homeomorphism) exactly the topological retractions. Therefore a subspace Y of a space X
is called a retract in TOP if there exists a continuous map f : X → Y with f(y) = y for all
y ∈ Y so that if e : Y → X is an inclusion, then f ◦ e = idY (see [22]).

Proposition 4.15. Let (X, ν) be a regular approach nearness space. Then the map g : X+ → X∗ that
is defined as follows: for B ∈ X+, g(B) = {A ⊆ X : ν({A} ∪ B) = 0} is a retraction.

Proof. Let B ∈ X+. Then secB ⊆ B as B is a grill onX yielding γ(B) = 0 which in turn gives that
ν(g(B)) = 0 applying the separability of ν. Thus g(B) is a ν-cluster. Since B ⊆ g(B), therefore
B = g(B), whenever B ∈ X∗. To prove that g is continuous, let ω ⊆ X+ and B ∈ clX+(ω). Then
we only need to show that

⋂
g(ω) ⊆ g(B). On the contrary if there is an A ∈ ⋂

g(ω) such
that A/∈ g(B), then ν({A} ∪ B)/= 0. But ν(B ∪ {A}) = ν({D ⊆ X : ν({A,X − D}) > 0 or there
is B ∈ B satisfying ν({B,X − D}) > 0}). Taking D = {D ⊆ X : ν({A,X − D}) > 0 or there
is B ∈ B satisfying ν({B,X − D}) > 0}, we get, by regularity of ν, 0/= ν(D)/≤ ν(B) = 0 and so
D/≺B. Since ⋂

ω ⊆ B, therefore D/∈ ⋂
ω. Consequently there exists H ∈ ω such that D/∈H.

Also A ∈ g(H) and ν({A,X −D}) > 0 imply that ν({A} ∪ H) = 0. But H is a grill implying
that X − D ∈ H and therefore ν({A,X − D}) = 0, a contradiction. So, A ∈ g(B) and hence
⋂
g(ω) ⊆ g(B). To show that g is a contraction, let Ω ⊆ P(X+),A =

⋃{⋂ τ : τ ∈ g(Ω)}, and
E = {E ⊆ X : there is A ∈ A satisfying ν({A,X − E}) > 0}. Then E ⊆ ⋃{⋂ω : ω ∈ Ω} : for
if E ∈ E, then there exists A ∈ A such that ν({A,X − E}) > 0, for some E ⊆ X. Suppose that
E/∈ ⋂

ω, for all ω ∈ Ω. Then for ω ∈ Ω, there exists B ∈ ω such that E/∈B which yields that
X − E ∈ B because B is a grill. Thus {A,X − E} ≺ {A} ∪ B, where A ∈ A. So ν({A,X − E}) ≤
ν({A} ∪ B) = 0 which gives that ν({A,X − E}) = 0 for all A ∈ A, a contradiction. Thus
ν∗(g(Ω)) = ν(A) = ν(E) ≤ ν+(Ω).Hence g is a contraction.

5. Concluding Remark and Future Applications

The present paper is a unified study of the categories MET, TOP, ANEAR, AMER, AP, and
AMT. Such type of unified study is relevant as can be seen in [16]. Various examples that



International Journal of Mathematics and Mathematical Sciences 15

are provided support the existence of approach merotopological spaces. Given an approach
merotopological space, we can obtain a new approach merotopological space in general,
employing the method given in Example 3.2(i) and (iv). Since ANEAR ⊆ AMT, therefore
in this paper we have obtained a bunch completion (X+, ν+) of an approach nearness space
(X, ν). In [21], we have obtained a cluster completion (X∗, ν∗) of the same structure. In fact,
X∗ is a retract of X+, for a regular approach nearness space.

In 1988, Smyth [26] suggested that nearness-like concepts provide a suitable vehicle
for the study of problems in Theoretical Computer Science. For a comprehensive account
with references, see Section 11 (Applications to Theoretical Science) in [27]. Using tools from
nearness-like structures, Vakarelov [28] established a topological representation theorem for
a connection-based class of systems. More clearly, all digital images used in computer vision
and computer graphics can be viewed as nontrivial semi-proximity spaces, which can be
seen in [29]. In 2002, work on a perceptual basis for near sets begun, which was motivated by
image analysis. This work was inspired by a study of perception of the nearness of familiar
physical objects in a philosophical manner in a poem entitled “How Near” written in 2002
and published in 2007 [30]. Since an approach merotopology measures how near a collection
of sets is and AMT is a supercategory of almost all of the nearness-like structures, therefore
it is our prediction that applying tools of approach merotopological spaces would help in
obtaining better outputs in such studies of computer science.
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