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We deal with the problem of uniqueness of a meromorphic function sharing one small function
with its k’s derivative and obtain some results.

1. Introduction and Main Results

In this article, a meromorphic function means meromorphic in the open complex plane. We
assume that the reader is familiar with the Nevanlinna theory of meromorphic functions and
the standard notations such as T(r, f), m(r, f), N(r, f),N(r, f), and so on.

Let f and g be two nonconstant meromorphic functions; a meromorphic function
a(z)(/≡∞) is called a small functions with respect to f provided that T(r, a) = S(r, f). Note
that the set of all small function of f is a field. Let b(z) be a small function with respect to f
and g.We say that f and g share b(z) CM(IM) provided that f − b and g − b have same zeros
counting multiplicities (ignoring multiplicities).

Moreover, we use the following notations.
Let k be a positive integer. We denote by Nk)(r, 1/(f − a)) the counting function for

the zeros of f − a with multiplicity ≤ k and by Nk)(r, 1/(f − a)) the corresponding one for
which the multiplicity is not counted. Let N(k(r, 1/(f − a)) be the counting function for the
zeros of f − a with multiplicity ≥ k, and let N(k(r, 1/(f − a)) be the corresponding one for
which the multiplicity is not counted. Set Nk(r, 1/(f − a)) = N(r · 1/(f − a)) +N(2(r, 1/(f −
a)) + · · · +N(k(r, 1/(f − a)). And we define

δp
(
a, f

)
= 1 − lim sup

r−→+∞

Np

(
r, 1/

(
f − a

))

T
(
r, f

) . (1.1)
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Obviously, 1 ≥ Θ(a, f) ≥ δp(a, f) ≥ δ(a, f) ≥ 0. For more details, reader can see
[1, 2].

Brück (see [3]) considered the uniqueness problems of an entire function sharing one
value with its derivative and proved the following result.

Theorem A. Let fbe nonconstant entire function. If f and f ′ share the value 1 CM and if
N(r, 1/f ′) = S(r, f), then (f ′ − 1)/(f − 1) ≡ c for some constant c ∈ C \ {0}.

Yang [4], Zhang [5], and Yu [6] extended Theorem A and obtained many excellent
results.

Theorem B (see[5]). Letf be a nonconstant meromorphic function and, let k be a positive integer.
Suppose that f and f (k) share 1 CM and

2N
(
r, f

)
+N

(
r,

1
f ′

)
+N

(

r,
1

f (k)

)

< (λ + o(1))T
(
r, f (k)

)
, (1.2)

for r ∈ I,where I is a set of infinite linear measure and λ satisfies 0 < λ < 1, then (f (k)−1)/(f−1) ≡ c
for some constant c ∈ C \ {0}.

Theorem C (see[6]). Let f be a nonconstant, nonentire meromorphic function and a(z)(/≡ 0,∞) be
a small function with respect tof. If

(1) f and a(z) have no common poles,

(2) f − a and f (k) − a share the value 0 CM,

(3) 4δ(0, f) + 2(k + 8)Θ(∞, f) > 2k + 19, then f ≡ f (k), where k is a positive integer.

In the same paper, Yu [6] posed four open questions. Lahiri and Sarkar [7] and Zhang
[8] studied the problem of a meromorphic or an entire function sharing one small function
with its derivative with weighted shared method and obtained the following result, which
answered the open questions posed by Yu [6].

Theorem D (see[8]). Let f be a non-constant meromorphic function and, let k be a positive integer.
Also let a(z)(/≡ 0, ∞) be a meromorphic function such that T(r, a) = S(r, f). Suppose that f −a and
f (k) − a share 0 IM and

4N
(
r, f

)
+ 3N2

(

r,
1

f (k)

)

+ 2N

(

r,
1

(
f/a

)′

)

< (λ + o(1))T
(
r, f (k)

)
, (1.3)

for 0 < λ < 1, r ∈ I, and I is a set of infinite linear measure. Then (f (k) − a) \ (f − a) ≡ c for some
constant c ∈ C \ {0}.

In this article, we will pay our attention to the value sharing of f and [fn](k) that
share a small function and obtain the following results, which are the improvements and
complements of the above theorems.
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Theorem 1.1. Let k(≥1), n(≥1) be integers and let f be a non-constant meromorphic function. Also
let a(z)(/≡ 0, ∞) be a small function with respect to f . If f and [fn](k) share a(z) IM and

4N
(
r, f

)
+ 2N

(

r,
1

(
f/a

)′

)

+ 2N2

(

r,
1

(
fn

)(k)

)

+N

(

r,
1

(
fn

)(k)

)

≤ (λ + o(1))T
(
r, (fn)(k)

)
,

(1.4)

or f and [fn](k) share a(z) CM and

2N
(
r, f

)
+N

(

r,
1

(
f/a

)′

)

+N2

(

r,
1

(
fn

)(k)

)

≤ (λ + o(1))T
(
r,
(
fn)(k)

)
, (1.5)

for 0 < λ < 1, r ∈ I, and I is a set of infinite linear measure, then (f − a) \ ([fn](k) − a) ≡ c, for some
constant c ∈ C \ {0}.

Theorem 1.2. Let k(≥1), n(≥1) be integers and f be a non-constant meromorphic function. Also let
a(z)(/≡ 0, ∞) be a small function with respect to f . If f and [fn](k) share a(z) IM and

(2k + 6)Θ
(∞, f

)
+ 3Θ

(
0, f

)
+ 2δk+2

(
0, f

)
> 2k + 10, (1.6)

or f and [fn](k) share a(z) CM and

(k + 3)Θ
(∞, f

)
+ δ2

(
0, f

)
+ δk+2

(
0, f

)
> k + 4, (1.7)

then f ≡ (fn)(k).

Clearly, Theorem 1.1 improves and extends Theorems B andD, while 1.2 improves and
extends Theorem C.

2. Some Lemmas

In this section, first of all, we give some definitions which will be used in the whole paper.

Definition 2.1. Let F and G be two meromorphic functions defined in C; assume, that F and
G share 1 IM; let z0 be a zero of F − 1 with multiplicity p and a zero of G − 1 with multiplicity
q. We denote byN1)

E (r, 1/F − 1)the counting function of the zeros of F − 1 where p = q = 1
and byN(2

E (r, 1/F − 1)the counting function of zeros of F − 1 where p = q ≥ 2. We denotes
by NL(r, 1/F − 1) the counting function of the zeros of F − 1 where p > q ≥ 1; each point is
counted according to its multiplicity, andNL(r, 1/F −1) denote its reduced form. In the same
way, we can defineN1)

E (r, 1/G − 1), N(2
E (r, 1/G − 1), NL(r, 1/G − 1), and so on.
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Definition 2.2. In this paperN0(r, 1/F ′) denotes the counting function of the zeros ofF ′ which
are not the zeros of F and F − 1, and N0(r, 1/F ′) denotes its reduced form. In the same way,
we can define N0(r, 1/G′) and N0(r, 1/G′).

Next we present some lemmas which will be needed in the sequel. Let F,G be two non-
constant meromorphic functions defined in C. We shall denote byH the following function:

H =
(
F ′′

F ′ − 2
F ′

F − 1

)
−
(
G′′

G′ − 2
G′

G − 1

)
. (2.1)

Lemma 2.3 (see[2]). Let F,G be two nonconstant meromorphic functions defined in C. If F and G
are sharing 1 IM, then

N(r,H) ≤ N(r, F) +N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+NL

(
r,

1
F − 1

)

+NL

(
r,

1
G − 1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+ S

(
r, f

)
.

(2.2)

If F and G are sharing 1 CM, then

N(r,H) ≤ N(r, F) +N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+ S

(
r, f

)
. (2.3)

Lemma 2.4 (see[1]). Let f be a meromorphic function and a is a finite complex number. Then

(i) T(r, 1/(f − a)) = T(r, f) +O(1),

(ii) m(r, f (k)/f (l)) = S(r, f) for k > l ≥ 0,

(iii) T(r, f) ≤ N(r, f) +N(r, 1/(f − a1(z))) +N(r, 1/(f − a2(z))) + S(r, f),

where a1(z) a2(z) are two meromorphic functions such that T(r, ai) = S(r, f), (i = 1, 2).

Lemma 2.5 (see[7]). Let f be a non-constant meromorphic function, and k, p are two positive
integers. Then

Np

(

r,
1

f (k)

)

≤ Np+k

(
r,

1
f

)
+ kN

(
r, f

)
+ S

(
r, f

)
. (2.4)

Lemma 2.6 (see[9]). Let f be a non-constant meromorphic function and let n be a positive integer.
P(f) = anf

n+an−1fn−1+· · ·+a1f where ai are meromorphic functions such that T(r, ai) = S(r, f)(i =
1, 2, . . . , n), and an /≡ 0. Then

T
(
r, P

(
f
))

= nT
(
r, f

)
+ S

(
r, f

)
. (2.5)
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3. Proof of Theorem 1.1

Let F = f(z)/a(z), G = (fn(z))(k)/a(z), then

F − 1 =
f(z) − a(z)

a(z)
,

G − 1 =
(fn(z))(k) − a(z)

a(z)
.

(3.1)

From the definitions of F,G and recalling that F and G share value 1 IM(CM), we get

N
1)
E

(
r,

1
F − 1

)
= N

1)
E

(
r,

1
G − 1

)
+ S

(
r, f

)
,

N
(2
E

(
r,

1
F − 1

)
= N

(2
E

(
r,

1
G − 1

)
+ S

(
r, f

)
,

(3.2)

NL

(
r,

1
F − 1

)
≤ N

(
r,

1
F

)
+N(r, F) + S(r, F), (3.3)

N

(
r,

1
F − 1

)
= N

(
r,

1
G − 1

)
+ S(r, F) = N

1)
E

(
r,

1
F − 1

)
+N

(2
E

(
r,

1
F − 1

)

+NL

(
r,

1
F − 1

)
+NL

(
r,

1
G − 1

)
+ S

(
r, f

)
.

(3.4)

We will distinguish two cases below.

Case 1 (H /≡ 0). From (2.1) it is easy to see that m(r,H) = S(r, f).

Subcase 1.1. Suppose that f and (fn)(k) share a(z) IM. According to (3.1), F and G share 1 IM
except the zeros and poles of a(z). By (3.1), we have

N(r, F) = N
(
r, f

)
+ S

(
r, f

)
, N(r, G) = N

(
r, f

)
+ S

(
r, f

)
. (3.5)

Let z0 be a simple zero of F−1 andG−1, but a(z0)/= 0,∞. Through a simple calculation
we know that z0 is a zero ofH, so

N
1)
E

(
r,

1
F − 1

)
≤ N

(
r,

1
H

)
+ S

(
r, f

) ≤ T(r,H) + S
(
r, f

) ≤ N(r,H) + S
(
r, f

)
. (3.6)
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From (3.4)–(3.6) and Lemma 2.3, we have

N

(
r,

1
G − 1

)
≤ N(r, F) + 2NL

(
r,

1
F − 1

)
+ 2NL

(
r,

1
G − 1

)
+N(2

(
r,

1
F

)

+N(2

(
r,

1
G

)
+N

(2
E

(
r,

1
F − 1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+ S

(
r, f

)

≤ N
(
r, f

)
+ 2N

(
r,

1
F ′

)
+ 2NL

(
r,

1
G − 1

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
G′

)
+ S

(
r, f

)
.

(3.7)

It follows by the second fundamental theorem, (3.5), and (3.7) that

T(r, G) ≤ N(r, G) +N

(
r,

1
G

)
+N

(
r,

1
G − 1

)
−N0

(
r,

1
G′

)
+ S(r, G)

≤ 2N
(
r, f

)
+ 2N

(
r,

1
F ′

)
+ 2N

(
r,

1
G′

)
+N

(
r,

1
G

)
+ S

(
r, f

)
.

(3.8)

By Lemma 2.5, we have

T
(
r,
(
fn)(k)

)
≤ 4N

(
r, f

)
+ 2N

(

r,
1

(
f/a

)′

)

+ 2N2

(

r,
1

(
fn

)(k)

)

+N

(

r,
1

(
fn

)(k)

)

+ S
(
r, f

)
,

(3.9)

which contradicts (1.4).

Subcase 1.2. Suppose that f and (fn)(k) share a(z) CM.
Let z0 be a simple zero of F − 1 and G − 1, but a(z0)/= 0,∞. By a simple calculation, we

can still get H(z0) = 0. Therefore

N1)

(
r,

1
F − 1

)
≤ N

(
r,

1
H

)
+ S

(
r, f

) ≤ N(r,H) + S
(
r, f

)
. (3.10)

Noting thatN1)(r, 1/(F − 1))= N1)(r, 1/(G − 1)) + S(r, f), by (3.4) and Lemma 2.3, we
can deduce

N

(
r,

1
G − 1

)
≤ N(r, F) +N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)

+N(2

(
r,

1
F − 1

)
+ S

(
r, f

)
.

(3.11)
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By the second fundamental theorem, (3.5), and (3.11), we have

T(r, G) ≤ N(r, G) +N

(
r,

1
G

)
+N

(
r,

1
G − 1

)
−N0

(
r,

1
G′

)
+ S(r, G)

≤ 2N
(
r, f

)
+N2

(
r,

1
G

)
+N

(
r,

1
F ′

)
+ S

(
r, f

)
.

(3.12)

Taking into account (3.1), we have

T
(
r, (fn)(k)

)
≤ 2N

(
r, f

)
+N

(

r,
1

(
f/a

)′

)

+N2

(

r,
1

(fn)(k)

)

+ S
(
r, f

)
. (3.13)

This contradicts (1.5).

Case 2 (H ≡ 0). Integration yields

1
F − 1

≡ A

G − 1
+ B, (3.14)

where A, B are constants and A/= 0. It is easy to see that F and G share 1 CM. Now we claim
that B = 0.

If N(r, f)/=S(r, f), then by (3.14) we get B = 0. So our claim holds. Hence we can
assume that

N
(
r, f

)
= S

(
r, f

)
. (3.15)

If B /= 0, then we can rewrite (3.14) as

1
F − 1

≡ B(G − 1 +A/B)
G − 1

. (3.16)

So

N

(
r,

1
G − 1 +A/B

)
= N(r, F) = S

(
r, f

)
. (3.17)

If A/=B, then by Lemma 2.4 and (3.17) we have

T(r, G) ≤ N(r, G) +N

(
r,

1
G

)
+N

(
r,

1
G − 1 +A/B

)
+ S

(
r, f

)

≤ N

(
r,

1
G

)
+ S

(
r, f

) ≤ T(r, G) + S
(
r, f

)
.

(3.18)
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Hence

T(r, G) = N

(
r,

1
G

)
+ S

(
r, f

)
, (3.19)

that is,

T
(
r, (fn)(k)

)
= N

(

r,
1

(fn)(k)

)

+ S
(
r, f

)
. (3.20)

This is a contradiction with (1.4) and (1.5). If A = B, then from (3.14) we get 1/(F − 1) =
AG/(G − 1). We rewrite it as

− a2

fn
(
Af − a − aA

) ≡ (fn)(k)

fn
. (3.21)

So by Lemmas 2.4 and 2.6 and (3.15), we have

(n + 1)T
(
r, f

)
= T

(

r,

(
fn

)(k)

fn

)

+ S
(
r, f

)

≤ nN

(
r,

1
f

)
+ kN

(
r, f

)
+ S

(
r, f

) ≤ nT
(
r, f

)
+ S

(
r, f

)
.

(3.22)

This implies that T(r, f) = S(r, f), since n ≥ 1. This is impossible. Hence our claim is right. So
(G − 1)/(F − 1) = A. Theorem 1.1 is, thus, completely proved.

4. Proof of Theorem 1.2

The proof is similar to the proof of Theorem 1.1. Let F and G be defined as in Theorem 1.1;
hence, we have (3.1)–(3.5). We still distinguish two cases.

Case 1. H /≡ 0

Subcase 1.1. Suppose that f and (fn)(k) share a(z) IM, then we can still get (3.6) and (3.7).
Then by the second fundamental theorem, Lemma 2.3, and (3.5)we have

T(r, F) ≤ N(r, F) +N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
−N0

(
r,

1
F ′

)
+ S(r, F)

≤ 2N
(
r, f

)
+ 2N

(
r,

1
G′

)
+ 2N

(
r,

1
F ′

)
+N

(
r,

1
F

)
+ S

(
r, f

)
.

(4.1)
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Applying Lemma 2.5 to the above inequality and noticing the definition of F,G,we get

T
(
r, f

) ≤ (2k + 6)N
(
r, f

)
+ 3N

(
r,

1
f

)
+ 2Nk+2N

(
r,

1
f

)
+ S

(
r, f

)

≤ [
(2k + 6)

(
1 −Θ

(∞, f
))

+ 3 − 3Θ
(
0, f

)
+ 2 − 2δk+2

(
0, f

)]
T
(
r, f

)
+ S

(
r, f

)
.

(4.2)

This implies that

(2k + 6)Θ
(∞, f

)
+ 3Θ

(
0, f

)
+ 2δk+2

(
0, f

) ≤ 2k + 10. (4.3)

This contradicts (1.6).

Subcase 1.2. Suppose that f and (fn)(k) share a(z) CM. Similarly as above, we can easily
obtain N1)(r, 1/(F − 1)) = N1)(r, 1/(G − 1))+ S(r, f); by Lemma 2.3, we can deduce

N

(
r,

1
F − 1

)
≤ N(r, F) +N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
F ′

)

+N0

(
r,

1
G′

)
+N(2

(
r,

1
G − 1

)
+ S

(
r, f

)
.

(4.4)

So by the second fundamental theorem, (4.4), and using Lemma 2.5 again, we have

T(r, F) ≤ N(r, F) +N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
−N0

(
r,

1
F ′

)
+ S

(
r, f

)

≤ 2N
(
r, f

)
+N2

(
r,

1
f

)
+N

(
r,

1
G′

)
+ S

(
r, f

)

≤ [
(k + 5) − (k + 3)Θ

(∞, f
) − δ2

(
0, f

) − δk+2
(
0, f

)]
T
(
r, f

)
+ S

(
r, f

)
.

(4.5)

This implies that

(k + 3)Θ
(∞, f

)
+ δ2

(
0, f

)
+ δk+2

(
0, f

) ≤ k + 4. (4.6)

This contradicts (1.7).

Case 2 (H ≡ 0). Similarly, we can also get (3.14). Next we claim that B = 0. IfN(r, f)/=S(r, f),
then it follows that B = 0 from (3.14). Hence, we may assume that (3.15) holds. If
B /= 0 and B /= − 1, then

A

G − 1
≡ −BF − (B + 1)

F − 1
, (4.7)

and so

N(r, G) = N

(
r,

1
F − (B + 1)/B

)
. (4.8)
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Again by second fundamental theorem and (4.4) we have

T(r, F) = N

(
r,

1
F

)
+ S

(
r, f

)
, (4.9)

that is,

T
(
r, f

) ≤ N

(
r,

1
f

)
+ S

(
r, f

) ≤ T
(
r, f

)
+ S

(
r, f

)
. (4.10)

Then we have T(r, f) = N(r, 1/f), and it follows that Θ(0, f) = 0 and from (3.15) we have
Θ(∞, f) = 1; then with (1.6) and (1.7) we may deduce δk+2(0, f) > 1. It is impossible, and we
can assume that B = −1; thus, we can get

(fn)(k)

a
− (A + 1) ≡ −A · a · 1

f
. (4.11)

It shows that T(r, f) = T(r, (fn)(k)).
If A = −1, by (4.11), then we have f · (fn)(k) ≡ a2, which with the above equality may

lead to T(r, f) = S(r, f),which is impossible. IfA/= −1, then by second fundamental theorem,
Lemma 2.5, (3.15), and (4.11)we have

T
(
r, (fn)(k)

)
≤ N

(

r,
1

(
fn

)(k) − a(A + 1)

)

+N

(

r,
1

(
fn

)(k)

)

+ S
(
r, f

)
,

≤ kN
(
r, f

)
+Nk+2

(
r,

1
f

)
+ S

(
r, f

) ≤ T
(
r, f

)
+ S

(
r, f

)
,

(4.12)

which with (3.15) may deduce Nk+2(r, 1/f) = T(r, f) + S(r, f); so δk+2(o, f) = 0, which with
Θ(∞, f) = 1 and (1.6) may deduce Θ(0, f) > 1, which is impossible. Hence our claim holds.

Next we will prove that A = 1. From (3.17)we have G − 1 ≡ A(F − 1). Then

N

(
r,

1
G

)
= N

(
r,

1
F + 1/A − 1

)
. (4.13)

If A/= 1, then we have

T(r, F) ≤ N(r, F) +N

(
r,

1
F

)
+N

(
r,

1
G

)
+ S

(
r, f

)
. (4.14)

By Lemma 2.5, we get

T
(
r, f

) ≤ (k + 1)N
(
r, f

)
+N

(
r,

1
f

)
+Nk+2

(
r,

1
f

)
+ S

(
r, f

)
. (4.15)
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It implies that

(k + 1)Θ
(∞, f

)
+ Θ

(
0, f

)
+ δk+2

(
0, f

) ≤ k + 2. (4.16)

Combining (4.16) with (1.6) yields

2(k + 2) + Θ
(
0, f

) ≥ 2(k + 3)Θ
(∞, f

)
+ 3Θ

(
0, f

)
+ 2δ2+k

(
0, f

) − 4Θ
(∞, f

)
> 2k + 6, (4.17)

that is, Θ(0, f) > 2. This is a contradiction.
Combining (4.16) with (1.7) yields

k + 2 + 2Θ
(∞, f

) ≥ (k + 3)Θ
(∞, f

)
+ Θ

(
0, f

)
+ δk+2

(
0, f

)
> k + 4, (4.18)

that is, Θ(∞, f) > 1, which is also a contradiction. Hence A = 1 and f ≡ (fn)(k). Now
Theorem 1.2 has been completely proved.
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