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Some properties of fuzzy quasimetric spaces are studied. We prove that the topology induced
by any ̂M-complete fuzzy-quasi-space is a ̂d-complete quasimetric space. We also prove Baire’s
theorem, uniform limit theorem, and second countability result for fuzzy quasi-metric spaces.

1. Introduction and Preliminaries

Zadeh [1] introduced the concept of fuzzy sets as a new way to represent vagueness in our
everyday life. Since then, many authors regarding the theory of fuzzy sets and its applications
have developed a lot of literatures. Fuzzy Metric Spaces and existence of fixed points in
fuzzy metric spaces have been emerged as two of the major of research activities. As natural,
several mathematicians have introduced fuzzy metric spaces in different ways (Kramosil
and Michálek [2], Erceg [3], Deng [4], Kaleva and Seikkla [5]). The definition proposed
by Kramosil and Michalek in 1975 [2] is the most accepted one which is closely related to
a class of probabilistic metric spaces [6]. Following this definition, a lot of research have
been done on the existence of fixed points for the mappings under different conditions.
Many authors have investigated and modified the definition of this concept and defined
a Hausdorff topology on this fuzzy metric space. They showed that every metric induces
a fuzzy metric, and, conversely, every fuzzy metric space generates a metrizable topology
[2, 7–9].

Recently, many authors observed that various topological properties, fixed point
theorems, and contraction mappings in metric spaces may be exactly translated into fuzzy
metric spaces [10–21].

On the other hand, Künzi in [22] showed that the concepts from the theory of
quasimetric spaces can be used as an efficient tool to solve several problems from theoretical
computer science, approximation theory, topological algebra, and so forth.
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In [23], Gregori and Romaguera introduced and studied the class of fuzzy quasimetric
spaces as a natural generalization of the corresponding notion of fuzzy metric space to the
quasimetric. Our paper continues to study such spaces and investigates some properties of
this class. In particular, we address issues related to compactness, completeness, and Baire’s
theorem.

A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous t-norm [6] if ∗ satisfies the
following conditions:

(1) ∗ is associative and commutative.

(2) ∗ is continuous.
(3) a ∗ 1 = a for every a ∈ [0, 1].

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d,with a, b, c, d ∈ [0, 1].

Example 1.1. The four basic t-norms are the following.

(1) The Lukasierviez t-norm: ∗L:I × I → I, a ∗L b = max{a + b − 1, 0}.
(2) The product t-norm: a ∗P b = ab.

(3) The minimum t-norm: a ∗M b = min{a, b}.
(4) The weakest t-norm, the drastic product:

∗D(a, b) =
⎧

⎨

⎩

min{a, b} if max(a, b) = 1,

0 otherwise.
(1.1)

Using pointwise ordering, we have the inequalities ∗D < ∗L < ∗P < ∗M.
Let X be a nonempty set, ∗ a continuous t-norm, andM a fuzzy set in X ×X × [0,+∞).

For all x, y, z ∈ X and t, s > 0, consider the following conditions.

(FM-1) M(x, y, 0) = 0

(FM-2) M(x, x, t) = 1 for all t > 0

(FM-3) x = y ifM(x, y, t) = M(y, x, t) = 1 for all t > 0

(FM-3′) x = y ifM(x, y, t) = 1 for all t > 0

(FM-4) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0

(FM-5) M(x, y, ·) : [0,+∞) → [0, 1] is left continuous.

(FM-6) M(x, y, t) = M(y, x, t) for all t > 0.

A fuzzy quasimetric on X [23] is a pair (M, ∗) satisfying the conditions (FM-1), (FM-
2), (FM-3), (FM-5), and (FM-6). If M satisfies conditions (FM-1), (FM-2), (FM-4), (FM-5),
and (FM-6), then we call (M, ∗) a T1 fuzzy quasimetric on X. If M satisfies conditions (FM-
1), (FM-2), (FM-3), (FM-5), (FM-6), and (FM-7), then we call (M, ∗) a fuzzy metric space. A
fuzzy quasimetric space is a triple (X,M, ∗) such that X is a nonempty set and (M, ∗) is a
fuzzy quasimetric on X.
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Remark 1.2. (1) It is clear that fuzzy metric⇒ T1 fuzzy quasimetric ⇒ fuzzy quasimetric.
(2) If (M, ∗) is a fuzzy quasimetric on X, then M−1 is also fuzzy quasimetric on X,

where M−1 is the fuzzy-set in X ×X × [0,+∞) such that M−1(x, y, t) = M(y, x, t).
(3) If (M, ∗) is a fuzzy quasimetric on X, then ̂M(x, y, t) = min{M(x, y, t),

M−1(x, y, t)} is a fuzzy metric on X.
(4) If (X,M, ∗) is a fuzzy quasimetric space, then for each x, y,∈ X the function

M(x, y, ·) is nondecreasing.

Proof of (4). Let x, y ∈ X and 0 ≤ t < s. By property (FM-4) M(x, y, t) = M(x, x, s − t) ∗
M(x, y, t) ≤ M(x, y, s).

Example 1.3 (see [23]). Let (X, d) be a quasimetric space. Define a ∗ b = ab for any a, b,∈ [0, 1],
and letMd be the function defined on X ×X × [0,+∞) by

Md

(

x, y, t
)

=
t

t + d
(

x, y
) . (1.2)

Then (X,Md, ∗) is a fuzzy quasimetric space andMd is called the fuzzy quasimetric induced
by d. Also the topology τd induced by the metric d and the topology τMd induced by the
fuzzy quasimetric (M, ∗) are the same.

We call a fuzzy quasimetric (M, ∗) on X a non-Archimedean if M(x, z, t) ≥
min{M(x, y, t),M(y, z, t)} for all x, y, z ∈ X, t > 0. It is obvious to see that if M is a non-
Archimedean fuzzy quasimetric on X, then (M, ∗M) is a fuzzy quasimetric on X.

The proof of the following theorem is straightforward. Therefore, it is omitted.

Theorem 1.4. Let Md be the standard fuzzy quasimetric of the quasimetric d on X. Then, Md is
non-Archimedean if and only if d is non-Archimedean.

Definition 1.5. Let (X,M, ∗) be a fuzzy quasimetric space and let r ∈ (0, 1), t > 0, and x ∈ X.
The set BM

r (x, t) = {y ∈ X : M(x, y, t) > 1 − r} is called the open ball with center x and
radius r with respect to t. It is clear that x ∈ BM

r (x, t).

Lemma 1.6. Let (X,M, ∗) be a fuzzy quasimetric space. Than every open ball BM
r (x, t) is an open

set.

Proof. Let y ∈ BM
r (x, t). ThenM(x, y, t) > 1 − r. Set r0 = M(x, y, t0). Since r0 > 1 − r, ∃s ∈ (0, 1)

such that r0 > 1 − s > 1 − r. Now given r0 and s such that r0 > 1 − s, ∃r1 ∈ (0, 1) such that
r0 ∗ r1 > 1 − s. Consider the open ball BM

1−r1(y, t − t0). We claim BM
1−r1(y, t − t0) ⊂ BM

r (x, t). Let
z ∈ BM

1−r1(y, t−t0), thenM(y, z, t−t0) > r1. So,M(x, z, t) ≥ M(x, y, t0)∗M(y, z, t−t0) ≥ r0∗r1 ≥
1 − s > 1 − r. Thus z ∈ BM

r (x, t).

2. Quasimetrization and Completeness Results

By Remark (2)–(4), if x ∈ X, 0 < r1 ≤ r2 < 1, and 0 < t1 ≤ t2, then BM
r1 (x, t1) ⊆ BM

r2 (x, t2). Hence
the following theorem and lemma are easy to prove.
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Theorem 2.1. Let (X,M, ∗) be a fuzzy (T1) quasimetric space. Then τM = {A ⊂ X : for each
x ∈ A, ∃t > 0 and r ∈ (0, 1) such that BM

r (x, t) ⊂ A} is a T0(T1) topology on X.

Lemma 2.2. Let (X,M) be a fuzzy quasimetric space. Then for each x ∈ X, {B(x, 1/n, 1/n) : n ∈ N}
is a neighborhood base at X for the topology τM.Moreover, the topology τM is first countable.

Proposition 2.3 (A.H. Frink [24]). T1 space admits a quasiuniformity with a countable base if it is
quasimetrizable.

We can use a similar proof of [7, Theorem 1] to prove the following theorem.

Theorem 2.4. Let (X,M, ∗) be a fuzzy quasimetric space. Then (X, τM) is a quasimetric space.

Proof. LetUn = {(x, y) ∈ X ×X : M(x, y, 1/n) > 1 − (1/n), n ∈ N}.We claim that {Un : n ∈ N}
is a base for quasiuniformity U on X whose induced topology coincides with τM. It is clear
that {(x, x) : x ∈ X} ⊆ Un,Un+1 ⊆ Un. Also (by continuity of ∗) for each n ∈ N, there is an
m such that m > 2n and (1 − (1/m)) ∗ (1 − (1/m)) > 1 − (1/n). Then Um ◦ Um ⊆ Un. Let
(x, y), (y, z) ∈ UM. From (Remark (2)–(4), M(x, z, 1/n) ≥ M(x, z, l/m). So, M(x, z, 1/n) ≥
M(x, y, 1/m) ∗M(y, z, 1/m) ≥ (1 − (1/m)) ∗ (1 − (−(1/m) > 1 − 1/n. Therefore (x, z) ∈ Un.
Thus {Un : n ∈ N} is a base for a quasiuniformity U on X. Since for each x ∈ X and n ∈ N,
Un(x) = {y ∈ X : M(x, y, 1/n) > 1 − (1/n)} = B(x, y, 1/n), we deduce from Lemma 2.2 that
the topology induced byU coincides with τM. By Proposition 2.3, (X, τM) is a quasimetrizable
space.

Corollary 2.5. A topological space is quasimetrizable if and only if it admits a compatible fuzzy
quasimetric.

Definition 2.6. Let (X,M, ∗) be a fuzzy quasimetric space. Then

(1) a sequence {xn} in X is said to be ̂M-Cauchy if for each δ > 0 and each t > 0, there
exists n0 ∈ N such that ̂M(xn, xm, t) > 1 − δ, for all n,m ≥ n0;

(2) a sequence {xn} in XM-converges to x if and only ifM(xn, x, t) → 1 as n → ∞ for
all t > 0;

(3) a sequence {xn} in X̂M-converges to x if and only if ̂M(xn, x, t) → 1 as n → ∞ for
all t > 0;

(4) (X,M, ∗) is ̂M-complete if every ̂M-Cauchy sequence is ̂M-convergent with respect
to τ

̂M.

Remark 2.7. It is easy to prove that in a fuzzy quasimetric space (X,M, ∗) if a sequence {xn}
is ̂M-Cauchy, then limn→∞ ̂M(xn, xn+m, t) = 1 for each m ∈ N and t > 0.

Theorem 2.8. Let (X,M, ∗) be a fuzzy quasimetric space such that every ̂M-Cauchy sequence in X

has an ̂M-convergent subsequence. Then (X,M, ∗) is ̂M-complete.

Proof. Suppose {xn} is a ̂M-Cauchy sequence and {xnk} a subsequence of {xn} such that ̂M-
converges to x. To prove that xn

̂M-converges to x, let t > 0 and δ ∈ (0, 1). Choose r ∈ (0, 1)
such that (1 − r) ∗ (1 − r) ≥ 1 − δ. Since {xn} is ̂M-Cauchy sequence, there is n0 ∈ N such that
̂M(xm, xn, t/2) > 1 − r for all m,n ≥ n0. Since xnk

̂M-converges to x, there is k1 ∈ N such that
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k1 > n0, ̂M(xk1 , x, t/2) > 1 − r. This implies that if n ≥ n0, then ̂M(xn, x, t) ≥ ̂M(xn, xk1 , t/2) ∗
̂M(xk1 , x, t/2 > (1 − r) ∗ (1 − r) ≥ 1 − δ. Therefore, xn

̂M-converges to x and hence (X,M, ∗) is
̂M-complete.

Let d be a quasimetric on X, Md the corresponding fuzzy quasimetric, and ̂d =
max{d(p, q), d(q, p)} for each p, q ∈ X. Since a sequence {xn} is an ̂Md-Cauchy sequence
in X if and only if {xn} is a ̂d-Cauchy sequence in X, it is not difficult to prove the following
lemma; hence we omit the proof.

Lemma 2.9. Let (X, d) be a quasimetric space. Then (X, d) is ̂d-complete if and only if (X,Md) is
̂Md-complete.

Definition 2.10. Let (X,M, ∗) be a fuzzy quasimetric space. A collection {Fn}n∈N
is said to have fuzzy

diameter zero if for each r ∈ (0, 1) and each t > 0, there exists n0 ∈ N such thatM(x, y, t) > 1 − r for
all x, y ∈ Fn0 .

It is clear that a nonempty subset F of a fuzzy quasimetric space X has fuzzy diameter
zero if and only if F is a singleton set.

For self-containment and clarity, we give the proofs of the following theorems even
though they share similarities to those in [9].

Theorem 2.11. A fuzzy quasimetric space (X,M, ∗) is ̂M-complete if and only if every nested
sequence {Fn}n∈N

of nonempty closed sets with fuzzy diameter zero has nonempty intersection.

Proof. First, suppose that the given condition is satisfied. We claim that (X,M, ∗) is ̂M-
complete. Let {xn} be a ̂M-Cauchy sequence inX. Set Bn = {xk : k � n} and Fn = Bn, then we
claim that {Fn} has a fuzzy diameter zero. For given s ∈ (0, 1) and t > 0, we choose r ∈ (0, 1)
such that (1− r) ∗ (1− r) ∗ (1− r) > 1− s. Since {xn} is ̂M-Cauchy sequence, there exists n0 ∈ N

such that ̂M(xn, xm, (1/3)t) > 1 − r for all m,n � n0. Therefore, ̂M(x, y, (1/3)t) > 1 − r for all
x, y ∈ Bn0 . Let x, y ∈ Fn0 . Then there exist sequences {x′

n} and {y′
n} in Bn0 such that x′

n → x
and y′

n → y. Hence x′
n ∈ B(x, r, t/3) and y′

n ∈ B(y, r, t/3) for sufficiently large n. Now we
have ̂M(x, y, t) � ̂M(x, x′

n, t/3)∗ ̂M(x′
n, y

′
n, t/3)∗ ̂M(y′

n, y, t/3) > (1−r)∗(1−r)∗(1−r) > 1−s.
Therefore, ̂M(x, y, t) > 1 − s for all x, y ∈ Fn0 . Thus {Fn} has fuzzy diameter zero and hence
by hypothesis

⋂

n∈N
Fn is nonempty.

Take x ∈ ⋂

n∈N
Fn. We show that xn → x. Then, for r ∈ (0, 1) and t > 0, there exists

n1 ∈ N such that ̂M(xn, x, t) > 1 − r for all n � n1. Therefore, for each t > 0, ̂M(xn, x, t) → 1
as n → ∞ and hence xn → x. Therefore, (X,M, ∗) is ̂M-complete.

Conversely, suppose that (X,M, ∗) is ̂M-complete and {Fn}n∈N
is nested sequence of

non empty closed sets with fuzzy diameter zero. For each n ∈ N, choose a point xn ∈ Fn. We
claim that {xn} is a ̂M-Cauchy sequence. Since {Fn} has fuzzy diameter zero, for t > 0 and
r ∈ (0, 1), there exists n0 ∈ N such that ̂M(x, y, t) > 1 − r for all x, y ∈ Fn0 . Since {Fn} is a
nested sequence, ̂M(xn, xm, t) > l − r for all n,m � n0. Hence {xn} is a ̂M-Cauchy sequence.
Since (X,M, ∗) is ̂M-complete, xn → x for some x ∈ X. Therefore, x ∈ Fn = Fn for every n,
and hence x ∈ ⋂

n∈N
Fn. This completes the proof.

Remark 2.12. The element x ∈ ⋂

n∈N
Fn is unique. For if there are two elements x, y ∈ ⋂

n∈N
Fn

since {Fn} has a fuzzy diameter zero, for each fixed t > 0,M(x, y, t) > 1 − 1/n for each n ∈ N.
This implies thatM(x, y, t) = 1 and hence x = y.
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Note that the topologies induced by the standard fuzzy quasimetric and the
corresponding quasimetric are the same. So we have the following.

Corollary 2.13. Let (X, d) be a quasimetric space and ̂d = max{d(p, q), d(q, p)} for each p, q ∈ X.
Then (X, d) is ̂d-complete if and only if every nested sequence {Fn}n∈N

of nonempty closed sets with
diameter tending to zero has a nonempty intersection.

Theorem 2.14. Every separable fuzzy quasimetric space is second countable.

Proof. Let (X,M, ∗) be the given separable fuzzy quasimetric space. Let A = {xn : n ∈ N} be
a countable dense subset of X. Consider the family B = {B(xj , 1/k, 1/k) : j, k ∈ N}. Then B
is countable. We claim that B is a base for the family of all open sets in X. Let U be any open
set in X and let x ∈ U. Then there exist t > 0 and r ∈ (0, I) such that B(x, r, t) ⊂ U. Since
r ∈ (0, 1), we can choose a s ∈ (0, 1) such that (1 − s) ∗ (l − s) > 1 − r. Take m ∈ N such that
1/m < min{s, t/2}. Since A is dense in X, there exists xj ∈ A such that xj ∈ B(x, 1/m, 1/m).
Now, if y ∈ B(xj , 1/m, 1/m), thenM(x, y, t) � M(x, xj , t/2)∗M(y, xj , t/2) � M(x, xj , 1/m)∗
M(y, xj , 1/m) � (1 − 1/m) ∗ (1 − 1/m) � (1 − s) ∗ (1 − s) > 1 − r. Thus, y ∈ B(x, r, t) ⊂ U and
hence B is a base.

Remark 2.15. Since second countability is a hereditary property and second countability
implies separability, we obtain the following: every subspace of a separable fuzzy quasimetric
space is separable.

A fuzzy quasimetric (X,M, ∗) is said to be totally bounded if for all ε > 0, x ∈ X, there
exist x1, x2, x3, . . . , xn ∈ X and i ∈ {1, 2, 3, . . . , n} such that ̂M(x, xi, t) > 1 − ε for all t > 0.

We can use proofs similar to that in [24, Proposition 7.2, Proposition 7.5, and Corollary
7.6] to prove the following theorems.

Theorem 2.16. Let (X,M, ∗) be a fuzzy quasimetric space. Then (X, τM) is a second countable if and
only if it is totally bounded.

A fuzzy quasimetric M on a set X is continuous provided that for each x ∈ X the
function M(x, ·, t) : X → [0, 1] defined byM(x, ·, t)(p) = M(x, p, t) is a continuous function.

Theorem 2.17. Let (X,M, ∗) be a fuzzy quasimetric space and let x ∈ X, t > 0. Then M(x, ·, t) is a
continuous function if and only if for each δ > 0, BM

δ
(x, t) ⊂ {y ∈ X : M(x, y, t) ≥ 1 − δ}.

Theorem 2.18. Let (X,M, ∗) be a fuzzy quasimetric space. If M(·, x, t) is an upper semicontinuous
function for each x ∈ X, t > 0, then (X, τM) is metrizable.

Definition 2.19. Let X be any nonempty set and (Y,M, ∗) a fuzzy quasimetric space. Then a
sequence {fn} of functions from X to Y is said to converge uniformly to a function f from X
to Y if given t > 0 and r ∈ (0, 1), there exists n0 ∈ N such that M(fn(x), f(x), t) > 1 − r for all
n � n0 and for all x ∈ X.

Theorem 2.20 (Uniform Limit Theorem). Let fn : X → Y be a sequence of continuous functions
from a topological space X to a fuzzy quasimetric space (Y,M, ∗). If {fn} converges uniformly to f:
X → Y , then f is continuous.
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Proof. Let V be on open set of Y and let x0 ∈ f−1(V ). We want to find a neighborhood U of
x0 such that f(U) ⊂ V . Since V is open, there exist t > 0 and r ∈ (0, 1) such that we choose
a s ∈ (0, 1) such that (1 − s) ∗ (1 − s) ∗ (1 − s) > 1 − r. Since {fn} converges uniformly to f ,
given t > 0 and s ∈ (0, 1), there exists n0 ∈ N such that M(fn(x), f(x), t/3) > 1 − s for all
n � n0 and for all x ∈ X. Since fn is continuous for all n ∈ N, there exists a neighborhood U
of x0 such that fn(U) ⊂ B(fn(x0), s, t/3). Hence M(fn(x), fn(x0), t/3) > 1 − s for all x ∈ U.
NowM(f(x), f(x0), t) � M(f(x), fn(x), t/3)∗M(fn(x), fn(x0), t/3)∗M(fn(x0), f(x0), t/3) �
(1 − s) ∗ (1 − s) ∗ (1 − s) > 1 − r. Thus, f(x) ∈ B(f(x0), r, t) ⊂ V for all x ∈ U. Hence f(U) ⊂ V
and so f is continuous.

Remark 2.21. Let (X,M, ∗) be a fuzzy quasimetric space. It is easy to prove that if t > 0 and
r, s ∈ (0, 1) such that (1 − s) ∗ (1 − s) ≥ (1 − r), then B(x, s, t/2) ⊂ B(x, r, t).

Lemma 2.22. A subsetA of a fuzzy quasimetric space (X,M, ∗) is nowhere dense if and only if every
nonempty open set in X contains an open ball whose closure is disjoint from A.

Proof. Let U be a nonempty open subset of X. Then there exists a nonempty open set V such
that V ⊂ U and V ∩A/=φ. Let x ∈ V . Then there exist r ∈ (0, 1) and t > 0 such that B(x, r, t) ⊂
V . Choose s ∈ (0, 1) such that (1 − s) ∗ (1 − s) � 1 − r. By Remark 2.21, B(x, s, t/2) ⊂ B(x, r, t).
Thus B(x, s, t/2) ⊂ U and B(x, s, t/2) ∩A = φ.

Conversely, suppose A is not nowhere dense. Then int(A)/=φ, so there exists a
nonempty open set U such that U ⊂ A. Let B(x, r, t) be an open ball such that B(x, r, t) ⊂ U.
Then B(x, r, t) ∩A/=φ. This is a contradiction.

Theorem 2.23 (Baire’s Theorem). Suppose {Un}n∈N
is a sequence of dense open subsets of a ̂M-

complete fuzzy quasimetric space (X,M, ∗). Then ⋂

n∈N
Un is also dense in X.

Proof. Let V be a nonempty open set of X. SinceU1 is dense in X,V ∩U1 /=φ. Let x1 ∈ V ∩U1.
Since V ∩U1 is open, there exist r1 ∈ (0, 1) and t1 > 0 such that B(x1, r1, t1) ⊂ V ∩U1. Choose
r ′1 < r1 and t′1 = min(t1, 1) such that B(x1, r

′
1, t

′
1) ⊂ V ∩U1. SinceU2 is dense in X,B(x1, r

′
1, t

′
1)∩

U2 /=φ. Let x2 ∈ B(x1, r
′
1, t

′
1) ∩ U2. Since B(x1, r

′
1, t

′
1) ∩ U2 is open, there exist r2 ∈ (0, 1) and

t2 > 0 such that B(x2, r2, t2) ⊂ B(x1, r
′
1, t

′
1) ∩U2. Choose r ′2 < r2 and t′2 = min{t2, 1/2} such that

B(x2, r
′
2, t

′
2) ⊂ B(x1, r

′
1, t

′
1) ∩ U2. Continuing in this manner, we obtain a sequence {xn} in X

and a sequence {t′n} such that 0 < t′n < 1/n and B(xn, r
′
n, t

′
n) ⊂ B(xn−1, r ′n−1, t

′
n−1) ∩Un.

Now we claim that {xn} is a ̂M-Cauchy sequence. For a given t > 0 and ε > 0, choose
n0 ∈ N such that 1/n0 − t and 1/n0 < ε. Then for n � n0 and m � n, ̂M(xn, xm, t) �
̂M(xn, xm, 1/n) � 1 − 1/n > 1 − ε.

Therefore, {xn} is a ̂M-Cauchy sequence. Since X is ̂M-complete, there exists x ∈ X

such that xn → x. Since xk ∈ B(xn, r
′
n, t

′
n) for k � n, we obtain x ∈ B(xn, r

′
n, t

′
n). Hence

x ∈ B(xn, r
′
n, t

′
n) ⊂ B(xn−1, r ′n−1, t

′
n−1) ∩Un for all n. Therefore, V ∩ (

⋂

n∈N
Un)/=φ.

Hence
⋂

n∈N
Un is dense in X.

3. Compactness Results

Theorem 3.1. Every T1 fuzzy quasimetric space is Hausdorff.
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Proof. Let (X,M, ∗) be a fuzzy quasimetric space. Let x and y be two distinct points inX. Then
0 < M(x, y, t) < 1. Put r1 = M(x, y, t) and r = max{r1, 1 − r1}. For each r0 ∈ (r, 1), there exists
r2 such that r2 ∗ r2 � r0. Put r3 = max{r2, 1 − r2} and consider the open balls B(x, 1 − r3, t/2)
and B(y, 1 − r3, t/2). Then clearly B(x, 1 − r3, t/2) ∩ B(y, 1 − r3, t/2) = φ. For if there exists
z ∈ B(x, 1 − r3, t/2) ∩ B(y, 1 − r3, t/2), then r1 = M(x, y, t) � M(x, z, t/2) ∗ M(z, y, t/2) �
r3 ∗ r3 � r2 ∗ r2 � r0 > r1, which is a contradiction. Hence (X,M, ∗) is Hausdorff.

Definition 3.2. Let (X,M, ∗) be a T1 fuzzy quasimetric space. A subset A of X is said to be
IF-bounded if there exist t > 0 and r ∈ (0, 1) such that M(x, y, t) > 1 − r for all x, y ∈ A.

Remark 3.3. Let (X,M, ∗) be a T1 fuzzy quasimetric space induced by a quasimetric d on X.
Then A ⊂ X is IF-bounded if and only if it is bounded.

Theorem 3.4. Every compact subset A of a T1 fuzzy quasimetric space (X,M, ∗) is IF-bounded.

Proof. Let A be a compact subset of a fuzzy quasimetric space X. Fix t > 0 and 0 < r < 1.
Consider an open cover {B(x, r, t) : x ∈ A} ofA. SinceA is compact, there exist x1, x2, . . . , xn ∈
A such that A ⊆ ⋃n

i=1 B(xi, r, t). Let x, y ∈ A.
Then x ∈ B(xi, r, t) and y ∈ B(xj , r, t) for some i, j. Thus we have M(x, xi, t) > 1 −

r,M(y, xj , t) > 1 − r. Now, let α = min{M(xi, xj , t) : 1 � i, j � n}. Then α > 0. Now, we have
M(x, y, 3t) � M(x, xj , t) ∗ M(xi, xj , t) ∗ M(xj , y, t) � (1 − r) ∗ (1 − r) ∗ α > 1 − s1 for some
0 < s1 < 1. Taking s = max{s1, 1 − s1} and t′ = 3t, we have M(x, y, t′) > 1 − s for all x, y ∈ A.
Hence A is IF-bounded.

From Remark 3.3 and Theorems 3.1 and 3.4, we have the following corollary.

Corollary 3.5. In a T1 fuzzy quasimetric space, every compact set is closed and bounded.

4. Conclusion

This work studies the concept of fuzzy quasimetric spaces which was introduced by Gregori
and Romaguera in 2004 [23] as a natural generalization of quasimetric spaces. A topological
space is quasimetrizable if and only if it admits a compatible fuzzy–quasimetric. This has
been expressed in our first main result, Corollary 2.5. Moreover, in Corollary 2.13, we have
proved that the ̂M-completeness of quasimetric space can be characterized in terms of
a nested sequence of nonempty closed sets with diameter tending to zero which have
nonempty intersection in a natural way. Following the proofs of Fletcher and Lindgren
[24] of a metrization theorem of quasimetrizable spaces, we can prove a similar result as
in Theorem 2.18. We also obtained Baire’s Theorem, Uniform Limit Theorem, and a second
countability result for fuzzy quasimetric spaces.

One important point which has been left for further study is the behaviour of fuzzy
quasimetric spaces under mappings.
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