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The dynamics of many epidemiological models for infectious diseases that spread in the sexually
active population presents a crucial period: the period of the influx or recruitment of susceptible.
In this paper, we assume that the recruitment of susceptible is done among the juvenile group. We
propose a dynamical system to modelize the disease spread, and we study the dynamical behavior
of this system. Then, the controllability of the system is studied. We prove that the survival rate
allows to control the dynamic of the system. Numerical simulations are given to illustrate the
results.

1. Introduction

In recent years several authors have described interesting dynamical behavior of SIR
epidemiological models in which the population can be portioned into two age structured
classes: immature individuals and mature ones (see, e.g., [1, 2]). The HIV disease belongs to
the class of diseases which spread essentially among sexually active individuals. Thus, it is
meaningful to consider stage structure in epidemiological models. The population is initially
divided into two compartments: those, who are mature individuals or adults and those who
are in youthful age or immature individuals. All population groups are subject to the risk of
dying from AIDS.

We denote by

(i) B the birth density in the population;

(ii) J the density of the immature individuals;
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(iii) M the density of the mature individuals;

(iv) N the density of the population;

(v) D the density of the dead individuals;

(vi) d the probability of mature individuals to die of HIV;

(vii) m the probability of immature individuals becoming mature individuals;

(viii) n the probability of mature individuals to die of other causes.

Then a simple model with compartments and a single population with stage structure reads:

N
B

J
m

M

d

n
D

D

(1.1)

N = J +N (1.2)

For describing the disease transmission, a dynamics between the compartments due to
the disease has to be specified. A traditional SIR model is introduced. Each member of
the population is considered to belong to one of the three classes: susceptible individuals
(denoted by S), infected individuals (denoted by I) and removed individuals (denoted by
R). Each individual begins in the class S, only to move to the class I after coming into contact
with an infected person. Infected individuals eventually recover from the disease due to a
medical treatment and then move to the class R and are unable to be infected one again. The
disease is fueled by supply of susceptible issued from the compartment J . The size of the
population is denoted byN(t) and can be expressed as the following sum:

N(t) = S(t) + I(t) + R(t) + J(t). (1.3)

The SIR model reads

dS

dt
= r1m(1 − τ)J(t) − Fi(I, t)S + r2S,

dI

dt
= Fi(I, t)S − r3(σ + α)I,

dR

dt
= r3σI − μR,

(1.4)

where Fi(I, t) is the incidence function which may vary periodically because a part of the
infected population represented by the truck drivers, for example, moves regularly. It is usual
to take Fi(I, t) = Ω(t)I in whichΩ(t) is the transmission rate; it is either constant, or a periodic
modulation about a constant value, for example, Ω(t) = Ω0(1 + Ω1 sin(ωt)); m is the rate of
immature individuals becoming mature individuals; r1 is the survival rate of the immature
individuals; r2 is the survival rate of the mature individuals; r3 is the survival rate of the
infected mature individuals and σ is the rate of the survivors subjected to the antiretroviral
treatment. α is the rate of death due to the disease; τ is the fraction of infected immature from
their mother; and μ is the rate of death due to other causes.
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The aim of this work is to provide simple conditions for the parameters of the SIR
model (1.4) that makes possible to control the infected individuals. By using the notion of the
exterior contingent cone to a convex subset C of R

2, we prove that system (1.4) is controllable
with three of its parameters. Whatever the initial conditions are, system (1.4) reaches the
subset C and remains in C. The paper is organized as follows: the introduction ends with an
existence and uniqueness result. In Section 2 the controllability of system (1.4) is studied and
several numerical results are presented in connection with available data concerning Mali.

The dynamic behavior of (1.4) is determined by the variation of I and R. According to
(1.3) the susceptible compartment is expressed as S(t) =N(t) − I(t) −R(t) − J(t), thus (1.4) is
reduced to

dI

dt
= Fi(I, t)[N(t) − J(t) − R(t) − I(t)] − r3(σ + α)I,

dR

dt
= r3σI − μR.

(1.5)

Since μ > 0, a new timescale t′ = μt is introduced. System (1.5) becomes:

dI

dt′
= Ω

(
t′
)
I(N − J − R − I) − r ′3(σ + α)I,

dR

dt′
= r ′3σI − R.

(1.6)

We assume that Δ = N(t) − J(t) − R(t) is constant. Defining γ = r ′3σ, and omitting the prime
notations, system (1.6) becomes:

dI

dt
= Ω(t)I(Δ − I) − γI − γα

σ
I,

dR

dt
= γI − R.

(1.7)

Theorem 1.1. Assumes that Ω is a C1(R+;R) function with bounded primitive. For every initial
condition (I∗, R∗) ∈ R

2
+, the solution (I(·), R(·)) : R+ → R

2
+ of (1.7) belongs to K where K is a

compact subset of R
2
+.

Proof. Set θ = γ(1 + α/σ), by integrating the first equation of (1.7) we have

I(t) =
I0e

∫ t
0(Ω(τ)Δ−θ)dτ

1 +
∫ t
0 I0e

∫ t
0(Ω(τ)Δ−θ)dτ ds

. (1.8)

LetM be a bound from below of a primitive of Ω, the we have

0 ≤ I(t) < I0e
MΔt

eθt
(
1 +

∫ t
0 I0e

∫ t
0(Ω(τ)Δ−θ)dτ ds

) = I. (1.9)
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From dR/dt = γI − Rwe deduce

R(t) = R0e
−t + γe−t

∫ t

0
esI(s)ds

≤ R0e
−t + γe−t

(
et − 1

)
I

< R0e
−t + γI = R.

(1.10)

So the Poincaré-Bendixson’s theorem [3] claims either the solution (I, R) of system
(1.7) tends to a critical point when the time t goes to infinity, or it is a periodic solution.

A complete bifurcation analysis is beyond the objectives of this paper. For a precise
study of the orbits the reader is referred to [4] or [5], for example.

2. Controllbility of the Model with Its Coefficients

The questionwe address in this section reads: does there exist parameters which allow system
(1.7) to evolve toward a fixed region C of the plane (I, R), for any given initial condition? For
0 < x1 fixed, we define the convex domainC of the plane and its associated truncated cylinder
CT by:

C =
{
(x1, x2) ∈ R

2
+; x1 ≤ x1; and

3
4
x1 ≤ x2

}
,

CT =
{
(t, x1, x2) ∈ R

3
+; 0 ≤ t ≤ T ; x1 ≤ x1; and

3
4
x1 ≤ x2

}
.

(2.1)

Definition 2.1 (contingent and exterior contingent cone). The contingent cone toCT at xTCT (x)
is constituted by vectors v ∈ R

3 verifying

lim
h→ 0+

inf
dCT (x + hv,CT )

h
= 0, (2.2)

where dCT denotes the distance to the subset CT . The exterior contingent cone TCT (x) is
constituted by vectors v ∈ R

3 verifying

lim
h→ 0+

inf
dCT (x + hv,CT ) − dCT (x)

h
≤ 0. (2.3)

When a point x belongs to the boundary of CT the definition of exterior contingent
cone is equivalent to the definition of the contingent cone. We have the following result [6,
Theorem 3.4.1 page 102].

Lemma 2.2. The exterior contingent cone toCT at point x is constituted by vectors v ∈ R
3 satisfying:

(x − PCT x, v) ≤ 0; (2.4)

where (·, ·) denotes the Euclidean inner product, and PCT stands for the orthogonal projection on CT .
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Before stating the result of controllability, we give some technicalities. Setting

F(t, x1, x2) =

⎛

⎜
⎜
⎝

1

Ω(t)x1(Δ − x1) − x1γ
(
1 +

α

σ

)

γx1 − x2

⎞

⎟
⎟
⎠, (2.5)

we have the following.

Lemma 2.3. Let X ∈ {(t, x1, x2), 0 < t < T ; 0 < x1; 0 < x2} ∩ Cc
T be fixed. Then X − PCTX is the

outward normal to CT whenever it exists, and for 0 ≤ s ≤ 1 is given by

X − PCTX =

⎛

⎜
⎜
⎝

0
1

−4
3
s

⎞

⎟
⎟
⎠. (2.6)

Furthermore, a sufficient condition for the vector F(X) to belong to the exterior contingent cone TCT

read as follows:

x1

[
Ω(t)(Δ − x1) − γ

(
1 +

α

σ

)
+ 1

]
≤ 0. (2.7)

Proof. From the definition of the exterior contingent cone (Figure 1) TCT we have:

∀s ∈ [0, 1], −Ω(t)x2
1 + x1

(
Ω(t)Δ − γ

(
1 +

α

σ

)
− 4s

3

)
≤ 4s

3
x2. (2.8)

A sufficient condition independent of s for condition (2.8) to be satisfied is obtained when
x2 ≤ (3/4)x1 with 0 ≤ x1 and read as follows:

−Ω(t)x2
1 + x1

(
Ω(t)Δ − γ

(
1 +

α

σ

))
≤ −x1. (2.9)

Theorem 2.4. Let 0 ≤ max0≤tΩ(t) = Ω, and let parameters α, 0 < x1 < Δ, σ be fixed. Whatever
(I0, R0) ∈ R

2 are, choose r ′3 in such a way that γ = r ′3σ verifies:

0 <
(
γ − 3

4

)
; Ω

(
Δ − x1

) − γ
(
1 +

α

σ

)
+ 1 ≤ 0. (2.10)

Then, there exists 0 ≤ Tr such that for all time t ≥ Tr , the solution (I(t), R(t)) of problem (1.7) belongs
to the subset C.



6 International Journal of Mathematics and Mathematical Sciences

v

x

x1

x1

CT

t

T

x2

Figure 1: Exterior contingent cone.

Proof. Set Y = (t, I(t), R(t)), then problem (1.7) is expressed as the following autonomous
system:

dY (t)
dt

= F(Y (t)); 0 < t,

Y (0) = (0, I0, R0).
(2.11)

Define the function G(t, I) by

G(t, I) = Ω(t)(Δ − I) − γ
(
1 +

α

σ

)
+ 1. (2.12)

Function G is a decreasing function with respect to I for all time. Thus if G(t, x1) ≤ 0, it will
be negative for all I > x1. Condition (2.10) implies that F2(t, I, R) is negative and F3(t, I, R)
is positive for all 0 < t; x1 < I; 0 ≤ R. Theorem 1.1 asserts the existence of (I(t), R(t)) for all
time t. A simple continuity argument implies that the subset C defined in (2.1) is reached
for a time Tr by the trajectory starting at the point (I0, R0). Fix T > Tr , Lemma 2.2 claims
that condition (2.10) is sufficient for F(Y ) ∈ TCT (Y ) when Y belongs to the boundary of CT .
Nagumo’s theorem applies for equation (2.11) with initial conditions (Tr, I(tr), R(Tr)), and
we get (I(t), R(t)) ∈ C for Tr ≤ t [7, Theorem 1, page 27].

As consequence of Theorem 2.4 the SIR models allow to improve the efficiency of
medical policies. The sufficient condition (2.10) characterizes the treatment effort through
the survival rate r3 of the infected mature individuals recovered with the rate σ.

Let us end this section with numerical examples. The system (1.7) is discretized with a
Runge-Kutta’s method (RK4). By using available data from Mali in system (1.7)we have the
following values for parameters: Δ = 6066573; γ = 0.25; α = 0.01;x1 = 1.5 105. The following
graphs represent the phase portrait of system (1.7). When the time elapses, the values of the
function I are along the x-axis and the values of the function R are along the y-axis. There
is no limit cycle, and the last point of the simulation is represented with the green point.
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Figure 2: (a) Ω(Δ − x1) − γ(1 + α/σ) ≤ −1, (b) Ω(Δ − x1) − γ(1 + α/σ) + 1 > 0.
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Figure 3: (a) (3/4)x1 ≤ x2 is not satisfied with r3 = 0.85; (b) (3/4)x1 ≤ x2 is satisfied with r3 = 2.

The initial conditions are (I0, R0) = (1.59 105, 5.8 104) (denoted by the red point). In Figure 2
we have considered the case (a) with Ω = 4.3 10−8; σ = 0.5. The sufficient condition (2.10)
is not satisfied, nevertheless, it can be checked that after a long time the computed solution
(I(t), R(t)) has a first component less than or equal to x1. In case (b), we have Ω = 4.6 10−8;
σ = 0.8. The sufficient condition (2.10) is not satisfied. Here the trajectory is outside the cone
CT .

The cone CT , roughly speaking, characterizes the treatment effort. The sufficient
condition (2.10) is basically governed by two parameters: the transmission rate, and
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the survival rate r3 of the infected mature individuals recovered at a rate σ. In the following
examples, keeping the same values for parameters as in case (a) except for r3. For r3 = 0.85,
The sufficient condition (2.10) is not satisfied, and we have in Figure 3(a) the trajectory
outside CT . For r3 = 2, the sufficient condition (2.10) is satisfied, and the trajectory is
concentrated in a neighborhood of the disease-free equilibrium (0, 0) see Figure 3(b).

3. Conclusion

In this paper, it is shown by using the exterior contingent cone and a viability theorem,
simple convex subsets are reachable with a SIR model by adjusting some coefficients. Thus,
it will be possible to predict with a certain accuracy the evolution level of the disease by
adjusting one or another of parameters. In our example, it is important to see that, if the
survival rate r3 attains 2%, the disease almost goes back at a level disease-free equilibrium.
The controllability of the dynamical system has been established by using the exterior
contingent cone technique. The mathematical model could be improved by introducing new
compartments for describing, for example, the transmission of the disease between mothers
and children. If the exterior contingent cone, for ordinary differential system of higher
dimension, can be defined in the same way as before, it has to be calculable that which is
an open question in general.
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[6] M. Picq, Résolution de l’équation du transport sous contraintes, Thèse de Doctorat, Institut National des
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