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We extend the notion of a spectral scale to n-tuples of unbounded operators affiliated with a
finite von Neumann Algebra. We focus primarily on the single-variable case and show that many
of the results from the bounded theory go through in the unbounded situation. We present the
currently available material on the unbounded multivariable situation. Sufficient conditions for a
set to be a spectral scale are established. The relationship between convergence of operators and
the convergence of the corresponding spectral scales is investigated. We establish a connection
between the Akemann et al. spectral scale (1999) and that of Petz (1985).

1. Introduction and Preliminaries

The notion of the spectrum of a self-adjoint operator has proved to be of great interest and
use in various branches of mathematics. It is natural to try and extend the notion to n-tuples
of operators. In 1999, Akemann et al. came up with the notion of a spectral scale [1, page 277].
The setting is as follows. Let M be a finite von Neumann algebra equipped with a normal,
faithful tracial state, τ . Elements of M can be thought of as bounded operators on some
Hilbert Space, H, [2, page 308]. For a given self-adjoint b ∈ M the corresponding spectral
scale, B, which we will define below, yields information about the spectrum of b in a nice
geometric way. Many of the results can be extended to n-tuples of self-adjoint operators in
M. The primary aim of this paper is to explain several of the results on spectral scales, and
show how they can be extended when, instead of considering b ∈M, we consider g ∈M∗.

In Section 2, we consider the single-variable case which is fairly well developed. A
sequence of technical lemmas culminating in Lemma 2.10 are required before we can make
significant progress in the single-variable case. We illustrate with examples. Finally, we
establish sufficient conditions to guarantee that a subset of R

2 is a spectral scale.
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In Section 3, we consider the geometric structure of the n-dimensional spectral scale.
It turns out that there is little difficulty in generalizing from the bounded situation.

In Section 4, we discuss certain invariance properties of the spectral scale. Significant
difficulties arise in the unbounded situation although we believe that, if Conjecture 4.5 is
correct, many of the difficulties would be removed.

Section 5 addresses some miscellaneous results. First, we address the natural question
of whether the convergence of a sequence of operators implies the convergence of the
corresponding spectral scales. Second, we establish a relationship between two logically
distinct objects [1, 3] which were both defined by their authors as “spectral scales”.

Finally, in Section 6 we outline some possible future directions of research.
Let us start with some preliminary definitions.

Definition 1.1. Let H be a Hilbert space. Let M be a subalgebra of B(H). If M is closed in
the weak operator topology, self-adjoint, and contains 1, thenM is a von Neumann algebra [2,
page 308].

LetM+ denote the set of positive elements ofM.

Definition 1.2. Let τ :M+ → [0,∞] be a function such that for a, b, aα ∈M+ and λ, μ ∈ [0,∞]
we have:

τ
(
λa + μb

)
= λτ(a) + μτ(b),

τ(a∗a) = τ(aa∗),

aα ↑ a =⇒ τ(aα) ↑ τ(a) [normal],

τ(a) = 0 =⇒ a = 0 [faithful],

τ(1) <∞ [finite].

(1.1)

(The last equation implies that ∞/∈ Im(τ)).
Then τ is a faithful, finite, normal trace onM+ [4, pages 504-5].

Theorem 1.3. Let τ be a faithful, finite, normal trace onM+. Since any element ofM can be written
as a finite linear combination of positive elements ofM, τ can be extended to a linear functional on all
ofM[5, page 309].

Two projections p, q inM are equivalent (p ∼ q) if there exists u ∈ M such that uu∗ = p
and u∗u = q. A projection p is finite if p ∼ q ≤ p ⇒ p = q.M is finite if the projection 1 is finite
[5, page 296]. Throughout, we will assume thatM is finite.

Further, we will assume that there exists a faithful, finite, normal trace τ of M, with
τ(1) = 1; that is, τ is a faithful, normal, tracial state onM.

A crucial property of τ is that “things” commute in trace—that is, although, in general
ab /= ba, for a, b ∈M, we do have the equality τ(ab) = τ(ba) [4, page 517].

LetM+
1 = {a ∈M | 0 ≤ a ≤ 1}. Let (b1, b2, . . . , bn) be an n-tuple of self-adjoint operators

inM. Let

Ψ :M −→ C
n+1

a 
−→ (τ(a), τ(b1a), τ(b2a), . . . , τ(bna)).
(1.2)
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Definition 1.4 (see [1, page 260]). Ψ(M+
1 ) := Bis called the spectral scale of(b1, b2, . . . , bn) with

respect to τ .

Now τ is normal. FurtherΨ is linear and continuous with respect to the weak operator
topology. Moreover, M+

1 is convex and compact in the weak operator topology: τ(M+
1 ) ∈ R

and τ(bia) = τ(a1/2bia1/2) ∈ R for i = 1, . . . , n. Therefore B is a compact, convex subset of
R
n+1.

There have been a large number of results concerning spectral scale. Some papers on
the subject include those in [1, 6, 7].

In 2004, Akemann and David Sherman conjectured that, if we replace B with the set

{(
τ(a), g1(a), g2(a), . . . , gn(a)

) | a ∈M+
1

}
, (1.3)

where each gi ∈ M∗ is self-adjoint, we will yield similar results. This paper verifies this, and
generalizes much of the first paper on spectral scales [1].

Some results on “noncommutative integration” will prove useful in our exposition.
We will use Nelson’s 1972 [8] paper on the subject with specific theorem and page references
as appropriate.

In his paper, Nelson defines L1(M), the predual of M [8, Section 3, pages 112 ff.].
The duality is given by the bilinear form (a, b) 
→ τ(ab) = τ(ba) [8, Section 3, page 112] for
a ∈M and b ∈ L1(M). Now ba ∈ L1(M) [8, page 112 ff.], and Nelson shows that elements of
L1(M) are closed, densely defined operators affiliated withM [8, Theorem 1, page 107, and
Theorem 5, page 114]. It follows that a bounded linear functional, g ∈M∗ can be represented
by a (possibly unbounded) linear operator b affiliated withM and we get the equality g(a) =
τ(ba) for every a ∈M.

2. Spectral Scale Theory for Unbounded
Operators—the Single-Variable Case

We are now prepared to discuss how the spectral scale theory generalizes. We start with the
single-variable situation.

Definition 2.1. Let g ∈M∗ be a self-adjoint linear functional. Let

B
(
g
)
=

{(
τ(a), g(a)

) | a ∈M+
1

}
. (2.1)

Then B(g) is the spectral scale of g with respect to τ .

From the theory of noncommutative integration, we see that B(g) = {(τ(a), τ(ba)) |
a ∈ M+

1} for some operator b affiliated with M. Since g is self-adjoint, b too will be self-
adjoint, and hence, as with the original spectral scale, our generalized spectral scale is a
compact, convex subset of R

2.

Notation 1. We will often write B for B(g).

The following definition was suggested to the author in conversation by Akemann.

Definition 2.2 (Akemann). If b is bounded, we will call g an operator functional.
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Our main goal in this section is to show that g is an operator functional if and only if
the slopes of the lower boundary function of B are all finite. We remark that Akemann et al.
have already shown the “only if” part of this statement [1, Section 1, pages 261–274]. For this
reason, we may assume throughout that b is unbounded, and show that the lower boundary
curve of B has, as a consequence, an infinite slope. To get there, we will need a number of
preliminary results.

Proposition 2.3. B is mapped onto itself by a reflection through the point (1/2, τ(b)/2).

Proof. Let a ∈M+
1 . Then (τ(a), τ(ba)) ∈ B. Therefore

(τ(1 − a), τ(b(1 − a))) = (1 − τ(a), τ(b) − τ(ba)) ∈ B. (2.2)

Thus the map υ : (x0, x1) 
→ (1 − x0, τ(b) − x1) takes Ψ(a) to Ψ(1 − a) and hence takes B onto
itself. The fixed point of υ is (1/2, τ(b)/2), and the points (x0, x1) and (1−x0, τ(b)−x1) lie on
a straight line that passes through (1/2, τ(b)/2). The straight line is given by the equation

y − x1 =
(
τ(b) − 2x1
1 − 2x0

)
(x − x0). (2.3)

Note also that υ2 is the identity map on R
2. Hence, υ(B) = B and υ reflects B through the

point (1/2, τ(b)/2).

For the next several results, we will need the unbounded spectral theorem for self-
adjoint operators. We state it here in the functional calculus form.

Theorem 2.4 (see vonNeumann in [9, page 562]). Let b be a (densely defined) self-adjoint operator
in H with domain D(b). Then ∃! algebraic ∗-homomorphism φ takes bounded Borel functions on R

into B(H) such that the following hold.

(a) φ is norm continuous.

(b) Let {hn(x)}n∈N
be a sequence of bounded Borel functions with hn(x) → x as n → ∞ for

each x and |hn(x)| ≤ |x| for every x ∈ R and n ∈ N. Then for ψ ∈ D(b), φ(hn)ψ → bψ as
n → ∞. The convergence is in norm.

(c) If hn(x) → h(x) pointwisely, and the sequence {||hn||∞}n∈N
is bounded, then φ(hn) →

φ(h) strongly.

(d) If bψ = λψ, then φ(h)ψ = h(λ)ψ.

(e) If h ≥ 0, then φ(h) ≥ 0.

For a given h, a bounded Borel function on R, it is customary to write φ(h) as h(b). In
other words, the “φ” is understood. For now it is more convenient to write φ explicitly.

Definition 2.5. For s ∈ R let φ(χ(−∞,s)) = p−s and φ(χ(−∞,s]) = p+s . More generally, if h is a
characteristic function on a Borel subset of R, then φ(h) is a projection; such projections are
referred to as spectral projections [9, pages 234, 267].

For the most part, we will only need spectral projections obtained from intervals. Note
that, for s ∈ R, p+s − p−s is nonzero on the domain of b (and hence all of H) if and only if s is
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an eigenvalue of b. Also, since Borel functions commute with respect to multiplication and φ
is a homomorphism, Im(φ) is an Abelian subalgebra of B(H). Assume now that b is affiliated
with our finite von Neumann algebra, M. In this case it turns out that Im(φ) is an Abelian
subalgebra ofM. This follows from the way that φ is constructed.

Lemma 2.6. Let c ∈ [p−s , p
+
s ]. Then

(b − s1)(1 − c) = (b − s1)(1 − p+s
) ≥ 0,

(s1 − b)c = (s1 − b)p−s ≥ 0.
(2.4)

Proof. Using the decomposition 1 = p−s + (p+s − p−s ) + (1 − p+s ), we can write

b =

⎛

⎜⎜
⎝

b1 0 0

0 s 0

0 0 b2

⎞

⎟⎟
⎠,

c =

⎛

⎜⎜
⎝

1 0 0

0 c′ 0

0 0 0

⎞

⎟⎟
⎠.

(2.5)

Hence,

(b − s1)(1 − c) =
⎛

⎝
b1 − s1 0 0

0 0 0
0 0 b2 − s1

⎞

⎠

⎛

⎝
0 0 0
0 1 − c′ 0
0 0 1

⎞

⎠ = (b − s1)(1 − p+s
)
. (2.6)

(Of course, these equalities only make sense on the domain of b.)
For everyN > s we get:

xχ(s,N] ≥ sχ(s,N],

φ
(
xχ(s,N]

) ≥ sφ(
χ(s,N]

)
,

lim
N→∞

φ
(
xχ(s,N]

) ≥ lim
N→∞

sφ
(
χ(s,N]

)
,

b
(
1 − p+s

) ≥ s(1 − p+s
)
.

(2.7)

Therefore b(1 − p+s ) ≥ s(1 − p+s ) and hence (b − s1)(1 − p+s ) ≥ 0. The other statement in
this lemma follows via a similar argument.

Lemma 2.7. Let h be a characteristic function of a bounded Borel subset of R. Then Im(φ(h)) ⊂
D(b).
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Proof. Let hn be a sequence of bounded Borel functions such that limn→∞hn(x) = x for all
x ∈ R and |hn(x)| ≤ |x|. By the Spectral theorem,

φ(hn)ψ −→ bψ (2.8)

for every ψ ∈ D(b). Note that hn(x)h(x) converges to xh(x) for every x. Since xh(x) := k(x)
is a bounded Borel function, φ(k) ∈ B(H). For ψ ∈ D(b), ξ ∈ H, we have

〈
bψ, φ(h)ξ

〉
= lim

n→∞
〈
φ(hn)ψ, φ(h)ξ

〉
= lim

n→∞
〈
φ(hhn)ψ, ξ

〉
=

〈
ψ,

(
φ(k)

)∗
ξ
〉
. (2.9)

Hence φ(h)ξ ∈ D(b∗) and b∗φ(h)ξ = (φ(k))∗ξ. Since b is self-adjoint, we have the desired
result.

Corollary 2.8. The following set relations hold:

⋃

t>s

(
p−t − p+s

)
H ⊂ (

D(b) ∩ (
1 − p+s

)
H

)
,

⋃

t<s

(
p−s − p+t

)
H ⊂ (

D(b) ∩ (
p−s

)
H

)
.

(2.10)

Lemma 2.9. The range projection of (b − s1)(1 − p+s ) is 1 − p+s . The range projection of (s1 − b)p−s is
p−s .

Proof. Let q be the range projection of (b − s1)(1 − p+s ). Let {hn}n∈N
be a sequence of bounded

Borel functions on R such that limn→∞hn(x) = xfor all x ∈ R, n ∈ N. Let h(x) = χ(s,∞)(x).
Then φ(h) = 1 − p+s . From the Spectral theorem, we have

φ(hn)ψ −→ bψ ∀ψ ∈ D(b),

φ(hn)φ(h)ψ −→ b
(
1 − p+s

)
ψ

(
by Lemma 2.7

)
,

φ(hn)
(
φ(h)

)2
ψ −→ b

(
1 − p+s

)
ψ,

φ(h)φ(hn)φ(h)ψ −→ b
(
1 − p+s

)
ψ.

(2.11)

Taking the limit as n → ∞ on the left side, we get

(
1 − p+s

)
b
(
1 − p+s

)
ψ = b

(
1 − p+s

)
ψ, (2.12)

and therefore

(
1 − p+s

)
(b − s1)(1 − p+s

)
ψ = (b − s1)(1 − p+s

)
ψ (2.13)

for every ψ ∈ D(b).
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We have shown that q ≤ 1−p+s . For t > s let qt be the range projection of (b−s1)(p−t −p+s ).
By the same reasoning as above, qt ≤ p−t − p+s . Also,

qb
(
p−t − p+s

)
= qb

(
1 − p+s

)(
p−t − p+s

)
= b

(
1 − p+s

)(
p−t − p+s

)
= b

(
p−t − p+s

)
. (2.14)

Hence, qt ≤ q. Similarly, for t1 ≥ t2 > s, we have qt1 ≥ qt2 .
Now b(p−t − p+s ) = φ(hχ(s,t)) ∈ B(H) by Lemma 2.7. Therefore, (b − s1)(p−t − p+s ) is

a bounded operator. In fact, (b − s1)(p−t − p+s ) ≥ 0 on (b − s1)(p−t − p+s )H := Ht. We show
that Ht is an invariant subspace of H under (b − s1)(p−t − p+s ). Suppose that η ∈ Ht and η ⊥
Im(((b − s1)(p−t − p+s ))Ht). Then for every ξ ∈ Ht,

〈
(b − s1)(p−t − p+s

)
ξ, η

〉
= 0,

〈
(b − s1)ξ, η〉 = 0,

〈
ξ, (b − s1)η〉 = 0,

(b − s1)η = 0,

(2.15)

since b /= s1 inHt, and η = 0.
Hence, Im((b − s1)(p−t − p+s )) = Im(qt). Thus,

qt = p−t − p+s −→ 1 − p+s (2.16)

as t → ∞. Since qt ≤ q for every t,

1 − p+s = lim
t→∞

qt ≤ q. (2.17)

But we already know that (1 − p+s ) ≥ q and so equality holds.
The second statement in the lemma follows from an analogous proof.

Lemma 2.10. Let a ∈M+
1 . If a

1/2(b − s1)(1 − p+s )a1/2 = 0, then a ≤ p+s .
If (1 − a)1/2(s1 − b)p−s (1 − a)1/2 = 0, then a ≥ p−s .

Proof. Write a1/2 =
( a11 a12 a13

a∗12 a22 a23
a∗13 a

∗
23 a33

)
, using the decomposition

1 = p−s +
(
p+s − p−s

)
+

(
1 − p+s

)
. (2.18)

Note that (1 − p+s )a∗i3 = a∗i3 for i = 1, 2, 3. Assume that

a1/2(b − s1)(1 − p+s
)
a1/2 = 0. (2.19)
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The diagonal entries of a1/2(b − s1)(1− p+s )a1/2 are ai3(b2 − s1)a∗i3 for i = 1, 2, 3. Hence, ai3(b2 −
s1)a∗i3 = 0. Thus, for all ψ, such that a∗i3ψ ∈ D(b2), ai3(b2 − s1)a∗i3ψ = 0. Since b2 − s1 ≥ 0 on
(1 − p+s )H ∩D(b2)which contains a∗i3ψ, we get

〈
ai3(b2 − s1)a∗i3ψ, ψ

〉
= 0,

〈
(b2 − s1)1/2a∗i3ψ, (b2 − s1)1/2a∗i3ψ

〉
= 0.

(2.20)

Hence (b2−s1)1/2a∗i3ψ = 0 and so (b2−s1)a∗i3ψ = 0. Since s is not an eigenvalue of b2, a∗13ψ = 0.
Therefore

(
1 − p+s

)
(b2 − s1)a∗i3ψ = 0, (2.21)

and so

(
p−t − p+s

)
(b2 − s1)a∗i3ψ = 0 (2.22)

for t > s. From the Spectral theorem we can then conclude that

(b2 − s1)
(
p−t − p+s

)
a∗i3ψ = 0. (2.23)

Thus,

(
p−t − p+s

)
a∗i3ψ = 0 (2.24)

for every a∗i3ψ ∈ D(b2). But

lim
t→∞

(
p−t − p+s

)
a∗i3ψ =

(
1 − p+s

)
a∗i3ψ = a∗i3ψ, (2.25)

and (p−t − p+s )a∗i3ψ ∈ D(b2) for every ψ ∈ H and every t > s. Hence, D(b2) is dense in Im(a∗i3).
Since D(b2) ∩ Im(a∗i3) = {0}, we have a∗i3 ≡ 0 for i = 1, 2, 3. Thus,

a1/2 =

⎛

⎝
a11 a12 0
a∗12 a22 0
0 0 0

⎞

⎠, (2.26)

so

a =
(
a1/2

)2 ≤ p+s . (2.27)

The other statement in the lemma follows from an analogous argument.

We remark that in the original paper on spectral scales [1, Lemma 1.2, pages 262, 263],
the above conclusion was obtained with a little less work, since, in that situation, b was
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bounded and so we did not have to worry about the domain of b. The proofs of the next
several results, however, are virtually identical to the original proofs. In other words, much
of the hard work has now been done.

Lemma 2.11. Fix s ∈ R, c ∈ [p−s , p
+
s ], and a ∈ M+

1 . Suppose that τ(a) = τ(c). Then the following
hold:

(1) τ(ba) ≥ τ(bc).
(2) If τ(ba) = τ(bc), then a ∈ [p−s , p

+
s ].

(3) If c = p±s , then τ(ba) = τ(bc) ⇒ a = c.

Proof. Note that b(1 − c) ≥ s(1 − c) and bc(1 − a) ≤ sc(1 − a) from Lemma 2.6. Hence

τ(b(1 − c)a) = τ
(
a1/2b(1 − c)a1/2

)
≥ τ

(
a1/2s(1 − c)a1/2

)
= τ(s(1 − c)a), (2.28)

since τ is faithful. Similarly, τ(bc(1 − a)) ≥ τ(sc(1 − a)).
(1)We compute

τ(ba) − τ(bc) = τ(ba) − τ(bca) − τ(bc) + τ(bca)
= τ(b(1 − c)a) − τ(bc(1 − a))
≥ τ(s(1 − c)a) − τ(sc(1 − a))
= τ(sa) − τ(sc) = 0,

(2.29)

and so τ(ba) ≥ τ(bc).
(2) Suppose that τ(ba) = τ(bc). Then

τ((1 − c)a) = τ(a − ca) = τ(c − ca) = τ(c(1 − a)). (2.30)

Similarly,

τ(b(1 − c)a) = τ(bc(1 − a)). (2.31)

Therefore

τ(bc(1 − a)) = τ(b(1 − c)a) ≥ sτ((1 − c)a)
= sτ(c(1 − a)) ≥ τ(bc(1 − a)),

(2.32)

and hence equality holds throughout. Thus

τ(b(1 − c)a) = sτ((1 − c)a), (2.33)

τ(bc(1 − a)) = sτ(c(1 − a)). (2.34)
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From (2.33),

τ
(
a1/2(b − s1)(1 − c)a1/2

)
= 0, (2.35)

while from (2.34),

τ
(
(1 − a)1/2(b − s1)c(1 − a)1/2

)
= 0. (2.36)

Since τ is faithful and the arguments are positive, the arguments are in fact equal to
zero. By Lemma 2.10, p−s ≤ a ≤ p+s .

(3) Suppose that c = p±s and τ(ba) = τ(bc). Then τ(a) = τ(p±s ). Since a is comparable to
p±s , and τ is faithful, a = p±s .

We next state a theorem proved by Akemann and Pedersen [10, Theorem 2.2].

Theorem 2.12. IfM andN are von Neumann algebras,Ψ is a normal linear map fromM toN, and
F a face of Ψ(M+

1 ), then there are unique projections p and q in M with p ≤ q such that Ψ−1(F) ∩
M+

1 = [p, q] and F = Ψ([p, q]).

The following results are generalizations of the main theorems for the n = 1 case from
the first paper on spectral scales [1, Theorems 1.5–1.7, pages 266–274]. Wewill introduce some
new notation at this time.

Notation 2. Recall that we are assuming that M ⊂ B(H) is a finite von Neumann algebra
equipped with a faithful, normal, tracial state τ . The operator b is unbounded and self-adjoint
onH affiliated withM obtained from a linear functional g ∈ M∗ (i.e., g(a) = τ(ba) for each
a ∈ M). B := {(τ(a), τ(ba)) | a ∈ M+

1} is the spectral scale of b. The lower boundary of B is
given by

{(
x, y

) ∈ B | (x, y′) ∈ B =⇒ y′ ≥ y}. (2.37)

The upper boundary of B is given by

{(
x, y

) ∈ B | (x, y′) ∈ B =⇒ y′ ≤ y}. (2.38)

The endpoints of the lower boundary are f(0) and f(1).
Let σ(b) denote the spectrum of b, and let σp be the point spectrum of b. Let f be the

function on [0, 1] whose graph is the lower boundary. For s, α ∈ R, let

L(s, α) = {(x0, x1) | x1 = sx0 + α}. (2.39)

Let L↑(s, α) be the positive half-plane determined by L(s, α).

Our next result describes the faces of the lower boundary of B. We do not include the
endpoints at this time.



International Journal of Mathematics and Mathematical Sciences 11

Theorem 2.13. (1) The zero-dimensional faces in the lower boundary of B are precisely the points of
the form Ψ(p±s ) for s ∈ σ(b). Also,

Ψ−1(Ψ
(
p±s

)) ∩M+
1 =

{
p±s

}
. (2.40)

(2) The one-dimensional faces in the lower boundary of B are the sets of the form F =
Ψ([p−s , p

+
s ]) for s ∈ σ(b). For each face F,

Ψ−1(F) ∩M+
1 =

[
p−s , p

+
s

]
. (2.41)

The slope of F is s.

Proof. We have the following steps.

Step 1. We show that Ψ(p±s ) are zero-dimensional faces.
Fix s ∈ σ(b). If a ∈M+

1 and τ(a) = τ(p±s ), then τ(ba) ≥ τ(bp±s ) by Lemma 2.11. Hence,

Ψ
(
p±s

)
=

(
τ
(
p±s

)
, τ

(
bp±s

))
=

(
τ(a), τ

(
bp±s

))
(2.42)

is on the lower boundary of B.
But

Ψ
(
p±s

)
= Ψ(a) ⇐⇒ τ

(
p±s

)
= τ(a),

τ
(
bp±s

)
= τ(ba) ⇐⇒ p±s = a,

(2.43)

again by Lemma 2.11. Hence,

Ψ−1(Ψ
(
p±s

)) ∩M+
1 =

{
p±s

}
. (2.44)

We now show that Ψ(p±s ) is an extreme point of B. Suppose that

Ψ
(
p±s

)
= λΨ(a1) + (1 − λ)Ψ(a2) = Ψ(λa1 + (1 − λ)a2) (2.45)

for a1, a2 ∈M+
1 , 0 < λ < 1. Since

Ψ−1(Ψ
(
p±s

)) ∩M+
1 =

{
p±s

}
,

p±s = λa1 + (1 − λ)a2.
(2.46)

Since projections are extreme points inM+
1 , a1 = a2 = p

±
s .

Step 2. For s ∈ σp(b), Ψ([p−s , p
+
s ]) are faces of B.

Fix s ∈ σp(b) so that

p−s < p
+
s =⇒ Ψ

(
p−s

)
/=Ψ

(
p+s

)
. (2.47)
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Then

b
(
p+s − p−s

)
= s

(
p+s − p−s

)
. (2.48)

If c ∈ [p−s , p
+
s ], then τ(bc) ≤ τ(ba) for each a such that τ(a) = τ(c). HenceΨ(c) is on the graph

of f which is the lower boundary curve.
Write pλ = λp−s + (1 − λ)p+s for all λ ∈ (0, 1). Then pλ ∈ [p−s , p

+
s ], and Ψ(pλ) is a typical

point on the line segment connecting Ψ(p−s ) and Ψ(p+s ). Hence graph(f) contains this line
segment. The slope is

τ
(
bp+s

) − τ(bp−s
)

τ
(
p+s

) − τ(p−s
) =

τ
(
b
(
p+s − bp−s

))

τ
(
p+s − p−s

) =
τ
(
s
(
p+s − p−s

))

τ
(
p+s − p−s

) = s. (2.49)

Let F denote the line segment in the graph of f that contains Ψ([p−s , p
+
s ]) and consider

the endpoints of F. By Theorem 2.12, there are projections p < q such that [p, q] = Ψ−1(F) ∩
M+

1 , and hence

p ≤ p−s < p+s ≤ q. (2.50)

If p < p−s , then, since p
−
s < p+s ≤ q, Ψ(p−s ) is in the interior of F, contradicting Step 1. Hence

p = p−s and similarly q = p+s . Thus, Ψ([p−s , p
+
s ]) is a line segment in graph(f) with slope s and

Ψ−1([p−s , p
+
s

]) ∩M+
1 =

[
p−s , p

+
s

]
. (2.51)

Step 3. We show that we have accounted for all of the graph of f , except possibly the
endpoints.

Fix a point

(x0, x1) = Ψ(a) = (τ(a), τ(ba)), (2.52)

with 0 < x0 < 1, and assume that Ψ(a)/=Ψ(p±s ) for every s ∈ σ(b). Write

r1 = sup
{
s ∈ σ(b) | τ(p−s

) ≤ x0
}
,

r2 = inf
{
s ∈ σ(b) | τ(p+s

) ≥ x0
}
.

(2.53)

We would like to show that r1 = r2. Since σ(b) is closed, ri ∈ σ(b) for i = 1, 2.
By definition,

(
p−r1

) ≤ x0 ≤ τ
(
p+r2

)
. (2.54)

Since (x0, x1)/=Ψ(p±s ) for s ∈ σ(b),

τ
(
p−r1

)
< x0 < τ

(
p+r2

)
. (2.55)
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If s < r2, s ∈ σ(b), then by definition

τ
(
p+s

)
< x0 < τ

(
p+r2

)
. (2.56)

Similarly, r1 < s and

s ∈ σ(b) =⇒ τ
(
p−r1

)
< x0 < τ

(
p−s

)
. (2.57)

Suppose that r1 < r2. Then τ(p+r1) ≤ x0 ≤ τ(p−r2). If

r1 < s < r2 (2.58)

for some s ∈ σ(b), we would have

τ
(
p+s

)
< x0 < τ

(
p−s

)
, (2.59)

which is clearly false. Hence,

(r1, r2) ∩ σ(b) = ∅. (2.60)

But then p+r1 = p
−
r2 and τ(p

+
r1) = τ(p

−
r2), which again is a contradiction. Hence,

r1 = r2 := r. (2.61)

Since

τ
(
p−r

)
< x0 < τ

(
p+r

)
, (2.62)

p−r < p+r so r is an eigenvalue of b. From Step 2, Ψ([p−r , p
+
r ]) is a line segment in graph(f).

Hence (x0, x1) is on the interior of that line segment.

Corollary 2.14. (1) The extreme points on the upper boundary (excluding the endpoints) are precisely
the points of the form F = Ψ(1 − p±s ) for s ∈ σ(b) and

Ψ−1(1 − p±s
) ∩M+

1 =
{
1 − p±s

}
. (2.63)

(2) The line segments on the upper boundary are precisely the sets of the form F = Ψ[1−p+s , 1−
p−s ], for s ∈ σp(b). The slope of F is s and

Ψ−1(F) ∩M+
1 =

[
1 − p+s , 1 − p−s

]
. (2.64)

Proof. This result is a direct consequence of applying Proposition 2.3 to Theorem 2.13.

Let smin be the left endpoint of σ(b). Note that smin may be −∞. Let smax be the right
endpoint of σ(b). Note that smax may be ∞.
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Proposition 2.15. If s > smin, then the left derivative of the lower boundary function f at τ(p−s )
exists and is given by the formula

f ′
−
(
τ
(
p−s

))
= sup

{
s′ ∈ σ(b) | s′ < s}. (2.65)

If s < smax, then the right derivative of f at τ(p+s ) exists and is given by the formula

f ′
+
(
τ
(
p+s

))
= inf

{
s′ ∈ σ(b) | s′ > s}. (2.66)

Proof. Since B is convex, f is a convex function, and so the left and right derivatives exist. Fix
s ∈ R with s > smin. Then σ(b) ∩ (−∞, s)/= ∅. Define r = sup{s′ ∈ σ(b) | s′ < s}. Since σ(b) is
closed, r ∈ σ(b).

Case 1 ((r − ε, r) ∩ σ(b) = ∅ for some ε > 0). If r = s, (r − ε, r) ∩ σ(b) = (s − ε, s) = ∅ which
contradicts the choice of r. Thus r < s, and hence r is an isolated point in the spectrum, that
is, r is an eigenvalue of b. Moreover, p+r = p−s and soΨ(p−s ) = Ψ(p+r ) is the right-hand endpoint
of a line segment in graph(f) with slope r by Theorem 2.13. Hence f ′

−(τ(p
−
s )) = r.

Case 2 ((r − ε, r) ∩ σ(b)/= ∅ for every ε > 0). Choose rn ∈ σ(b) such that rn ↑ r and rn /= r for
n ∈ N. Then Ψ(p−rn) is on the graph of f . Furthermore, p−rn → p−r in the weak-∗ topology. Since
τ is normal, τ(p−rn) → τ(p−r ). Since τ is faithful, τ(p−rn)/= τ(p

−
r ). We have

rn
(
p−r − p−rn

) ≤ b(p−r − p−rn
) ≤ r(p−r − p−rn

)
(2.67)

for every n. Hence,

τ
(
rn

(
p−r − p−rn

)) ≤ τ(b(p−r − p−rn
)) ≤ τ(r(p−r − p−rn

))
(2.68)

for every n. Thus,

rn ≤ f
(
τ
(
p−r

)) − f(τ(p−rn
))

f
(
p−r

) − f(p−rn
) ≤ r. (2.69)

Letting n → ∞ gives the desired result.

The statement regarding right derivatives is proved in a similar way.

Proposition 2.16. The corners of f are in one-to-one correspondence with the gaps of σ(b), that is,
the maximal bounded intervals in the complement of the spectrum. (One is not currently concerned
with unbounded maximal intervals in the complement of the spectrum, that is, those which take the
form (−∞, s) or (s,∞).)
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Proof. Let (r, t) be an interior gap of the spectrum. Then for every s1, s2 ∈ (r, t) we have
p+s1 = p

−
s2 . Fix s ∈ (r, t). Then

f ′
−
(
τ
(
p−s

))
= sup

{
s′ ∈ σ(b) | s′ < s} < inf

{
r ′ ∈ σ(b) | r ′ > s}

= f ′
+
(
τ
(
p+s

))
= f ′

+
(
τ
(
p−s

))
.

(2.70)

Hence, f is not differentiable at τ(p−s ), and so a gap in the spectrum corresponds to a corner.
Conversely, we have already seen that f is differentiable at p±s for s ∈ σ(b).

Proposition 2.17. For each s ∈ R,

τ
(
(b − s1)p−s

)
= τ

(
(b − s1)p+s

)
. (2.71)

The line L(s, α) is a line of support for B such that

B ⊂ L↑(s, α) ⇐⇒ α = τ
(
(b − s1)p±s

)
. (2.72)

In this case, L(s, α) passes through Ψ(p±s ). Moreover, one has

Ψ−1(L(s, α)) ∩M+
1 =

[
p−s , p

+
s

]
,

Ψ
([
p−s , p

+
s

])
= L(s, α) ∩ B.

(2.73)

Proof. Fix s ∈ R. If s is an eigenvalue, then

b
(
p+s − p−s

)
= s

(
p+s − p−s

)
. (2.74)

Otherwise, p−s = p+s . Either way,

(b − s1)(p+s − p−s
)
= 0, (2.75)

and so

τ(b − s1)p+s = τ(b − s1)p−s . (2.76)

Let α = τ(b − s1)p±s . Then

−sτ(p±s
)
+ τ

(
bp±s

)
= α, (2.77)

so Ψ(p±s ) lies in L(s, α). We now wish to show that L(s, α) is a line of support for B. There are
several cases to consider.

Case 1 (s ∈ σp(b)). In this situation, Ψ(p−s ) and Ψ(p+s ) are endpoints of a line segment in
graph(f) whose slope is s. L(s, α) passes through both points and has slope s. Thus, L(s, α)
contains this line segment and is tangent to f . Hence B ⊂ L↑(s, α).
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Case 2 (s ∈ σ(b) \ σp(b)). Note that s is not an isolated point in σ(b). Moreover, p−s = p+s = ps.
At least one of the one-sided derivatives of f takes the value s at τ(ps). Hence, B admits a
line of support at Ψ(ps) with slope s. As with Case 1, the line is L(s, α) and B ⊂ L↑(s, α).

Case 3 ((s1, s2) is an interior gap in the spectrum). In this case p+s1 = p
−
s2 . Let α1 = τ((b− s1)p+s1)

and α2 = τ((b − s2)p−s2). Then L(s1, α1) and L(s2, α2) are lines of support passing through
Ψ(p+s1) whose slope lies between s1 and s2. If L is a line of support for B whose slope lies
between s1 and s2, then L↑ ⊃ B. But L(s, α) is such a line for s ∈ (s1, s2). Hence, the statement
is true for any s ∈ (s1, s2).

Case 4 (s < smin or s > smax). Since b is unbounded, at least one of smin and smax has infinite
magnitude. Suppose that smin is finite (and so smax must be infinite). Then smin ∈ σ(b).
Moreover, p−smin

= 0. L(smin, 0) is a line of support for B at Ψ(0) and b ⊂ L↑(smin, 0) by Case 1.
Suppose s < smin. Then L(s, 0) is also a line of support for B at Ψ(0) and B ⊂ L↑(s, 0).

The case for s > smax is dealt with similarly. Hence, for every s ∈ R, L(s, α) is a line of
support for B and B ⊂ L↑(s, α).

Conversely, for fixed s, the lines L(s, β) are all parallel as β varies over R. Hence, there
exists a unique β0 for which L(s, β0) is a line of support and B ⊂ L↑(s, β0). But L(s, α) has these
properties and hence α = β0.

For the last statement, consider F = L(s, α) ∩ B. Then F is a face of B. Hence, F is an
extreme point or a line segment on graph(f).

If F is an extreme point, then F = {Ψ(p±s )}, then s ∈ σ(b). Since F is an extreme point,
then F = {ψ(p−s )} = {Ψ(p+s )}, and so

Ψ−1(F) ∩M+
1 = Ψ−1(L(s, α)) ∩M+

1 =
{
p±s

}
=

[
p−s , p

+
s

]
. (2.78)

Similarly, if F is a line segment, then F = Ψ([p−s , p
+
s ]) for some s ∈ σp(b), and so

Ψ−1(F) ∩M+
1 = Ψ−1(L(s, α)) ∩M+

1 =
[
p−s , p

+
s

]
. (2.79)

From the above results, if smin = −∞, then the right derivative of f(x) approaches −∞
as x ↓ 0. If in addition smax = ∞, then the left derivative of f(x) approaches ∞ as x ↑ 1. By
Proposition 2.3, the graph of the upper boundary curve of B is vertical at x = 0. Hence, the
only line of support at Ψ(0) is vertical. Similarly, the only line of support at Ψ(1) is vertical.
Therefore, if both smin and smax are nonreal, then Ψ(0) and Ψ(1) are not corners of B.

Conversely, if one of smin and smax is finite, then Ψ(0) and Ψ(1) are corners of B.
Here the bounded and unbounded spectral scale theories do not coincide, since, in the

bounded situation, Ψ(0) and Ψ(1) are always corners.
In both situations, we can read spectral data of the lower boundary curve as follows

(1) 1-dimensional faces correspond to eigenvalues of b. The slope of each face is the
corresponding eigenvalue.

(2) Other places where the lower boundary curve is differentiable correspond to
elements of the continuous spectrum. The slope at such a given point is the
corresponding element of the spectrum.

(3) Corners on the lower boundary curve correspond to gaps in the spectrum.
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1

1
x

u = b(x)

u

Figure 1: Graph of b for Example 2.18.

We now exhibit two examples. In both examples, we will take H = L2[0, 1] and M =
L∞[0, 1]. The trace τ is integration with respect to Lebesguemeasure and a(ψ)(x) := a(x)ψ(x)
for a ∈M, ψ ∈ H, and x ∈ [0, 1]. ThenM∗ = L1[0, 1] and τ makes sense onM∗.

Example 2.18. Define b(x) =
√
1/x almost everywhere. Then b ∈ M∗ is densely defined and

self-adjoint onH. It turns out that the equation of the lower boundary function isw = f(y) =
2 − 2

√
(1 − y). This was obtained by integrating b multiplied by appropriate characteristic

functions. Observe that 1 ≤ f ′(y) ≤ ∞ and τ(b) = 2. Hence the center of B is P = (0.5, 1) and
we get Figures 1 and 2.

Example 2.19. Define b(x) =
√
1/x − √

2 for 0 < x ≤ 0.5 and b(x) =
√
2 −

√
1/(1 − x) for 0.5 <

x < 1. Then the lower boundary curve for 0 ≤ y ≤ 0.5 is given by w = f(y) = −2√y +
√
2y.

And b was chosen so that we would get a spectral scale that is invariant under the reflection
y = 0.5. Note that f ′(0) = −∞, f ′(0.5) = 0, f(0.5) = −√2 + 1/

√
2, τ(b) = 0, and f ′(1) = ∞. The

resulting pictures are shown in Figures 3 and 4.

We now examine a question posed to the author by Crandall. We start by stating the
necessary properties thatU ⊂ R

2 must have in order for it to be a spectral scale for an operator
functional.

Definition 2.20. A prespectral scale is a set U contained in R
2 which satisfies the following

properties.

(i) U is compact and convex.

(ii) (0, 0) ∈ U and there are no other points of the form (0, y) inU.

(iii) U ⊂ {(x, y) | 0 ≤ x ≤ 1}.

Further, if u = inf{y | (1/2, y) ∈ U} and v = sup{y | (1/2, y) ∈ U}, then the following
are given.
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y

w

P
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2

x

Figure 2: Spectral scale for b in Example 2.18.

−0.707

0.707

y

w

10.5

Figure 3: Graph of b for Example 2.19.

(iv) U is invariant under the reflection (a, b) 
→ (1 − a, u + v − b).
(v) The set G := {(x, z) ∈ U | (x, y) ∈ U ⇒ y ≥ z} is the graph of a function f on [0, 1],

which we will call the lower boundary curve ofU.

Lemma 2.21. Let U be a prespectral scale with lower boundary curve f . Then f is a continuous
convex function.
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w

Figure 4: Spectral scale for b in Example 2.19.

Proof. SinceU is closed, G ⊂ U. Let 0 < a < b < 1. SinceU is convex, the line segment

{
w ∈ R

2 | w = t
(
a, f(a)

)
+ (1 − t)(b, f(b))

}
(2.80)

is a subset ofU. Now

(
ta + (1 − t)b, f(ta + (1 − t)b)) ∈ G ⊂ U. (2.81)

From the definition of G,

tf(a) + (1 − t)f(b) ≥ f(ta + (1 − t)b). (2.82)

Hence, f is convex on (0, 1), and therefore continuous on (0, 1) [11, pages 61, 62]. Then
limx↓0f(x) and limx↑1f(x) exist as extended real numbers [12, page 116]. SinceU is compact,
then limx↓0f(x) is finite and limx↓0(x, f(x)) ∈ U. Therefore, (0, limx↓0f(x)) ∈ U. By (ii) in
Definition 2.20, limx↓0f(x) = 0 = f(0). Applying (iv) from Definition 2.20, limx↑1f(x) = f(1).
Thus, f is continuous and convex on [0, 1].

Since f is convex on [0, 1], the left and right derivatives of f exist for all x ∈ [0, 1] as
extended real numbers, and f is differentiable almost everywhere [12, pages 113, 114].

It is easy to see that a spectral scale must be a prespectral scale: condition (i) is noted
on page 3 of this paper, condition (ii) follows from Definition 2.1, condition (iii) follows from
the fact that τ is a state, condition (iv) follows from Proposition 2.3, and condition (v) follows
from the definition of the lower boundary (Notation 2.14).
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Crandall asked whether a prespectral scale is automatically a spectral scale. In the next
theorem, we show that the answer is yes.

Theorem 2.22. Let M = L∞[0, 1] and let τ be the Lebesgue integral on [0, 1]. Given a prespectral
scaleU, there exists g ∈ L1[0, 1] =M∗ self-adjoint such thatU = B(g).

Proof. From the symmetry required for U (condition (v)) it is sufficient to examine the
lower boundary curve, f , of U. The function f has the following properties (as noted in
Lemma 2.21):

(i) f : [0, 1] → R is continuous and convex,

(ii) f(0) = 0.

Let us denote f ′
R(t) as the right derivative of f at t ∈ [0, 1). Similarly, denote f ′

L(t) as the
left derivative of f at t ∈ (0, 1]. Let g(t) = f ′

R(t) on [0,1) and g(1) = f ′
L(1). Since f is convex,

then g is nondecreasing. Hence, g has at most a countable number of discontinuities. Since f
is convex, then f is of bounded variation. By Exercise 14.H in [13, page 244], f is absolutely
continuous. By Theorem 7.20 in [11, page 148], g ∈ L1[0, 1] = M∗, and the fundamental
theorem of calculus holds. Let a ∈M+

1 , with
∫1
0 a(s)ds = t ∈ [0, 1]. Since g is increasing,

∫1

0
g(s)a(s)ds ≥

∫ t

0
g(s)ds = f(t) − f(0) = f(t). (2.83)

Hence, f is the lower boundary curve of B(g).

3. The Geometry of Spectral Scales in Higher Dimensions

This section is devoted to further generalizations of results from the original paper on spectral
scales by Akemann et al. [1, Section 2, pages 276–280]. Often, with some modifications, the
proofs are the same as in the original paper. Recall that H is a Hilbert space,M ⊂ B(H) is a
finite von Neumann algebra equipped with faithful, normal, tracial state, τ .

Notation 3. In Section 2 of this paper, we considered g ∈ M∗. We now consider an n-tuple
of self-adjoint linear functionals, (g1, . . . , gn) ∈ Mn

∗ . Let t = (t1, . . . , tn) ∈ R
n \ {0}. Let gt =∑n

i=1 tigi. Then gt is also self-adjoint since each gi is self-adjoint and each ti is real. For each gk
(k = i, t) there is an associated self-adjoint, densely defined operator in H, bk, and for every
a ∈M we have gk(a) = τ(bka).

Definition 3.1. Let Ψ(a) = (τ(a), g1(a), . . . , gn(a)) for every a ∈ M. Let Ψt(a) = (τ(a), gt(a))
for each a ∈ M. Then B := Ψ(M+

1 ) is the spectral scale of (b1, . . . , bn) with respect to τ and
Bt := Ψt(M+

1 ) is the spectral scale of gt with respect to τ .

Essentially the motivation for the introduction of gt is it allows us to reduce the n-
dimensional case to the 1-dimensional case by studying “2-dimensional cross-sections” of
the spectral scale. We note that bt /=

∑n
i=1 tibi. Indeed, the right hand side may have trivial

domain. However, as we will see, equality “almost” holds; that is, equality holds in trace.
Define πt(x0, x1, . . . , xn) = (x0,

∑n
i=1 tixi), where x0, xi ∈ R.

Proposition 3.2. The equality Ψt = πt ◦Ψ holds.
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Proof. For a ∈M we have

πt(Ψ(a)) = πt(τ(a), τ(b1a) · · · τ(bna)) = πt
(
τ(a), g1(a), . . . , gn(a)

)

=

(

τ(a),
n∑

i=1

tigi(a)

)

=
(
τ(a), gt(a)

)
= (τ(a), τ(bta)) = Ψt(a).

(3.1)

Corollary 3.3. As a consequence of this calculation, Bt = πt(B).

We next introduce some additional notation.

Notation 4. Let p+t,s be the spectral projection of bt determined by (−∞, s].
Let p−t,s be the spectral projection of bt determined by (−∞, s).
Let P(t, s, α) = {(x0, x1, . . . , xn) ∈ R

n+1 | −sx0 +
∑n

i=1 tixi = α}.
Let P ↓(t, s, α) = {(x0, x1, . . . , xn) ∈ R

n+1 | −sx0 +
∑n

i=1 tixi ≤ α}.
Let P ↑(t, s, α) = {(x0, x1, . . . , xn) ∈ R

n+1 | −sx0 +
∑n

i=1 tixi ≥ α}.

The following results discuss the geometrical properties of B.

Proposition 3.4. If x is an extreme point of B, the n there exists a projection p ∈ M, such that
Ψ(p) = x and Ψ−1(x) ∩M+

1 = {p}. Further, Ψ(p±t,s) is an extreme point of B.

Proof. Fix an extreme point x ∈ B. Since {x} is a face of B, by Theorem 2.12 there are unique
projections, p ≤ q in M, such that Ψ−1(x) ∩ M+

1 = [p, q]. Thus, Ψ(p) = Ψ(q) = x and so
τ(p) = τ(q). Since τ is faithful, we have that p = q, and so Ψ−1(x) ∩M+

1 = {p}.
Next, suppose that Ψ(p±t,s) = Ψ(λa1 + (1 − λ)a2) for some λ ∈ (0, 1), a1, a2 ∈M+

1 . Then

Ψt
(
p±t,s

)
= πt

(
Ψ

(
p±t,s

))
= πt(Ψ(λa1 + (1 − λ)a2)) = Ψt(λa1 + (1 − λ)a2). (3.2)

Thus,

τ
(
bt

(
p±t,s

))
= τ(bt(λa1 + (1 − λ)a2)),

τ
(
p±t,s

)
= τ(λa1 + (1 − λ)a2).

(3.3)

By Lemma 2.11, p±t,s = λa1 + (1 − λ)a2. Since projections are extreme points in M+
1 , then a1 =

a2 = p±t,s, and hence Ψ(p±t,s) is an extreme point of B.

Proposition 3.5. Suppose that τ((bt − s1)p+t,s) = τ((bt − s1)p−t,s). Then P(t, s, α) is a hyperplane of
support for B with

B ⊂ P ↑(t, s, α) ⇐⇒ α = τ
(
(bt − s1)p±t,s

)
. (3.4)

In this case, Ψ(p±t,s) ∈ P(t, s, α).
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Proof. ⇐
Let α = τ((bt − s1)p±t,s). Then

α = τ
(
btp

±
t,s

) − sτ(p±t,s
)
=

(
n∑

i=1

tiτ
(
bi

(
p±t,s

))
)

− sτ(pt,s
)±
. (3.5)

Therefore Ψ(p±t,s) ∈ P(t, s, α). Let Lt(s, α) = {(x0, x1) | −sx0 + x1 = α}. By
Proposition 2.17, Lt(s, α) is a line of support for Bt and Bt ⊂ L↑

t (s, α). Fix a ∈ M+
1 . Then

Ψt(a) ∈ L↑
t (s, α). Hence,

α ≤ −sτ(a) + τ(bta) = −sτ(a) +
n∑

i=1

tiτ(bia) (3.6)

and Ψ(a) ∈ P ↑(t, s, α).
⇒
Fix t and s, and let β vary over R. The hyperplanes P(t, s, β) are all parallel and hence

there exists a unique β0 such that P(t, s, β0) supports B and B ⊂ P ↑(t, s, β0). But we have seen
that α satisfies these conditions and so α = β0.

Proposition 3.6. If α = τ((bt − s1)p±t,s), then F = P(t, s, α) ∩ B is a face of B. Further,

Ψ−1(P(t, s, α)) ∩M+
1 =

[
p−t,s, p

+
t,s

]
, (3.7)

and F = Ψ([p−t,s, p
+
t,s]).

Proof. Let α = τ((bt − s1)p±t,s). By our previous result, P(t, s, α) is a supporting hyperplane for
B. Hence, F := P(t, s, α) ∩B is a face of B. By Theorem 2.12, there are unique projections p ≤ q
inM such that Ψ−1(F) ∩M+

1 = [p, q] and Ψ([p, q]) = F. If a ∈ M+
1 and Ψ(a) ∈ P(t, s, α), then

Ψ(a) ∈ P(t, s, α) ∩ B, and therefore

[
p, q

]
= Ψ−1(F) =M+

1 = Ψ−1(P(t, s, α) ∩ B) ∩M+
1 = Ψ−1(P(t, s, α)) ∩M+

1 . (3.8)

We would like to show that p = p−t,s and q = p+t,s.
Since Ψ(p±t,s) ∈ F, we have

p ≤ p−t,s ≤ p+t,s ≤ q. (3.9)

But πt(P(t, s, α)) = Lt(s, α) and πt(B) = Bt. Hence,

Ψ
([
p, q

])
= πt

(
Ψ

([
p, q

]))
= πt(F) = πt(Ψ(P(t, s, α)) ∩ B) ⊂ Lt(s, α) ∩ Bt = Ψt

([
p−t,s, p

+
t,s

])
.

(3.10)

Therefore, p−t,s ≤ p ≤ q ≤ p+t,s, and so p−t,s = p and p+t,s = q.
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Proposition 3.7. Let β = τ((bt − s1)(1 − p±t,s)). Then P(t, s, β) supports B, and passes through
Ψ(1 − p±t,s) and B ⊂ P ↓(t, s, β).

Proof. If γ = τ((b−t − (−s)1)p±−t,−s), then P(−t,−s, γ) is a hyperplane of support for B that
containsΨ(p±−t,−s) and B ⊂ P ↑(−t,−s, γ). But g−t = −gt, so τ(b−t·) = −τ(bt·) and p±−t,−s = 1−p∓−t,−s.
Therefore,

γ = τ
(
(b−t − (−s)1)p±−t,s

)
= τ

(
(−bt + s1)

(
1 − p∓t,s

))
= −τ((bt − s1)

(
1 − p±t,s

))
= −β. (3.11)

Therefore,

P
(−t,−s, γ) = P

(−t,−s,−β) = P
(
t, s, β

)
,

P ↑(−t,−s,−β) = P ↓(t, s, β
)
.

(3.12)

4. Invariance Properties of the Spectral Scale

The main goal in this section is to establish the circumstances required for the spectral
scale to determine (up to equivalence of tracial representations) the algebra and the n-tuple,
(g1, . . . , gn). Let N be the algebra generated by 1 and biχw(bi) where w ranges over the
bounded Borel subsets of R and i ranges from 1 to n.

Observe that limk→∞(τ(biχ[−k,k](bi)a) = τ(bia)). To see this, note that χ[−k,k](bi) → 1
strongly. Hence, for a fixed a ∈ M, χ[−k,k](bi)a → a strongly and so χ[−k,k](bi)a → a weakly.
Since τ(bi·) = gi(·) is a bounded linear functional onM, we have the desired convergence.

We now show that we only need N to generate the spectral scale for the n-tuple
(g1, . . . , gn) with respect to τ . By Proposition 2.35 from [5, page 232], there exists a faithful
normal projection E :M → N, with ‖E‖ = 1 such that τ = τ ◦ E. Hence for a ∈M,

Ψ(a) = (τ(a), τ(b1a), . . . , τ(bna))

= lim
k→∞

(
τ(a), τ

(
b1χ[−k,k](b1)a

)
, . . . , τ

(
bnχ[−k,k](bn)a

))

= lim
k→∞

(
τ(E(a)), τ

(
b1χ[−k,k](b1)E(a)

)
, . . . , τ

(
bnχ[−k,k](bn)E(a)

))

= (τ(E(a)), τ(b1E(a)), . . . , τ(bnE(a)))

= Ψ(E(a)).

(4.1)

Since E is faithful and normal, Ψ(M+
1 ) = Ψ(N+

1 ) as desired.
We now introduce additional notation and change some of the old notation.

Notation 5. Let U and V be finite von Neumann algebras equipped with faithful, normal,
tracial states τU and τV , respectively. LetHU andHV be the associatedHilbert spaces obtained
by the tracial Gelfand-Naimark-Segal (GNS) construction [2, pages 278, 279]. Let g1, . . . , gn ∈
U∗ and h1, . . . , hn ∈ V∗ be self-adjoint. Then there exist b1, . . . , bn closed, densely defined,
self-adjoint operators affiliated with U such that τU(biu) = gi(u) for all u ∈ U. Similarly,
there exist c1, . . . , cn closed, densely-defined, self-adjoint operators affiliated with V such that



24 International Journal of Mathematics and Mathematical Sciences

τV (civ) = hi(v) for all v ∈ V . LetM be the von Neumann algebra generated by 1 and biχω(bi),
where i = 1, . . . , n and ω ranges over the bounded Borel subsets of R. Similarly, let N be the
von Neumann algebra generated by 1 and ciχω(ci). Note that g1, . . . , gn ∈M∗ and h1, . . . , hn ∈
N∗. When we are concerned only with objects restricted to M and N, we will write ·M and
·N , respectively.

Let B be the spectral scale for b1, . . . , bn relative to τM determined by ΨM and C the
spectral scale for c1, . . . , cn relative to τN determined by ΨN . Let πM and πN be the GNS
representations of M and N. Let ξM and ξN be the canonical cyclic vectors that arise from
this tracial GNS construction.

Definition 4.1. Suppose that there exists a surjective unitary transformation u : HM → HN

such that uξM = ξN and uπM(biχω(bi)) = πN(ciχω(ci))u for i = 1, . . . , n and all bounded Borel
subsets ω of R. Then the tracial representations ofM andN are said to be equivalent.

This definition is unsatisfying since it requires uncountably many conditions. We
believe that there exists a more satisfactory definition of equivalence using the gi’s and the
hi’s. We have not to date been able to formulate such a definition.

Proposition 4.2. Suppose that B = C. Then there exists an isometry, Φ, from M∗ to N∗ such that
Φ(gi) = hi for i = 1, . . . , n and Φ(τM) = τN .

Proof. Let us temporarily denote τM = gn+1 and τN = hn+1. For i = 1, . . . , n+1, defineΦ(gi) = hi.
We would first like to show that Φ is well defined and can be extended linearly to the

span of the gi’s. Suppose one of the gi’s is a linear combination of the others. Without loss of
generality, g1 =

∑∞
n=2 αigi. Let v ∈N+

1 . Since B = C, there exists u ∈M+
1 such that gi(u) = hi(v)

for every i. Thus,

h1(v) = g1(u) =
∞∑

n=2

αigi(u) =
∞∑

n=2

αihi(v). (4.2)

If v ∈ N+ is not zero, then w = (1/‖v‖)v ∈ N+
1 . There exists u ∈ M+

1 such that gi(u) = hi(w)
for every i. Therefore,

h1(v) = ‖v‖h1(w) = ‖v‖g1(u) = ‖v‖
∞∑

n=2

αigi(u) = ‖v‖
∞∑

n=2

αihi(w) =
∞∑

n=2

αihi(v). (4.3)

Since any element in N is a finite linear combination of elements in N+, it follows that if
g1 =

∑∞
n=2 αigi, then h1 =

∑∞
n=2 αihi. Hence, Φ is well-defined and we can therefore extend it

linearly to linear combinations of the gi’s and hence to all ofM∗.
We now show that Φ is an isometry. For v ∈ M∗ let us denote Φ(v) = Φv. Let M1 be

the set of points inMwith norm 1, and letN1 be the set of points inN with norm 1. We need
to show that

‖v‖ = sup
x∈M1

|v(x)| = sup
y∈N1

∣∣Φv

(
y
)∣∣ = ‖Φv‖. (4.4)
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Consider x ≥ 0. Then x ∈ M+
1 . There exists y ∈ N+

1 such that gi(x) = hi(y) for i =
1, . . . , n + 1, and y /= 0. Let w = y/||y||, and let v =

∑n+1
i=1 αigi. Hence,

n+1∑

i=1

αigi(x) =
n+1∑

i=1

αihi(w)‖w‖,

∣
∣
∣
∣
∣

n+1∑

i=1

αigi(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n+1∑

i=1

αihi(w)

∣
∣
∣
∣
∣
‖w‖ ≤

∣
∣
∣
∣
∣

n+1∑

i=1

αihi(w)

∣
∣
∣
∣
∣
,

sup
x∈M1∩M+

1 |v(x)|
≤ sup

w∈N1∩N+
1

|Φv(w)|.

(4.5)

A similar calculation shows the reverse inequality and therefore

sup
x∈M1∩M+

1

|v(x)| = sup
w∈N1∩N+

1

|Φv(w)|. (4.6)

Notation 6. Recall that p+t,s is the spectral projection of bt corresponding to (−∞, s] and p−t,s is
the spectral projection of bt corresponding to (−∞, s). Let q±t,s denote the spectral projections
of ct on the same intervals.

Proposition 4.3. The following are equivalent:

(1) B = C,

(2) Bt = Ct for t ∈ R
n \ {0},

(3) τM(p±t,s) = τN(q±t,s) for s ∈ R and t ∈ R
n \ {0},

(4) τM(f(bt)) = τN(f(ct)) for t ∈ R
n \ {0} and f a bounded Borel function on R,

(5) τM((btχω(bt))
k) = τN((ctχω(ct))

k) for every k ∈ N, t ∈ R
n \ {0}, and ω is a bounded

Borel subset of R.

Proof. (1)⇒(2). Consider

Bt = πt(B) = πt(C) = Ct. (4.7)

(2)⇒(1).
Suppose that B /=C. Then (relabeling if necessary) there exists a vector x =

(x0, x1, . . . , xn) ∈ B \ C. Since C is compact and convex and x/∈C, there exists a hyperplane
that strictly separates C from x. Thus, there exists t = (t0, t1, . . . , tn) ∈ R

n+1, and β ∈ R such
that for y = (y0, y1, . . . , yn) ∈ C, we have

n∑

k=0

tkxk < β <
n∑

k=0

tkyk. (4.8)

Hence, (x0,
∑n

k=1 tkxk)/= (y0,
∑n

k=1 tkyk). Therefore, πt(x)/=πt(y) for every y ∈ C, and so
πt(x) ∈ Bt \ Ct.

(1)⇒(3).
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Fix s, t. There exists unique α such that P(t, s, α) is a hyperplane of support for B and
B ⊂ P ↑(t, s, α). Since B = C, then α has the same properties with respect toC. Hence, P(t, s, α)∩
B = P(t, s, α) ∩ C. Therefore,

ΨM

([
p−t,s, p

+
t,s

])
= P(t, s, α) ∩ B = P(t, s, α) ∩ C = ΨN

([
q−t,s, q

+
t,s

])
, (4.9)

and so τM(p±t,s) = τN(q±t,s).
(3)⇒(4).
Given (3), (4) holdswhen f is a characteristic function of an interval (−∞, s) or (−∞, s].

These intervals generate the Borel structure of R. Now τM and τN are normal and linear.
Since any bounded Borel function, f , is uniformly approximated by linear combinations of
characteristic functions, (4) holds for all such f .

(4)⇒(3).
Since characteristic functions on intervals are bounded and Borel, this is immediate.
(4)⇒(2).
Take f− = χ(−∞,s) and f+ = χ(−∞,s]. Then f±(bt) = p±t,s. Therefore, τU(p

±
t,s) = τV (q±t,s).

Define g± on R by g±(a) = af±(a) for a ∈ R. g± is a bounded Borel function, and g±(bt) =
btp

±
t,s. Hence, τM(btp±t,s) = τN(ctq±t,s) for every nonzero t ∈ R

n, s ∈ R. We have

(
τM

(
p±t,s

)
, τM

(
btp

±
t,s

))
=

(
τN

(
q±t,s

)
, τN

(
ctq

±
t,s

))
. (4.10)

These are the extreme points of the lower boundaries of Bt and Ct, and so the lower
boundaries coincide; hence the upper boundaries coincide by Proposition 2.3, and so Bt = Ct.

(4)⇒(5).
Define f(s) = (sχω(s))

k for s ∈ R. Then f is a bounded Borel function, and hence, by
assumption, τM(f(bt)) = τN(f(ct)).

(5)⇒(4).
Define h(s) = (sχω(s))

k for s ∈ R. By assumption, τM(h(bt)) = τN(h(ct)), for every ω,
a bounded Borel subset of R, and every k ∈ N. But the h(bt)’s are weakly dense inM, and the
h(ct)’s are weakly dense inN. Also, τM and τN are normal, and so τM(f(bt)) = τN(f(ct)), for
f being a bounded Borel function on R.

Lemma 4.4. The tracial representations ofM andN are equivalent if and only if

τM
(
φ
(
b1χω(b1), . . . , bnχω(bn)

))
= τN

(
φ
(
c1χω(c1), . . . , cnχω(cn)

))
(4.11)

for every φ, a monomial in n variables, and ω, a bounded Borel subset of R.

Proof. We begin by making the notation a little less cumbersome. Let bω = (b1χω(b1), . . . ,
bnχω(bn)), and let cω = (c1χω(c1), . . . , cnχω(cn)).

⇐
Suppose that τM(φ(bω)) = τN(φ(cω)) for every φ and ω.
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Define uπM(φ(bω))ξM = πN(φ(cω))ξN . Extend this definition by linearity to polyno-
mials. Let φ1, φ2 be two such polynomials. Then for i = 1, . . . , nwe have

〈
πM

(
biχωi(bi)

)
πM

(
φ1(bω)

)
ξM, πM

(
φ(bω)

)
ξM

〉

=
〈(
πM

(
φ2(bω)

)∗
πM

(
biχωi(bi)

)
πM

(
φ1(bω)

))
ξM, ξM

〉

=
〈(
πM

((
φ2(bω)

)∗
biχωi(bi)φ1(bω)

))
ξM, ξM

〉

= τM
((
φ2(bω)

)∗
biχωi(bi)φ1(bω)

)

= τN
((
φ2(cω)

)∗
ciχωi(ci)φ1(cω)

)

= 〈πN
(
ciχωi(ci)

)
πN

(
φ1(cω)

)
ξN, πN

(
φ(cω)

)
ξN〉

=
〈
πN

(
ciχωi(ci)

)
uπM

(
φ1(bω)

)
ξM, uπM

(
φ(bω)

)
ξM

〉
.

(4.12)

Such polynomials are dense in HM and HN , so u extends to a unitary transformation from
HM toHN with the desired properties.

⇒
Suppose that the tracial representations ofM andN are equivalent. Then

τN
(
φ(cω)

)
=

〈
πN

(
φ(cω)

)
ξN, ξN

〉
=

〈
uπM

(
φ(bω)

)
u∗ξN, ξN

〉

=
〈
πM

(
φ(bω)

)
ξM, ξM

〉
= τM

(
φ(bω)

)
.

(4.13)

Suppose that M is Abelian and d, e are closed, densely defined operators affiliated
withM. Then d+e and de are closable, densely defined operators whose closures are affiliated
withM andM′, the set of operators affiliated withM is an Abelian ∗-algebra [2, pages 351,
352]. If in addition d and e are self-adjoint, then d + e and de are also self-adjoint and hence
closed [14, page 536]. Further, we have

τ(bta) = gt(a) =
n∑

i=1

tigi(a) =
n∑

i=1

tiτ(bia) = τ

(
n∑

i=1

tibia

)

(4.14)

for every a ∈M. Thus,

τ

((

bt −
n∑

i=1

tibi

)

a

)

= 0, (4.15)

for every a ∈ M. Let b+ be the positive part of bt −
∑n

i=1 tibi and b
− the negative part. Choose

a = b+χω(b+), where ω is any bounded Borel set. Then a is positive sinceM′ is commutative
and

(

bt −
n∑

i=1

tibi

)

a = (b+)2χω(b+) ≥ 0. (4.16)
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But τ((b+)2χω(b+)) = 0, since τ is faithful (b+)2χω(b+) = 0. Thus b+ = 0 on its domain.
Similarly b− = 0, and so bt −

∑n
i=1 tibi = 0. Thus

∑n
i=1 tibi = bt.

To proceed with the theory as given in [1, Section 3, page 281 ff.], it would be
convenient if the following conjecture were true.

Conjecture 4.5. If M and N are Abelian and B = C, then the tracial representations of M and N
are equivalent.

By Lemma 4.4, it is enough to show that, if φ(x1, . . . , xn) = xk11 · · ·xknn denotes a
monomial in the commuting variables x1, . . . , xn, then

τM
(
φ
(
b1χω(b1), . . . , bnχω(bn)

))
= τN

(
φ
(
c1χω(c1), . . . , cnχω(cn)

))
(4.17)

for every ω, a bounded Borel subset of R. By part (5) of Proposition 4.3, we know that
τM((btχω(bt))

k) = τN((ctχω(ct))
k) for every k ∈ N, t ∈ R

n \ {0}, with ω being a bounded
Borel subset of R. Let us fix k and ω, and let P be the set of all monomials φ in n commuting
variables such that

∑n
i=1 ki = k. Routine computations show that

τM
((
btχω(bt)

)k) =
∑

φ∈P
tk11 · · · tknn τM

(
φ(b1, . . . , bn)χω(bt)

)
. (4.18)

Similarly,

τN
((
ctχω(ct)

)k) =
∑

φ∈P
tk11 · · · tknn τN

(
φ(c1, . . . , cn)χω(ct)

)
. (4.19)

Since

τM
((
btχω(bt)

)k) = τN
((
ctχω(ct)

)k)
, (4.20)

then we have

∑

φ∈P
tk11 · · · tknn τM

(
φ(b1, . . . , bn)χω(bt)

)
=

∑

φ∈P
tk11 · · · tknn τN

(
φ(c1, . . . , cn)χω(ct)

)
. (4.21)

In the bounded case, no characteristic functions are present and so we can equate coefficients
of the polynomials. Even if we could do that here, we still do not have the desired result since
we want something independent of t.

5. Miscellaneous Results

A natural question is to ask whether convergence of n-tuples of self-adjoint operators implies
convergence of the corresponding spectral scales. Since spectral scales are compact and
convex, the Hausdorff Metric is a natural metric to work with. The following definition is
taken from [15, page 274].
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Definition 5.1. Let (X, d) be a metric space, withA and B being nonempty subsets ofX. Define
d(A,B) = inf{d(a,b) | a ∈ A,b ∈ B}. For γ > 0, let us define

Aγ =
{
x ∈ X | d({x}, A) < γ

}
,

Bγ =
{
x ∈ X | d({x}, B) < γ}.

(5.1)

Define

dH(A,B) = inf
{
γ > 0 | A ⊂ Bγ , B ⊂ Aγ

}
. (5.2)

Then dH(A,B) is the Hausdorff distance between A and B.

We first establish a result for the original definition of a spectral scale, that is the
spectral scale from Definition 1.4.

Theorem 5.2. Let m ∈ N. Suppose that bn → b strongly in each coordinate for bn,b ∈ Mm where
bn and b are self-adjoint (in each coordinate). If B(bn) and B(b) are the corresponding spectral scales,
then B(bn) → B(b) in the Hausdorff metric induced by the usual topology on R

m+1.

Proof. Write bjn for the jth coordinate of bn and bj0 for the jth coordinate of b. Let ε > 0. Now
B(bn) = {(τ(a), τ(b1na), . . . , τ(bmna)) | a ∈M+

1} and B(b) = {(τ(a), τ(b10a), . . . , τ(bm0a)) | a ∈
M+

1}. Fix a j. Define cjn = bjn − bj0 and note that cjn is self-adjoint. Further, cjn → 0 strongly,
and so c2jn → 0 strongly as well. Since τ is normal, τ(c2jn) → 0. Therefore, there existsNj ∈ N

such that n ≥Nj ⇒ |τ(c2jn)| < ε2. Since τ is a weight defined on all ofM [4, page 486], the map
(a, b) → τ(b∗a) (a, b ∈M) is a positive-definite inner product onM [4, page 489]. (The map
is definite because τ is faithful.) Hence, the Cauchy-Schwarz inequality applies. For a ∈ M+

1
and n ≥Nj , we have

∣∣τ
(
cjna

)∣∣ = 〈a, cjn〉

≤
[
τ
(
a2

)]1/2[
τ
(
c2jn

)]1/2 [
Cauchy-Schwarz

]

< ε
[
τ
(
a2

)]1/2

≤ ε
(∥∥∥a2

∥∥∥τ(1)
)1/2

[Hölder]

≤ ε
(∥∥∥a2

∥∥∥ · 1
)1/2

≤ ε.

(5.3)

LetN = maxj=1,...,mNj , and fix n ≥N. For a ∈M+
1 , let

α(a) = (τ(a), τ(b1na), . . . , τ(bmna)),

β(a) = (τ(a), τ(b10a), . . . , τ(bm0a)).
(5.4)



30 International Journal of Mathematics and Mathematical Sciences

0

0.5

0.5

−0.5

1

B(bn)

B(0)

Figure 5: Spectral scales for Example 5.3.

Note that all points in B(bn) are of the form α(a) and all points in B(b) are of the form β(a).
Then by the inequality in (5.3)we have for every a

∥∥(α − β)(a)∥∥∞ = sup
j=1,...,m

∣∣τ
(
bjna

) − τ(bi0a)
∣∣ ≤ ε. (5.5)

Hence dH(B(b), B(bn)) ≤ 2ε for n ≥N. Since ε was arbitrary, the result follows.

Theorem 5.2 is false if we replace strong convergence with weak convergence.
Sherman came up with the following example in conversation with the author of this paper,
and kindly gave permission for it to be included here.

Example 5.3. LetH = L2[0, 1] andM = L∞[0, 1]. Then there exist bn, b ∈M, self-adjoint, such
that bn → b weakly, but B(bn) � B(b) in the Hausdorff metric.

Proof. LetUn = {x ∈ [0, 1] | the nth binary digit of x is 0}. Let

bn = TUn − T(Un)
c , (5.6)

where TW is the characteristic function on the set W . Each bn is clearly self-adjoint, and
standard analysis arguments show that the sequence {bn}n∈N

converges weakly to 0. Now
σ(bn) = {1,−1} for every n. Since μ(Un) = μ((Un)

c) = 0.5 for every n, B(bn) is the ball in
(R2, ‖ · ‖1) centered at (0.5, 0) with radius 0.5 (see Figure 5). On the other hand, the spectral
scale for 0 is simply the line segment {(x, 0) | 0 ≤ x ≤ 1}. Hence, dH(B(bn), B(0)) = 0.5 for
every n ∈ N. (The base metric for dH is the Euclidean norm.)

The next result concerns the unbounded situation that we have been dealing with for
most of this paper.
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Theorem 5.4. Let gn = (g1n, . . . , gmn), g = (g10, . . . , gm0) be self-adjointm-tuples of bounded linear
functionals on our finite von Neumann algebra M. Suppose that gjn → gj0 in the dual norm. Then
B(gn) → B(g) in the Hausdorff metric.

Proof. Let ε > 0. Then there existsN ∈ N such that

n ≥N =⇒ sup
j=1,...,m

∥
∥gjn − gj0

∥
∥ < ε. (5.7)

Let α ∈ B(g). We want to find that β ∈ B(gn) (for n ≥N ) such that ‖α − β‖ ≤ ε.
Since α ∈ B(g), then there exists a ∈ M+

1 such that α = {(τ(a), g10(a), . . . , gm0(a))}.
Define β = {(τ(a), g1n(a), . . . , gmn(a))}. Then

∣
∣gjn(a) − gj0(a)

∣
∣ =

∣
∣(gjn − gj0

)
(a)

∣
∣ ≤ ∥

∥gjn − hj0
∥
∥ < ε. (5.8)

Note that ε does not depend on j. Hence taking supremums over all the j’s, we have that
‖α − β‖∞ < ε. Hence, B(g) ⊂ (B(gn))2ε. Similarly, B(gn) ⊂ (B(g))2ε. Since ε was arbitrary, we
have convergence in the Hausdorff metric as desired.

The spectral scale as given in Definition 1.4 is not the only object that has been called
a spectral scale. The following definition of a spectral scale was formulated by Petz.

Definition 5.5 (see [3, page 74]). Let A be a finite von Neumann algebra equipped with a
faithful, normal, tracial state, τ . Let b be a self-adjoint operator affiliated with A. The Spectral
Scale is defined for t ∈ [0, 1] as follows:

λt(b) = inf
{
s | 1 − τ(p+s

) ≤ t}, (5.9)

where p+s = χ(−∞,s](b) as before.

Notation 7. We shall call this spectral scale the Petz spectral scale. We will call the spectral scale
from Definition 2.1 the AAW spectral scale.

We now show how the two notions are related. To this end, we first find what values
λt(b) can take for a given t. To this end, fix t and note that we can write

λt(b) = inf
{
s | τ(p+s

) ≥ 1 − t}. (5.10)

There are 3 cases to consider.

Case 1. There exists s0 ∈ σ(b) such that τ(p+s0) = 1 − t.
In this case, s < s0 ⇒ τ(p+s ) < 1 − t and hence, λt(b) = s0.

Case 2. For every s ∈ σ(b), τ(p+s )/= 1 − t but there exists s0 ∈ σ(b) such that τ(p+s0) > 1 − t.
Since σ(b) is closed, and τ is weak-∗ continuous, we may choose s0 ∈ σ(b) so that

s0 > s1 ⇒ τ(p+s1) < 1 − t. Hence, s0 is the smallest real value such that τ(p+s0) > 1 − t, and so
s0 = λt(b).
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Case 3. For every s ∈ σ(b), τ(p+s ) < 1 − t.

Note that, in this case, t = 0 and b must be an unbounded operator, with unbounded
spectrum on the right. In this case, λ0(b) = ∞.

The following result was proposed by Pavone in conversation with the author of this
paper.

Proposition 5.6. Let f be the function whose graph is the upper boundary curve of the AAW spectral
scale. Then, for t > 0, f ′

−(t) = λt(b).

Proof. By the rotational symmetry of the AAW spectral scale, f ′
−(t) = g ′

+(1 − t) where g is the
function whose graph is the lower boundary curve of the AAW spectral scale. If s0 ∈ σ(b)
and τ(p+s0) = 1 − t, then g ′

+(τ(p
+
s0)) = s0 = λt(b). If t ∈ (s1, s0), a gap in the spectrum, with

s0, s1 ∈ σ(b) then the right-hand derivative of g at t is s0 = λt(b).

At t = 0, the slope of f is supσ(b). If this is a finite number smax, then λ0(b) = smax. If
supσ(b) = ∞, then, as we saw in Case 3 above, λ0(b) = ∞. This completes our discussion of
the relationship between the AAW spectral scale and the Petz spectral scale.

6. Future Research

A great deal of further work has been done with the spectral scale in the bounded situation.
For us, the first question to ask is whether Conjecture 4.5 is in fact true. If so, we believe that
many of the remaining results in [1] can be extended to the unbounded case fairly readily.

Additionally, we believe that the idea of a spectral scale of an unbounded operator can
be used in the discussion of numerical range.

Definition 6.1. Let b be a (bounded) linear operator onH. Define

Wk(b) =

{
1
k

k∑

i=1

〈bxi, xi〉 | i /= j =⇒
〈
xi, xj

〉
= 0, 〈xi, xi〉 = 1

}

. (6.1)

ThenWk(b) is the k-numerical range of b. When k = 1, we simply writeW(b), and refer
to it as the numerical range [6, page 226].

We can write b = b1 + ib2, where b1 and b2 are self-adjoint and so we can define the
spectral scale of b to be B(b) := B(b1, b2). It turns out that the boundary ofW(b) is exactly the
set of radial complex slopes on B(b) at the origin.

In the unbounded situation, we start with g = g1 + ig2 ∈ M∗, whereM is a finite von
Neumann algebra equipped with τ , a finite, faithful, normal, tracial state. We can certainly
find b, bi such that g(a) = τ(ba) and gi(a) = τ(bia) for every a ∈ M, but (except in the
Abelian case) it is not obvious that there is any relationship between b and the bi’s. We define
the numerical range for g by making the additional assumption in Definition 6.1 that the xi’s
are in the domain of B. At the moment, it is not clear that there is any relationship between
W(g) and B(g1, g2). However, if we can establish some kind of relationship, it is natural to
ask how much of the theory developed in [6, 7] can be extended in this context.

Finally, we ask whether Theorem 2.22 can be extended beyond the single-variable
situation?
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