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A rigorous proof is given of the hypergeometric-like representation of the Riemann zeta function
ζ(s) discovered by Maslanka as a series of Pochhamer polynomials with coefficients depending on
the values of ζ at the positive even integers.

1. Introduction

In [1, 2] Maslanka introduced the following representation of ζ(s) valid for all s ∈ C:

(s − 1)ζ(s) =
∞∑

k=0

AkPk

(s
2

)
, (1.1)

where the Ak are given by

Ak =
k∑

j=0
(−1)j

(
k
j

)(
2j + 1

)
ζ
(
2j + 2

)
, (1.2)

and the Pk are the so-called Pochhammer polynomials, defined by

Pk(s) :=
k∏

r=1

(
1 − s

r

)
(P0(s) := 1). (1.3)
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We apologize for having changed the notation used in [1, 2], but we have found it more
natural to write it as above with future applications in mind.

Maslanka indicates that he was led to this interesting expression by the desire to
interpolate ζ(s) with a series of the form (1.1) treating the Ak as indeterminates to be found
from the system of equations

(2n − 1)ζ(2n) =
∞∑

k=0

AkPk(n) (n = 1, 2, . . .). (1.4)

This system is a triangular system because Pk(m) = 0 when the integer m ≤ k. Its unique
solution is found by a nice combinatorial argument given in Appendix A of [1].

In [1, 2] Maslanka gave two formal proofs that the series (1.1) with the coefficients as
defined by (1.2) represents (s−1)ζ(s). However, no estimate of the size of theAk is given that
would imply the convergence of the series in any region of the complex plane, and which
would be needed to justify several of the formal interchanges of limits and series involved
in the proofs. Professor Maslanka himself kindly indicated this gap to me in a personal
communication. I thought it would be worthwhile to devote some effort, which proved quite
rewarding, to provide the missing steps in the proof. An effective estimate of the rate at which
Ak → 0 is the crucial missing link in the proof, and to this effect we shall show below that

Ak�pk
−p (1.5)

for every positive real p.
In closing this introduction, we would like to point out an interesting paradox that

could deserve some attention. Once the Maslanka representation is shown to be valid in
the whole complex plane it is obvious that (1.1) will be valid for s = 1, 0,−1,−2, . . .; noting
however that in this case the series does not truncate, one obtains interesting identities as
pointed out in [1]. If, on the other hand, one proposed at the outset the analogous problem of
finding a representation of the form

(s − 1)ζ(s) =
∞∑

k=0

ckPk(2 − s), (1.6)

then, since it is clear that the series truncates for s = 1, 0,−1,−2, . . . one gets again a triangular
system leading to a surprising solution, namely,

(s − 1)ζ(s) = 1 +
1
2
(s − 1) +

∞∑

k=1

BkPk(2 − s), (1.7)

where the Bk are the Bernoulli numbers. This happens to be, in different garb, the divergent
Euler-Maclaurin series of ζ(s). It may be objected that Dirichlet series (albeit (s − 1)ζ(s) is
not a Dirichlet series) are determined by its values at any sequence with real parts tending
to +∞, while that is not the case toward the left. It may seldom be the case that this question
is raised at all since “all” Dirichlet series of interest have a finite abscissa of convergence so
there is no way to move toward −∞. On the other hand, Professor Malanska claims he has
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a representation that interpolates simultaneously at points 2n and 3 − 2n. We do not know
what that series may be, perhaps he means something like

∑
ckPk(s/2)Pk((1 − s)/2).

These considerations can be generalized to explore general “p-series”
∑

ckPk(s)which
share certain characteristics with Dirichlet series. As an example we could find a p-series for
ζ(s)−1 and arrived at the following criterion for the Riemann hypothesis that involves the
Bernoulli numbers: define

bk :=
k∑

j=0
(−1)j

(
k
j

)
1

ζ
(
2j + 2

) (k = 0, 1, 2, . . .). (1.8)

Then the Riemann hypothesis is true if and only if

bk�εk
−3/4+ε (∀ε > 0). (1.9)

This criterion is a discrete version the author published in [3] of the well-known Riesz
criterion for the Riemann hypothesis [4]. It is well suited for numerical calculations. Plotting
the results of some preliminary computations, one obtains a very smooth “curve” bkk4/3 that
quite impresses one as tending to zero like log−2k.

2. Statement and Proof of the Main Theorem

We now formally state and prove the representation theorem.

Theorem 2.1. For Ak defined as in (1.2), we have

(s − 1)ζ(s) =
∞∑

k=1

AkPk

(s
2

)
, (2.1)

for all s ∈ C. The convergence of the series is uniform and absolute in every compact set of the complex
plane.

Throughout, it shall be very important to bear in mind the simple estimate for the
size of the Pochhammer polynomials contained in the following lemma already proved in [3,
Lemma 2.3].

Lemma 2.2. For every compact setH ⊂ C, there is a positive constant CH , not depending on k, such
that

|Pk(s)| ≤ CHk−Rs (|s| ∈ H,k = 1, 2, . . .). (2.2)

Do note also the equally trivial facts contained in the following lemma

Lemma 2.3.

Pk(s) = (−1)k
(
s
k

)
=

Γ(k + 1 − s)
k!Γ(1 − s)

. (2.3)
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Proof of Theorem 2.1. The key estimate (1.5) for the coefficients Ak shall be proved in the next
section. We accept it for the moment and show now how the informal steps in Maslanka’s
second proof can be made rigorous. We shall first show that with no assumption on the size
of the Ak one can prove equality in (1.1) for Rs > 4. We start with Maslanka’s clever idea
of expressing s − 1 as the derivative of −α1−s at α = 1. We indicate by Dα the operation of
differentiating with respect to α and proceed as follows:

α−s(s − 1)ζ(s) = −Dαα
1−s

∞∑

n=1

1
ns

= −Dαα
∞∑

n=1

1
(αn)s

= −Dαα
∞∑

n=1

1

(αn)2

(
1

(αn)2

)s/2−1

= −Dαα
∞∑

n=1

1

(αn)2

(
1 −
(
1 − 1

(αn)2

))s/2−1

= −Dαα
∞∑

n=1

1

(αn)2

∞∑

k=0

(−1)k
(s

2
− 1

k

)(
1 − 1

(αn)2

)k

= −Dα

∞∑

n=1

∞∑

k=0

Pk

(s
2

) 1
αn2

(
1 − 1

(αn)2

)k

,

(2.4)

where we have applied the binomial theorem assuming as we may that the derivative is
calculated from the right so α > 1. Consider now the formally differentiated double series on
the right-hand side above, namely,

∞∑

n=1

∞∑

k=0

Pk

(s
2

) 1

(αn)2

(
1 − 2k + 1

(αn)2

)(
1 − 1

(αn)2

)k−1
. (2.5)

Using Lemma 2.2, we see that this double series is compact-uniformly termwise majorized
by a convergent double series of positive terms in Rs ≥ 4 + 2ε since

∣∣∣Pk

(s
2

)∣∣∣
1

αn2

(
1 − 2k + 1

(αn)2

)(
1 − 1

(αn)2

)k

� k−1−ε 1
n2

. (2.6)

Thus we can both invert the sums at the end of (2.4) and do the differentiation termwise at
α = 1 obtaining

(s − 1)ζ(s) =
∞∑

k=0

Pk

(s
2

) ∞∑

n=1

1
n2

(
1 − 2k + 1

n2

)(
1 − 1

n2

)k−1
. (2.7)
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We easily calculate the last series on the right as

k−1∑

j=0
(−1)j

(
k − 1
j

)(
ζ
(
2j + 2

) − (2k + 1)ζ
(
2j + 4

))
(2.8)

which, after separating in two sums and shifting indices in the second, becomes

k∑

j=0
(−1)j

(
k
j

)(
2j + 1

)
ζ
(
2j + 2

)
, (2.9)

which is none other than Ak. One could even argue this would be a direct way to find the
coefficients. We have thus shown the desired relation (1.1) at least for Rs > 4. However, the
strong estimate (1.5), to be proved below, providing that Ak � k−p for every p > 0, together
with Lemma 2.2, immediately shows that the series

∑
AkPk(s/2) converges uniformly on any

compact subset of the plane, thus defining an entire function that must be equal to (s− 1)ζ(s)
by analytic continuation.

3. The Size of the Coefficients

We shall establish here this Proposition which was announced as the essential estimate (1.5)
in the introduction.

Proposition 3.1. For any p > 0 there is a constant Cp > 0 such that

|Ak| ≤ Cpk
−p, k = 1, 2, . . . . (3.1)

To lighten up the proof, we first prove some lemmas. Define the crucial sequence of
rational functions φk(x) by

φk(x) :=
(
1 − 1

x2

)k 1
x

(k ∈ Z
+). (3.2)

We now record a very simple while extremely important property of φ(x).

Lemma 3.2. For 0 ≤ a ≤ k, denote

φ
(a)
k (x) :=

da

dxa
φk(x). (3.3)

Then we have

φ
(a)
k (1) = φ

(a)
k (∞) = 0, (3.4)

where the second equality is unrestricted on a. All the φ(a)
k

(x) for a ≥ 1 are integrable.
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The following lemma is the essential and quite elementary tool to get a grip on the size
of Ak.

Lemma 3.3. Define a double sequence of polynomials pa,j , with integral coefficients as follows: let
p0,0 = 1, pa,j = 0 when j < 0 and when j > a, and specify the recurrence equation

pa,j = −(2j + a
)
pa−1,j +

(
2k + 2j − a

)
pa−1,j−1. (3.5)

Each pa,j is a polynomial of degree j. For any integers k ≥ a ≥ 0,

φ
(a)
k (x) =

(
1 − 1

x2

)k−a a∑

j=0

pa,j(k)

xa+2j+1
. (3.6)

The simple proof is by (double) induction. The recurrence relation (3.5) will not be
used other than the fact that it is part of the proof. It is nice to record it explicitly for further
use if need be.

Having straightened some notation, as all the above was essentially, we are ready for
a first preliminary estimate.

Lemma 3.4. For any fixed integer a ≥ 1 and ε > 0, there is a constant C = C(a, ε) such that

∫∞

1

∣∣∣φ(a)
k (x)

∣∣∣dx ≤ Ck−(a/2)(1−ε). (3.7)

Proof. Take k ≥ a ≥ 1. We split the interval of integration at the point x = k1/2−ε/3. We express
the ath derivative according to Lemma 3.3 and equation (3.6). For the finite range of the
integral, we have

∫k1/2−ε/3

1

∣∣∣φ(a)
k (x)

∣∣∣dx ≤
∫k1/2−ε/3

1

∣∣∣∣∣∣

(
1 − 1

x2

)k−a a∑

j=0

pa,j(k)

xa+2j+1

∣∣∣∣∣∣
dx

≤
∣∣∣∣∣∣

a∑

j=1

pa,j(k)

∣∣∣∣∣∣

∫k1/2−ε/3

1

(
1 − 1

x2

)k−a
dx

≤ Oa(ka)
(
1 − 1

k1−2ε/3

)k−a
k1/2−ε/3

= Oa

(
e−k

ε/3
)
.

(3.8)
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Now for the infinite range of integration we have

∫∞

k1/2−ε/3

∣∣∣φ(a)
k (x)

∣∣∣dx ≤
∫∞

k1/2−ε/3

∣∣∣∣∣∣

(
1 − 1

x2

)k−a a∑

j=0

pa,j(k)

xa+2j+1

∣∣∣∣∣∣
dx

≤
a∑

j=0

∣∣pa,j(k)
∣∣
∫∞

k1/2−ε/3

1
xa+2j+1

dx

≤
a∑

j=0

1
a + 2j

∣∣pa,j(k)
∣∣

k(1/2−ε/3)(a+2j)

≤ 1
ka(1/2−ε/3)

a∑

j=0

1
a + 2j

∣∣pa,j(k)
∣∣

kj(1−2ε/3)

≤ 1
ka(1/2−ε/3)

a∑

j=0

1
a + 2j

Oa

(
k(2ε/3)j

)

≤ 1
ka(1/2−ε/3)Oa

(
k(2ε/3)a

)
= Oa

(
k−(a/2)(1−ε/2)

)
.

(3.9)

Since this last estimate (3.9) surely dominates the smaller one in (3.8), we can allow the
substitution of ε/2 by ε to arrive at the desired (3.7).

Remark 3.5. Actually there is no need for ε to be arbitraily small for the use this estimate (3.7)
is destined for. If one takes, say, ε = 1 we see that the order obtained is Oa(k−a/4), which is
plenty, since we are planning to differentiate a large but fixed number of times, while k → ∞.
The idea perhaps was to see how much we can eke out of this method, which is as close as
k−a/2 as desired. Perhaps a more painstaking analysis, taking into account the actual nature
of the polynomials pa,j , could yield an essentially faster order of convergence to zero, which
is desirable for the effectiveness of the Maslanka representation.

At this point it is high time to connect the coefficients Ak with the function φk. So we
have first a high school triviality, namely, the following lemma.

Lemma 3.6. For any x /= 0

k∑

j=0
(−1)j

(
k
j

)(
2j + 1

) 1
x2j+2

= −φ′
k(x). (3.10)

Proof.

k∑

j=0
(−1)j

(
k
j

)(
2j + 1

) 1
x2j+2

= − d

dx

⎛

⎝ 1
x

k∑

j=0
(−1)j

(
k
j

)
1
x2j

⎞

⎠

= − d

dx

(
1
x

(
1 − 1

x2

)k
)
.

(3.11)
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It should now be clear why the work on the derivatives of φk(x)is carried out if the
reader notices that the sum below should be estimated by Euler-Maclaurin with a large
number of terms.

Lemma 3.7.

Ak = −
∞∑

n=1

φ′
k(n). (3.12)

Proof. The following interchange of sums is totally elementary to justify:

Ak =
k∑

j=0
(−1)j

(
k
j

)(
2j + 1

)
ζ
(
2j + 2

)

=
k∑

j=0
(−1)j

(
k
j

)(
2j + 1

) ∞∑

n=1

1
n2j+2

=
∞∑

n=1

k∑

j=0
(−1)j

(
k
j

)(
2j + 1

) 1
n2j+2

= −
∞∑

n=1

φ′
k(n),

(3.13)

where, of course, we applied Lemma 3.6 in the last equality.

We are finally ready to prove the estimate for the Ak.

Proof of Proposition 3.1. Take an integer a > 4p and assume that k > a; naturally one will make
k → ∞. The crucial elementary properties of φk and its derivatives expressed in Lemma 3.3
imply the remarkable fact that the application of the Euler-Maclaurin summation formula to
a depth of a steps to the sum in (3.12), that is, to

Ak = −
∑

n≥1
φ′
k(n) (3.14)

results in the sum being equal to the remainder term! Therefore,

Ak = − (−1)
a

a!

∫∞

1
Ba(x)φ

(a)
k (x)dx, (3.15)
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where Ba(x) is the ath periodified Bernoulli polynomial. Now apply Lemma 3.4 and equation
(3.7) with ε = 1/2 to get

|Ak| ≤

∥∥∥Ba

∥∥∥
∞

a!

∫∞

1

∣∣∣φ(a)
k (x)

∣∣∣dx

≤ Oa

(
k−a/4

)
= Oa

(
k−p).

(3.16)

Remark 3.8. We believe there is a room for improvement in estimating the smallness of the
Ak. This should have a bearing on how useful the Maslanka formula may turn out to be in
the end.

References

[1] K. Maslanka, “A hypergeometric-like Representation of Zeta-function of Riemann,” Cracow Observa-
tory preprint no. 1997/60, July 1997.

[2] K. Maslanka, “Hypergeometric-like representation of the zeta-function of Riemann,” http://arxiv
.org/abs/math-ph/0105007.
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