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Tropical geometry is a kind of dynamical scale transform which connects automata with real
rational dynamics. Real rational dynamics are deeply studied from global analytic viewpoints. On
the other hand, automata appear in various contexts in topology, combinatorics, and integrable
systems. In this paper we study the analysis of these materials passing through tropical geometry.
In particular we discover a new duality on the set of automata which arise from the projective
duality in algebraic geometry.

1. Introduction

Motivated by the phenomena in molecular biology, in [1] we have formulated random
interaction systems by use of families of maps on intervals, which consist of infinite families
of compositions between them. By wasting detailed and extracting more rough information
by use of projections, one can produce automata. This construction covers some discrete
integrable systems which possess solitons. This paper is a trial to represent creation of some
macroscopic patterns which arise from random and micro dynamics.

Let f : [0, 1] → [0, 1] be a map, and consider its iteration {fn(x)}∞n=0. This will behave
very randomly and will touch sensitively with respect to the initial points x ∈ [0, 1] (see [2]).

Let X2 = {(a0, a1, . . .) : ai ∈ {0, 1}} be the set of one-sided sequences, and take
two maps {f0, f1}. Let us generalize the iteration of a single map to random compositions
by two maps. Let us choose an element k = (k0, k1, . . .) ∈ X2. Then, correspondingly
one obtains families of maps {hn : [0, 1] → [0, 1]}n=0,1,... on the interval by compositions
hn(x) = fkn ◦ · · · fk0(x).

Using them, one can construct continuous maps Φ(x) = Φ(f1, f2)(x) : X2 → X2

for each point x ∈ [0, 1], which are called the interaction maps. These are defined by use of
projections on the interval, and so their values are determined by which subinterval hn(x)
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lies on for each n. Thus in order to determine a value Φ(x)(k), it is enough to know rough
values of them, rather than rigorous ones on [0, 1], even though one is required to have
information on hn(x) for all n. So Φ(x) is a map in a macroscopic scale compared with
the micro interaction {hn(x)}. This might explain one aspect of a very simple mechanism
to create patterns in macro scale from random micro dynamics. This method is immediately
generalized to use families of maps on intervals {fi}i, and one also obtains interaction maps
Φ(f1, . . . , fk) by the same way.

So far, we have known that many important cell automata can be expressible by
interaction systems as above (see [3, 1.A]). In the first part of this paper, we study geometric
properties of such cell automata which include the box and ball system (BBS), Lotka-Volterra
cell automaton, and lamplighter automaton. For example, we will construct assignments
from BBS flows to braid groups and extensions of BBS actions on compactified spaces passing
through group actions on trees. We will see some relation between LV cell automaton and the
lamplighter automaton, and generalize the latter to obtain more group actions on trees using
such relation.

In the middle part, we study connections of automata with complex geometry. In real
algebraic geometry, some geometric mappings from complex planes to the real ones were
discovered, by taking coordinatewisely absolute values and their logarithms (see [4, 5]). This
connects algebraic varieties with piecewise linear maps and is called the tropical geometry. On
the other hand, in [6] several relations of pl maps with automata are studied. For example, the
LV cell automaton is given by a family of pl maps. Passing through the above operations, in
this paper we will associate a family of polynomials from an automaton. Using the projective
duality on projective varieties and the above assignment, we will discover a duality between
cell automata. In fact, for an automaton A, we will associate a dual one A∨, and call it as the
projectively dual automaton. We will calculate some examples in the case of curves. Notice that
duality on the Mealy automata was already introduced by exchanging the role of the exit and
the transition functions mutually (see [7, 8]).

In general, automata are represented by families of interaction maps. Thus direct
assignments from families of maps to these geometric objects will show geometric
representations of interaction systems.

In the last part, we construct infinite families of graphs from finite families of maps,
points, and symbolic sequences, and we call them the interaction graphs. We will construct
these graphs so that they represent some dynamics of interacting states in mesoscopic
scale. The central dogma in molecular biology tells us that proteins are products of various
interaction systems in mesoscopic scale, beginning from DNA. From geometric point of view,
onewould like to obtain a space and an automorphism on it from such interacting data, which
will represent more macro features. In analogy to the central dogma as above, the space will
be compared with protein or polymer, and orbits of the automorphism correspond to states
on it, since functions of proteins are determined by the shapes of themselves.

A biological space-form problem is to construct a space V and an automorphism A on it
so that the orbits {x,A(x), A2(x), . . .} ⊂ V are induced from the dynamics of the interaction
graphs. In this paper we will formulate and address a space-form problem from toric variety
viewpoint, passing through several hierarchies of dynamics.

Throughout this paper, our basic direction is to study geometric properties of them
as macro objects, which are induced by scaling transform of dynamics by compositions
and iterations of families of maps as the micro one. In some particular cases of families
of maps which include some piecewise linear maps, the interaction maps induce some
automata.
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On the other hand, in general, maps on intervals are very flexible objects and their
dynamics are very random. One of our main aims in further development will be to study
macro properties of these dynamics for families of maps which are near such special types of
maps. Namely, let {fi}i be a family as above so that the corresponding interaction system
induces some automaton A. Let us take any geometric object G = G({fi}i) arising from
the interaction system. We have several examples of G below. Since G passes through A,
its structure will hold some rigid properties.

Let us take another family of maps {gi}i which is sufficiently near the original {fi}i,
where the corresponding interaction system for {gi}i may not induce any automata in
general. We would like to study geometric properties ofG({gi}i) by comparing withG({fi}i).
This might give one direction of study to understand mechanisms of creation of patterns. In
particular, several stability properties of G under small deformation of these maps will be
particularly of interest for us.

Now let us describe the contents of the paper more concretely.
The box and ball system (BBS) is a dynamical system on the set of finite subsets in Z

(see [9]). Let us describe the dynamics shortly. For {i1, . . . , il} ⊂ Z with i1 < i2 < · · · < il, let us
imagine that a ball occupies in each position im form = 1, . . . , l. These balls will be moved by
the following rule; the ball i1 in the most left-hand side is moved to some i1 < j1 which is the
most left-hand side in {i1 + 1, i1 + 2, . . .} \ {i2, . . . , il}. We repeat the same procedure for ik with
2 ≤ k ≤ l. When this procedure is finished for il, then we are done.

Let Σ0
2 be all of the finite subsets in Z. Then, the above procedure is expressed as

T : Σ0
2
∼= Σ0

2. (1.1)

Let Σ0
2(N) ⊂ Σ0

2 be the sets of N-subsets in Z. Then, since BBS preserves the number of the
balls, T is a map as T : Σ0

2(N) ∼= Σ0
2(N).

Following our expression of interaction, in Section 2, we will describe the BBS system
by an interaction of maps for some family of continuous maps.

It is known that the BBS flows by the dynamics of T contain solitons. Among
dynamical properties of solitons, the relative positions of the individual waves and how
these waves pass through the others will be in the most important structures. In Section 3
we will represent such information geometrically by using the braid groups. Elements in
braid groups are certainly representing such situation. In order to eliminate infinitely many
ambiguities, in this paper we will use quotient groups Bn of the braid groups. There are many
of them, and in a special case it is a subgroup of the mapping class group of finite index. Each
σ admits an index among subsets in {1, . . . ,N−1}, which is determined by Tt(σ) near t = ±∞.
We will associate a quotient braid group with respect to individual index. Then, we obtain
the canonical maps

B : Σ0
2(N) −→ BN (1.2)

which we call the braiding map. B(σ) is constructed from the dynamics of iterations

{
. . . , T−1, σ, T(σ), T2(σ), . . .

}
. (1.3)
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Scattering process of BBS is described in [10] by using the combinatorial R-matrix. Using
such direction, one may obtain some invariants of the dynamics T .

Let Σ2 be the set of two-sided sequences with the alphabets {0, 1}. Then, Σ0
2 can be

regarded as a subset Σ2. In Section 5, we study geometric properties of the BBS map T . For
example, we see that it can be extended as T : Σ2 → Σ2.

The Lotka-Volterra cell automaton is given by the equation (see [9])

V t+1
n − V t

n = max
(
0, V t

n+1 − L
) −max

(
0, V t+1

n−1 − L
)
. (1.4)

This is obtained from the original Lotka-Volterra equation by making discretizations twice.
It is known that this possesses solitons which are induced from the ones of the difference LV
solitons (see [3]). BBS is isomorphic to the Lotka-Volterra cell automaton. In fact, there is an
explicit procedure to construct such isomorphism. Thus one obtains an injection Σ0

2 ↪→ Σ0
∞

which assigns flows of the BBS to the corresponding dynamics of the LV. We will see that it
can be extended on some partially compactified space. In Section 4, we study structures of
path spaces of the set of cell automata, which arose from the relation of LV-CA with BBS.

The lamplighter group is well known as an automata group in geometric group theory
(see [11]), which admits an action on the rooted binary tree. In Section 5, we find that
in a special case the LV cell automaton is in fact a transition function for the lamplighter
automaton.

Lemma 1.1. Suppose that the initial sequence (a0, a1, . . .) consists of only {0, 1} entries. Then, the
degeneration of the LV cell automaton is the same as the transition function φ of an automaton whose
group is isomorphic to the lamplighter group.

Thus using the LV cell automaton as transition functions, one can construct a family
of automata groups which we call LV cell automata groups. They can act on the boundary
∂̃T ∗∞ ≡

⋃
i ∂T

∗
i of the rooted infinite tree.

In Section 6, we study automata from complex geometry point of view. Tropical
geometry connects algebraic geometry with automata. There is a kind of scale transform Φt

with t ∈ (1,∞) by taking absolute values and taking the conjugation by Logt (see [4, 12]). To
a pair of parameterized polynomials (f1

t , f
2
t ), both limt→∞Φt(f1

t ) and limt→∞Φt(f2
t ) become

piecewise linear maps. In general, the equation Φ∞(f1
∞) = Φ∞(f2

∞) represent complicated
dynamics, but in some cases it gives automata. This is the point where we find importance to
study stability of the dynamics. We study this aspect in Section 6.3.2.

On the other hand, the above process is invertible in the sense that one can associate
pairs of parameterized polynomials (f1

t , f
2
t ) from automataA. Now using these polynomials,

one can obtain spaces as follows.

Definition 1.2. The associated affine hypersurfaces are parameterized family of hypersurfaces
given by the following equations:

V (A)t =
{
z ∈ CN : f1

t (z) = f
2
t (z)

}
. (1.5)

One important reason to consider such varieties comes from projective duality on
algebraic varieties. Let us denote byX∨ the projective dual of an algebraic varietyX. Suppose
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that the projective duals of V (A)t are also hypersurfaces. The parameterized families of
polynomials Δ(A)t which define these hypersurfaces are called A-discriminant.

Again by taking the above scaling limit in tropical geometry, one obtains another
automaton A∨. Thus passing through duality in complex geometry, there is an assignment
between automata:

A −→ A∨. (1.6)

We call A∨ the projectively dual automaton.
We have calculated in the case of some curves. Let a ≥ 2, α, and c be integers. Then,

we have the following.

Proposition 1.3. Consider the following:

[max{aun, α + aun+1} = c]∨ = max
{

a

a − 1
(
c − α

a

)
+

a

a − 1un+1,
ac

a − 1 +
a

a − 1un
}

= c. (1.7)

In micro level, molecular interactions occur by covalent or hydrogen bonds where
electrons of molecules share their orbitals. Inspired on this aspect, in Section 7 one formulates
interaction systems of families of maps by constructing some graphs.

Let us take two interval maps f0, f1 : [0, 1] → [0, 1] and let Φ(x, f0, f1) : X2 → X2

be the interaction map. Let us choose another map d : [0, 1] → [0, 1]. In the light of orbitals
stated above, if the projection of the iterations {dn(z)}n coincides with Φ(x, f, g)(k) in X2,
then we construct a marked oriented edge as

(
f, x

) (g,k)−−−−→ (d, z). (1.8)

Let us fix families of maps {f1, . . . , fk}, points {x1, . . . , xl} ⊂ [0, 1], and
{a(i, j, h)}i,j=k,h=l

i,j,h=1 ∈ X2. By the above way, we obtain the corresponding oriented marked finite
graph

G
({
fi
}
,
{
xj
}
,
{
a
(
i, j, h

)})
. (1.9)

We call them the interaction graphs.
One can interpret these graphs to represent states of the system consisted by the triple

({fi}, {xj}, {a(i, j, h)}).
Let us choose (fi, fj , xh). Then, we have the corresponding interaction map

Φ(fi, fj , xh) : X2 → X2. In particular one can obtain other elements as follows:

a
(
i, j, h

)
2 ≡ Φ

(
fi, fj , xh

)(
a
(
i, j, h

)) ∈ X2. (1.10)

By this way one can obtain another interaction graph:

G
({
fi
}
,
{
xj
}
,
{
a
(
i, j, h

)
2

})
. (1.11)
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Let us denote by G({fi}, {xj}) the set of interaction graphs with fixed families of maps
and points. The numbers of vertices are all the same in any element in this. Notice that this is
a finite set. Then, by the above procedure one has obtained the following map:

Φ∗ : G
({
fi
}
,
{
xj
}) −→ G

({
fi
}
,
{
xj
})
. (1.12)

By iterating this procedure, one obtains an infinite family of interaction graphs
G({fi}, {xj}, {a(i, j, h)}), G({fi}, {xj}, {a(i, j, h)2}), G({fi}, {xj}, {a(i, j, h)3}), . . . . One can
regard that this family of interaction graphs might represent dynamics of states of the micro
interaction systems, and according to our principle at the beginning of the introduction, one
may induce some macro patterns from them. In this paper we will induce some hierarchies of
combinatoric objects arising from such family of graphs.

Let G be the set of finite graphs, and let F : G({fi}, {xj}) → G be the forgetful map.
Passing through F, one obtains a family of finite graphs:

G1 ≡ F
(
G1

)
, G2 . . . ⊂ G, Gt = G

({
fi
}
,
{
xj
}
,
{
a
(
i, j, h

)
t

})
, (1.13)

which we call just the associated graphs. Any Gi has the same number of vertices N. Thus
there is a finite number of finite graphs {H1, . . . ,Hm} so that each Gi coincides with one of
{Hj}.

We say that a family of finite graphs is strongly regular if they have the same number
of edges as others.

Let G be a finite graph. Then, the associated configuration a ∈ Zm in combinatorics is
determined. Thus one obtains another family of configurations:

a1, a2, a3, . . . ⊂ Zm, (1.14)

which we call the transcripted configurations.
For each configuration a ∈ Z, one obtains an ideal Ia ⊂ C[y1, . . . , ym] which is called

the toric ideal. Thus associated to the family of configurations, one obtains the corresponding
family of ideals:

I1, I2, . . . , Ij ⊂ C
[
y1, . . . , ymj

]
, (1.15)

which we call the associated ideals.
For each ideal I ⊂ C[y1, . . . , ym], one obtains a complete fan over Rm and the

corresponding toric variety XI ⊂ CPm−1. The fan is called the Gröbner fan.
Thus corresponding to the associate ideals, one obtains a family of toric varieties:

X1, X2, . . . ⊂ CPm−1, m = sup{m1, m2, . . .}. (1.16)

We call the sequence as the translated toric variety. When the associated graphs are strongly
regular, then all Xj have the same dimension.

Let us have more abstract setting. Let V be an algebraic variety with the affine
coordinates Vi defined by an ideal Ji. Let us take an automorphism A on V . We say that
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an affine coordinate {(Vi, Ji)}mi=1 is an (stable) algebraic Markov partition for A if, for each i,
there is some j so that

A(Vi) ⊂ Vj (1.17)

holds.
We say that the associated ideals {Ii}i are regular if they have the same dimension as

others. Let us put
⋃
i Ii = {J1, . . . , Jk}. Nowwe have one realization of the space-form problem.

Definition 1.4. Let ({fi}i, {xj}j , {a(i, j, h)}) be interaction data, and suppose that the associated
ideals I = (I0, I1, . . .) are regular. The sequence is called a symbolic flow of an automorphism
if there is an algebraic Markov partition for (V,A) with an affine coordinate {(Vi, Ji)}ki=1 and
some x ∈ V so that its orbit {An(x)}n=0,1,... corresponds to the sequence.

We would like to call such pair (V,A) a prohedron (which comes from “proteiform”).
We will see by an easy example that combinatorics of the interaction graphs will reflect
existence of such pairs.

The author would like to thank the referee for giving him the useful suggestions and
comments.

2. Automata and Interaction by Families of Maps

2.1. Classes of Automata

In this paper we treat some automata whose classes we will clarify below.
Let A be a finite set called the alphabet, and let Q be a set called the state set.
Let us introduce the most general form of automata here. Let m, l ≥ 0 be integers. A

bounded automaton A over A is given by two functions:

ψ : Q ×Am+l+2 −→ A, φ : Q ×A −→ Q. (2.1)

A flow of the sets of strings of one-sided infinite length

{
kt =

(
kt0, k

t
1, . . .

)
: kti ∈ A

}
t≥0 (2.2)

is determined by A if {ktN}N,t≥0 satisfy the following relations:

kt+1i = ψ
(
qt+1i , kti−l, . . . , k

t
i+m, k

t+1
i−1
)
, qti = φ

(
qti−1, k

t
i

)
. (2.3)

We regard that they grow time evolutionally as k0 → k1 → · · · → kt → · · · .
One can similarly consider the two-sided case

{
kt =

(
. . . , kt−n, . . . , k

t
0, k

t
1, . . .

)
: kti ∈ A

}
t≥0. (2.4)
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2.1.1. Mealy Automaton (see [7, 8])

A Mealy automaton A over X is given by two functions:

ψ : Q ×A −→ A, φ : Q ×A −→ Q. (2.5)

(A) One-Sided Case

Let

XA =
{
k = (k0, k1, . . .) : ki ∈ A

}
(2.6)

be all of the set of strings of one-sided infinite length. Then, each q ∈ Q induces a continuous
map

Aq : XA −→ XA (2.7)

given byAq(k0, k1, . . .) = (k′0, k
′
1, . . .), where k′i are inductively defined with q−1 = q as follows:

k′i = ψ
(
qi, ki

)
, qi = φ

(
qi−1, ki

)
. (2.8)

One can check easily that Mealy automata can be obtained by choosing ψ : Q×A → A
by kt+1i = ψ(qt+1i , kti) and φ are the same.

Let XN
A = {k∗ = (k0, k1, . . . , kN) : ki ∈ A} be the set of words of lengthN with alphabet

X. Then, Aq restricts the action as Aq : XN
A → XN

A for allN ∈ {0, 1, 2, . . .}.
Letm = |A| and let Tm be the rootedm-tree. The set of all vertices of Tm can be identified

with X∞A ≡
⋃
N XN

A . Thus Aq gives the following action:

Aq : Tm −→ Tm. (2.9)

Let us say thatA is invertible (see [7]) if ψ(q, ) : A ∼= A are one-to-one onto for all q ∈ Q.
An invertible automaton A gives automorphisms Aq : Tm ∼= Tm, and the group generated by
the set of states is denoted by G(A):

G(A) = gen
{
Aq : Tm ∼= Tm : q ∈ Q}. (2.10)

(B) Two-Sided Case

Let A = {0, 1, . . . , L − 1} and let S be a finite set. Let us consider the two maps

ψ : S ×A −→ A, φ : S ×A −→ S (2.11)

equipped with the initial state q ∈ S. These data give a structure of Mealy automaton A.
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Let us put the set of the two-sided sequences by ΣL = {(. . . , v−n, . . . , v0, . . .) : vi ∈ A}.
Let σ = (. . . , v−n, . . . , v0, . . .) be an infinite sequence by {0, . . . , L − 1} such that vn = v−n = 0
holds for all sufficiently large n� 0. Let us denote the set of such sequences by

Σ0
L =

{
(. . . , v−n, . . . , v0, v1, . . .) : vi ∈ A, vn = 0 ∀ large |n| � 0

}
. (2.12)

Notice that Σ0
L are shift invariant.

Let us say that A is semiproper if ψ(q, 0) = 0 is satisfied.
If A is semi-proper, then it induces a continuous map

Aq : Σ0
L −→ ΣL, Aq(. . . , vn, vn+1, . . .) =

(
. . . , v′n, v

′
n+1, . . .

)
(2.13)

given by the same rule as that of the one-sided case. Namely, let us take (. . . , vn, vn+1, . . .) ∈
Σ0
L, and choose sufficiently small m0 so that vm = 0 holds for all m ≤ m0. Then, we define

inductively as

v′m0+k
= ψ(sk, vm0+k), sk = φ(sk−1, vm0+k), (2.14)

where we put v′m = 0 for all m ≤ m0. This is independent of choice of m0 and gives an
assignment

Aq : (. . . , vm, vm+1, . . .) −→
(
. . . , v′m, v

′
m+1, . . .

)
. (2.15)

Let A be a Mealy automaton which is semi-proper. If it induces a continuous map

Aq : Σ0
L −→ Σ0

L, (2.16)

then we say that A is proper.

2.1.2. Cellular Automaton

The cell automata we treat here require only the initial states. Let A = Q, and take a function
ψ : A3 → A. Then, each q ∈ Q = A induces a continuous map

Aq : XA −→ XA (2.17)

given by Aq(k0, k1, . . .) = (k′0, k
′
1, . . .), where k′i are inductively defined with k′−1 = q:

k′i = ψ
(
ki, ki+1, k

′
i−1
)
. (2.18)

So the flows {kt}t satisfy the relations kt+1i = ψ(kti , k
t
i+1, k

t+1
i−1).
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2.2. Interacting Maps

Let us take the two interval maps

f0, f1 : [0, 1] −→ [0, 1] (2.19)

and consider their iterations as

O0(x) =
{
fk0 (x)

}
k=0,1,...

, O1(x) =
{
fk1 (x)

}
k=0,1,...

. (2.20)

We call them the oscillations (see [3]).
Let us define interaction of these orbits below. For this, let X2 be the set of one-sided

sequences with two alphabets {0, 1} as follows:

X2 = {(k0, k1, . . .) : ki ∈ {0, 1}}. (2.21)

For each element k = (k0, k1, . . .) ∈ X2, we associate a family of maps {hm}m=0,1,... with hm :
[0, 1] → [0, 1] by the random iterations

hm(x) ≡ fkm ◦ fkm−1 ◦ · · · ◦ fk0(x). (2.22)

Let

π : [0, 1] −→ {0, 1} (2.23)

be the measurable map given by π([0, 1/2)) ≡ 0 and π((1/2, 1]) ≡ 1. Then, for each x ∈ [0, 1],
one can compose {hm(x)}m with π and obtain another element for a.e. x as follows:

k
′ ≡ π

((
h0(x), h1(x), . . .

))
≡
(
π ◦ h0(x), π ◦ h1(x), . . .

)
∈ X2. (2.24)

This assignment gives a map from each element k to k
′
. We denote this map

Φ
(
x, f0, f1

)
: X2 −→ X2 (2.25)

by Φ(x, f, g)(k) = k
′ ≡ π((h0(x), h1(x), . . .)) and call it the interaction map.

Let us introduce a generalization of the interaction. Let us fix a set of alphabets
{0, 1, . . . , L} and choose a family of maps {fi,j}i,j=0,1,...,L and k ∈ XL+1. Then, we define
inductively

hm(x) = fkm,km+1 ◦ hm−1(x), h−1(x) ≡ x. (2.26)

We say that {hm(x)}m is a two-step interaction.
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Let π : [0, 1] → {0, 1, . . . , L} be the projection. Then, as before one obtains a map

Φ(x) : XL+1 −→ XL+1, Φ(x)
(
k
)
= k

′
,

k
′
m = π ◦ hm(x).

(2.27)

Let Φ : XL+1 → XL+1 be a map, and take an initial condition

(
k00 , k

0
1 , k

0
2 , . . .

)
(2.28)

and a boundary condition

(
k10 , k

2
0 , k

3
0 , . . .

)
. (2.29)

Then, we inductively put

(
kt0, k

t
1, . . .

)
= Φ

(
kt−10 , kt−11 , . . .

)
= Φt

(
k00 , k

0
1 , k

0
2 , . . .

)
∈ XL+1. (2.30)

We call (kt0, k
t
1, . . .) as the flow of Φ.

In Section 6, we consider the flow of the Lotka-Volterra cell automaton by the iteration
of the interaction map for some family of interval maps. LV cell automaton is isomorphic to
the BBS system described below. We will study the isomorphism in Section 4.

2.3. BBS System

Let Σ2 be the set of two-sided sequences with two alphabets, and consider its subsets Σ0
2 ⊂ Σ2:

Σ0
2 =

{
(. . . , v−n, . . . , v0, v1, . . .) ∈ Σ2 : vn = 0 ∀ large |n| � 0

}
. (2.31)

Notice that it is shift invariant.
Let us describe the dynamical system T : Σ0

2
∼= Σ0

2 called BBS below (see [9]). One can
canonically identify Σ0

2 with the set of ordered integers

Σ0
2
∼= O = {i1 < i2 < · · · < im : ik ∈ {. . . , 0, 1, . . .}, m ∈ N} (2.32)

by (. . . , v−n, . . . , vn, . . .) → {n : vn = 1} as in the introduction.
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Let us choose an element σ ∈ Σ0
2 and let (i1 < i2 < · · · < im) be the corresponding

ordered integers. Let

T(σ)1 =
(
. . . , v1

−m, . . . , v
1
0 , v

1
1 , . . .

)
∈ Σ0

2 (2.33)

be another element defined as follows: let j1 ≥ i1 be the smallest index with vj1 = 0. Then, we
put

v1
l =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

vl, l /= i1, j1,

0, l = i1,

1, l = j1.

(2.34)

Next we do the same thing for v1
i2
= vi2 in T(σ)1 and find another smallest index j2 ≥ i2

with v1
j2
= 0. Then, we exchange 0 and 1 in v1

i2
and v1

j2
as above. The result is denoted by T(σ)2.

We continue this process for i3, i4, . . . until im, and finally one obtains the desired T(σ) ≡
T(σ)m ∈ Σ0

2.
Thus one has obtained a continuous bijective map

T : Σ0
2
∼= Σ0

2 (2.35)

which is calld the box and ball system (BBS) (see [13]).
Let ON = {i1 < i2 < · · · < iN : ik ∈ {. . . , 0, 1, . . .}} ⊂ O be the subset consisted by the

set of exactlyN indices. Let Σ0
2(N) ⊂ Σ0

2 be the corresponding subsets. Then, the BBS system
preserves them and induces bijections T : Σ0

2(N) ∼= Σ0
2(N).

2.3.1. BBS as a Mealy Automaton

Let us describe the BBSmap T by an interaction of a family of interval maps. The basicmethod
will take two steps. Firstly we will describe it by a proper Mealy automaton, and then we
write down the automaton by an interaction of a family of maps. Here we will use some
modified way in order to express it by a family of continuous maps. For the presentation, see
also Section 4.1.

Firstly we will construct an automaton A. It will induce a map M : Σ0
2(N) ∼= Σ0

2(N)
which corresponds to T(σ)1 in Section 2.3. Then, the BBS map T : Σ0

2(N) ∼= Σ0
2(N) is given by

T | Σ0
2(N) =MN .

Lemma 2.1. For the state set S = {0, 1, 2, 3, 4} with the initial state 0, there is a proper Mealy
automaton A which inducesM : Σ0

2
∼= Σ0

2.

Proof. Let us define A by

ψ : S × {0, 1} −→ {0, 1}, φ : S × {0, 1} −→ S, (2.36)
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Table 1: Values of φ.

0 1 2 3 4
0 0 2 4 2 4
1 1 3 4 3 4

where

ψ(a, ) =

⎧
⎨
⎩
ε, a = 1, 2,

id, a = 0, 3, 4
(2.37)

(ε ∈ S2 is the nontrivial element in the permutation group on {0, 1}).
It is immediate to check the conclusion. This completes the proof.

Let us consider expressing BBS by an interaction of maps. Let us denote φ = {φ0, φ1}
as in Table 1 and ψ = {ψ0, ψ1}, where φi : S → S and ψi : S → {0, 1} for i = 0, 1. Let
π : [0, 1] → {0, 1} and π5 : [0, 1] → {0, 1, 2, 3, 4} be the canonical projections.

If the automaton above is described by compositions of a family of continuous maps
{αi}i=0,1 and {fi}i=0,1 as φi = π5 ◦ αi and ψi = π ◦ fi, then we say that the automaton is given
by an interaction of maps on intervals (see [6]).

It is immediate to see that the aboveA cannot be expressible by a family of continuous
maps as above. So we will modify as follows. Let us choose two permutations ε0, ε1 :
S ∼= S. Then, we say that A is given by a modified interaction of maps with respect to
(ε0, ε1), if there are families of continuous maps {αi}i=0,1 and {fi}i=0,1 so that the following
hold:

φi = εi ◦ π5 ◦ αi,
ψi = π ◦ fi.

(2.38)

When these maps can be chosen piecewisely linearly, then tropical geometry in
Section 6 can be applied, since piecewise linear functions can have representations by the
relative arithmetics of (max,+). BBS is also the following case.

Lemma 2.2. There are families of continuous maps and permutations so that they give the modified
interaction of maps representing the proper Mealy automaton A above. In particular the BBS
automaton is given byMN =M ◦ · · · ◦M on Σ0

2(N) forN = 0, 1, 2, . . . .

Proof. Let us choose permutations as

ε0 : (0, 1, 2, 3, 4) −→ (0, 2, 4, 1, 3),

ε1 : (0, 1, 2, 3, 4) −→ (0, 1, 3, 4, 2).

(2.39)
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Then, we can choose piecewise linear functions αi and fi so that they satisfy the
following properties:

α0 |
[
i

5
,
i + 1
5

]
⊂
[
i

5
,
i + 1
5

]
, i = 0, 1, 2,

α0 |
[
3
5
,
4
5

]
⊂
[
1
5
,
2
5

]
, α0 |

[
4
5
, 1
]
⊂
[
2
5
,
3
5

]
,

α1 |
[
i

5
,
i + 1
5

]
⊂
[
i + 1
5

,
i + 2
5

]
, i = 0, 1, 2,

α1 |
[
i

5
,
i + 1
5

]
⊂
[
i − 1
5

,
i

5

]
, i = 3, 4,

f0 |
[
j

5
,
j + 1
5

]
⊂
[
0,

1
2

]
, j = 0, 3, 4, f0 |

[
j

5
,
j + 1
5

]
⊂
[
1
2
, 1
]
, j = 1, 2,

f1 |
[
j

5
,
j + 1
5

]
⊂
[
0,

1
2

]
, j = 1, 2, f1 |

[
j

5
,
j + 1
5

]
⊂
[
0,

1
5

]
, j = 0, 3, 4.

(2.40)

This completes the proof.

3. Quotient of the Braid Groups and BBS System

3.1. Quotient of the Braid Groups

Let Bn be the braid group with n-strands. It has the following presentation:

Bn =
{
t1, . . . , tn−1 : titj = tj ti,

∣∣i − j∣∣ > 1, titi+1ti = ti+1titi+1
}
. (3.1)

It has a canonical element representing the half-twist, that is,

Ωn ≡ (t1 . . . tn−1)(t1 . . . tn−2) · · · (t1t2)t1 ∈ Bn. (3.2)

The quotient group byΩ2
n is isomorphic to a subgroup of the mapping class group on (n+ 1)-

punctured sphere, which is consisted by groups which fix∞ point and index n + 1 (see [14]):

Bn/〈Ω2
n〉 ⊂MPGn+1. (3.3)

Let us generalize it and have quotient braid groups.
Let i = 1, . . . , n−1 and k = 0, . . . , n−1, and denote subsets by [i, k] ≡ (i, i+1, . . . , i+k) ⊂

{1, . . . , n−1}. Let B[i,k] ⊂ Bn be the subgroup generated by {ti, . . . , ti+k}. By the same way, each
B[i,k] contains the following corresponding canonical elements:

Ω[i,k] ∈ B[i,k]. (3.4)
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We will define two types of quotients of the braid groups using these canonical
elements.

Definition 3.1. The mod 2 braid groupM2Bn is given by the following:

M2Bn =
{
t1, . . . , tn−1 : titj = tj ti,

∣∣i − j∣∣ > 1, titi+1ti = ti+1titi+1, t2i
}

= Bn/gen

〈
n−1⋃
i=1

t2i

〉
.

(3.5)

For example, M2B2 = Z2 and M2B3 is an infinite group which has a presentation given by
Z2 ∗ Z2/〈t1t2t21t2t1〉.

Let us denote the quotient map by

π : Bn −→M2Bn. (3.6)

Lemma 3.2. Let π(Ω2
[i,k]) = 1 ∈M2Bn for any i, k. Then, in particular one has

M2Bn = Bn/gen

〈 ⋃
[i,k]⊂{1,...,n−1}

Ω2
[i,k]

〉
. (3.7)

Proof. We check for n = 4, and the general case will follow from this immediately.
In fact π(Ω2

4) = (t1t2t3t1t2t1)(t1t2t3t1t2t1) = t1t2t3t1t2t
2
1t2t3t1t2t1 = t1t2t3t1t

2
2t3t1t2t1 =

t1t2t3t1t3t1t2t1 = t1t2t3t3t1t1t2t1 = 1.
This completes the proof.

Let I ⊂ {1, . . . , n − 1}2 be a set of subsets, and denote by gen〈ΩI : I ∈ I〉 the group
generated by elements ΩI . Then, we define another type of quotient braid groups by

Bn(I) = Bn/gen〈ΩI : I ∈ I〉. (3.8)

Notice that we do not include elements like (i, 0) which correspond to one string. We will
denote πI : Bn → Bn(I) for the projection.

Later we will have geometric meaning to divide by the twists in terms of the BBS
system. In particular wewill see in the following section that solitary behaviour in BBS system
can be represented as an element in the quotient braid groups.

3.2. Solitary Flow

Any σ ∈ Σ0
2 can be uniquely expressed by a finite set

{I1, . . . , Il} ≡ {(i1,N1), . . . , (il,Nl)}, (3.9)
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whereNj ≥ 1 and l ≥ 0. They satisfy the following:

(1) vj = 1 for all j ∈ ⋃k=1,...,l{ik, ik + 1, . . . , ik +Nk − 1},
(2) vj = 0 holds for some j in {ik +Nk, . . . , ik+1 − 1}, k = 1, . . . , l.

We call (N1, . . . ,Nl) the index of σ. Thus one may regard each Ij as one soliton.
Let σ ∈ Σ0

2 and consider the BBS map T . The indices of Tt(σ), (S1, . . . , Sm) are all
constant for sufficiently small t � 0, and also for all sufficiently large t � 0, they are also
constant (T1, . . . , Tm′), where ΣSi = ΣTj holds. Here inequalities hold as follows:

S1 ≥ S2 ≥ · · · ≥ Sm, T1 ≤ T2 ≤ · · · ≤ Tm′ . (3.10)

We say that σ has its type

(
{Si}mi=1,

{
Tj
}m′
j=1

)
. (3.11)

If σ is a soliton, then the equality

(T1, . . . , Tm′) = (Sm, Sm−1, . . . , S1) (3.12)

holds. More precisely, let {σt}t∈Z ⊂ Σ0
2 be a flow. We say that it is solitary if there are a set

{M1, . . . ,Mm} ⊂ N, 1 ≤M1 < M2 < · · · < Mm, and families {it1, . . . , itm} ⊂ Z such that, for all
sufficiently large t� 0,

σ−t =
{(
i−t1 ,M1

)
,
(
i−t2 ,M2

)
, . . . ,

(
i−tm ,Mm

)}
,

σt =
{(
it1,Mm

)
,
(
it2,Mm−1

)
, . . . ,

(
itm,M1

)}
,

(3.13)

where

(1) it1 < i
t
2 < · · · < itm and i−tm < i−tm−1 < · · · < i−t1 hold,

(2) |i±tj − i±tj+1| → ∞ as t → ∞ for all j = 1, . . . , m − 1.

Thus for any σ ∈ Σ0
2, the corresponding flow {Tt(σ)}t∈Z is solitary.

3.3. Assignment of Braid Elements

Let us take σ ∈ Σ0
2(N), and let T be the BBS map. Let us take a large t0 � 0 so that T−t0(σ)

and Tt0(σ) have indices (S1, . . . , Sm) and (T1, . . . , Tm′), respectively. Notice the equality N ≡
Σm
i=1Si = Σm′

j=1Tj .
Let us put σ0 ≡ T−t0(σ), and we consider the step T(σ0)i, i = 1, . . . , m, in the definition

of the map T in Section 2.2. For the step from σ0 to T(σ0)1, let us assign a natural element

b1 ∈ BN (3.14)
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below, where each string corresponds to an element 1 in σ0. Namely, when the most left-
hand side 1 moves into a position passing through another r number of 1’s, then tr−1 · · · t1
is assigned. For example, if σ0 = (. . . , 0, 1, 1, 0, . . .) moves as (. . . , 0, 0, 1, 1, . . .), then one
generating element t1 is assigned. Similarly, if σ0 = (. . . , 1, 1, 1, 0, . . .) which moves as
(. . . , 0, 0, 1, 1, 1, . . .), then t2t1 is assigned.

Next for the second step from T(σ0)1 to T(σ0)2, one assigns another element b2 ∈ BN
by the same way. Continuing, one obtains another b3, . . . , bm.

By this way one has assigned an element

b = b(σ0, t0) = bmbm−1 · · · b1 ∈ BN (3.15)

which we call the braiding element.

3.3.1. Braiding Maps

Notice that b depends on the choice of t0 and so σ0 in the above. In fact there will be infinitely
many elements which are different from each other with respect to the choice of t0. The
ambiguities arise from choices of the starting point σ0 = T−t0(σ) and the ending point Tt0(σ).
Let σ have the type ({Si}mi=1, {Tj}m

′
j=1). They are essentially given by the twists of the canonical

elements

Ω[1,S1−1],Ω[S1+1,S2−1],Ω[S1+S2+1,S3−1], . . . ,Ω[S1+···+Si−1+1,Si−1], (3.16)

for the former and given for the latter by

Ω[T1+···+Tj+1,Tj+1−1],Ω[T1+···+Tj+Tj+1+1,Tj+2−1], . . . ,Ω[N−Tm′ ,Tm′ −1], (3.17)

where the rest indices all correspond to one string:

Sk = 1 (k = i + 1, . . . , m), Tl = 1
(
l = 1, 2, . . . , j

)
. (3.18)

Let us denote the set

I(σ) =
{
[1, S1 − 1], [S1 + 1, S2 − 1], . . . , [S1 + · · · + Si−1 + 1, Si − 1],
[
T1 + · · · + Tj + 1, Tj+1 − 1

]
,
[
T1 + · · · + Tj+1 + 1, Tj+2 − 1

]
, . . . , [N − Tm′ , Tm′ − 1]

}
.

(3.19)

We say that I(σ) is the index of the BBS flow for σ.
Let I ⊂ {1, . . . , n − 1} be a set of subsets. Then, we put

Σ0
2(I) ≡

{
σ ∈ Σ0

2 : I(σ) = I
}
. (3.20)
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Let πI be the projection as before. Then, we define the following restricted braiding map
with respect to I as

B(I) : Σ0
2(I) −→ BN(I) (3.21)

by assigning πI(b), b = b(σ0, t0)). It is independent of choice of t0 and gives a single map.
The above map depends on I. Below we will have another braiding map from Σ0

2 as a
multivalued one. The target space is also obtained by the quotient of the braid group.

Let π : BN → M2BN be the projection. Thus π(b) ∈ M2BN have ambiguity at most
finitely many elements with respect to t0. Now we define the mod 2 braiding map:

B2 : Σ0
2(N) −→M2BN (3.22)

as the images of all various values of t0 for sufficiently large |t0| � 0, given by π(b) ≡ b ∈
M2BN , where b is as above. Thus B2 is a finite multivalued map

We call b the mod 2 braiding element.

3.4. Connected Braiding Maps

Let us take two elements as follows:

σk =
(
. . . , 0, ai1,k, . . . , aimk ,k, 0, . . .

)
∈ Σ0

2, k = 1, 2. (3.23)

Choose sufficiently large M � 0. Then, we define the connected sum of σ1 with σ2 of length
M by

σ1#Mσ2 =
(
. . . , 0, ai1,1, . . . , aim1 ,1, 0, . . . , 0, ai2,2, . . . , aim2 ,2, 0, . . .

)
∈ Σ0

2, (3.24)

where 0 appearsM times in the middle.
The index of the connected sum and their union are given by

I
(
σ1, σ2;M

)
= I
(
σ1
)
∪ I
(
σ2
)
∪ I(σ1#Mσ2) ⊂ {1, . . . , m1 +m2 − 1},

I
(
σ1, σ2

)
≡
⋃
M�0

I(σ1#Mσ2).
(3.25)

In fact I(σ1, σ2;M) is completely determined by the triple (I(σ1), I(σ2),M).
Let IN be all of the set of subsets in {1, . . . ,N − 1} such that each element can be an

index for some σ ∈ Σ0
2. Then, for largeM � 0, there are maps

HM : IN × IN ′ −→ IN+N ′ (3.26)

which give the indices of connected sums.
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Thus these induce a family of maps

H
(
I, I′;M

)
: BN(I) × BN ′

(
I′
) −→ BN+N ′

(
HM

(
I, I′
))

(3.27)

satisfying

H
(
I, I′;M

)(
B(I)

(
σ1
)
, B
(
I′
)(
σ2
))

= B
(
HM

(
I, I′
))(

σ1#Mσ2
)

(3.28)

for I ∈ IN and I′ ∈ IN′ . We will say thatH(I, I′;M) is a connected braiding map.

Proposition 3.3. H(I, I′;M) is eventually period with respect toM.

This follows since the target space is divided by twists in braid groups.

4. Transformations on Cell Automata

4.1. From BBS to LV

The Lotka-Volterra cell automaton is given by the equation

V t+1
n − V t

n = max
(
0, V t

n+1 − L
) −max

(
0, V t+1

n−1 − L
)
. (4.1)

This is obtained from the original Lotka-Volterra equation by taking differentiations twice. It
is known that this possesses solitons which are induced from the ones of the difference LV
solitons.

There is a procedure to transform BBS equation to LV cell automaton and vice versa
(see [9, 13, 15]):

Bt+1n = min
{
1 − Btn,Σn−1

i=−∞
(
Bti − Bt+1i

)}
⇐⇒ V t+1

n − V t
n = max

{
L, V t

n+1

} −max
{
L, V t+1

n−1
}
, (4.2)

by changes of variables.
Let

O0 = LV cell automaton −→ O1 −→ · · · −→ Ok = BBS (4.3)

be a procedure of transformations. We say that it is invertible, if the procedure has its inverse
Ok → Ok−1 → · · · → O0. We say that O0 and Ok can be connected by an invertible
procedure.

Lemma 4.1. LV cell automaton and BBS can be connected by an invertible procedure as follows:

O0 =
{
V t
n

} −→ O1 =
{
Ut
n

} −→ O2 =
{
Stn
} −→ O3 =

{
Btn
}
. (4.4)



20 International Journal of Mathematics and Mathematical Sciences

Proof. They can be connected by three steps as follows:

St+1n+1 − Stn = min
{
0, 1 − Stn+1 + St+1n

}
, Stn = Σn

i=−∞B
t
i ,

Ut+1
n+1 −Ut

n = max
{
0, Ut+1

n − 1
}
−max

{
0, Ut

n+1 − 1
}
, Ut

n = Stn+1 − St+1n ,

V t+1
n − V t

n = max
{
1, V t

n+1

} −max
{
1, V t+1

n−1
}
, V n

t−n = Ut
n.

(4.5)

For the first transformation, one has the relations Btn = Stn −Stn−1. For the second, notice
that St+a+1n−a = 0 for all sufficiently large a. Then, we have the relations

Σ∞x=0U
t+x
n−x = Stn+1 − lim

a→∞
St+a+1n−a = Stn+1. (4.6)

This completes the proof.

Remark 4.2. It has been shown in [3] that LV cell automaton is given by a family of PL maps
and projections on the interval [0, 1]. We have seen that BBS is given by a family of PL maps,
projections, and permutations in Section 2.3.

4.1.1. Deformation by Commutators

Let us consider the second step in the proof of Lemma 4.1. We express the linear
transformationUt

n = Stn+1 − St+1n as

U = α(S), (4.7)

where we mean that α(S)tn ≡ Ut
n. By this way, let us express others by

f(S), f(S)tn = Stn − St−1n−1,

β(S), β(S)tn = Stn+1 − St+1n ,

γ(S), γ(S)tn = min
{
0, 1 − St−1n−1

}
.

(4.8)

Now the second step is expressed as

U = α(S), (4.9)

f(U) = β ◦ f(S), (∗)

and the defining equation becomes

f(S) = γ ◦ α(S). (∗∗)
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Thus combining with (∗) and (∗∗), after the transformation, the equation changes as below:

f(U) = β ◦ γ(U). (∗ ∗ ∗)

Let us consider deforming the transformations. Let h be a transformation. Then, we
say that it commutes with f if

f ◦ h = h ◦ f (4.10)

holds.

Example 4.3. LetU = {Ut
n}t,n satisfy limi→∞Ut−i

n−i = 0 for each t and n.
Let h be given as

h(U)nt = Σ0
i=−∞U

t−i
n−i, (4.11)

and let f be f(U)tn = Ut
n −Ut−1

n−1 as above. Then, h commutes with f .

Let us consider transformations given by (∗) and (∗∗) above. Then, a deformation of the
transformation by a commutator h is another one given below:

W = h ◦ α(S),
f(W) = h ◦ β ◦ f(S),

(4.12)

which follows from (∗). When one considers the equation of the form

f(S) = γ ◦ h ◦ α(S), (4.13)

then it is changed to f(W) = h ◦ β ◦ γ(W).
We denote all of the set of commutators with respect to f by

C
(
f
)
=
{
h :
[
h, f

]
= 0
}
. (4.14)

4.2. Spaces of Cell Automata

So far, we have considered certain types of automato in Section 2.1, mainly those whose
defining equations are given by max-plus equations. These are not closed under change of
variables, and so here we will generalize the classes of functions we treat.

Let us denote the set of integer-valued maps

PLn =
{
f : Z3n+1 −→ Z, f

(
x−n, . . . , x−1, y−n, . . . , y0, y1, . . . , yn

) ∈ Z
}
. (4.15)

Notice that there are canonical extensions of any f ∈ PLn to piecewisely linear maps f :
R3n+1 → R just by connecting images of f piecewisely linearly. Sometimes we will identify
both of the maps. Such viewpoints will become important in Section 6.
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A general automaton is given by an element of the direct limit

f ∈ PL∞ = lim
n→∞

PLn, (4.16)

where the defining equation of the automaton is given by

Ttk = f
({

. . . , T tk−n, T
t
k−n+1, . . . , T

t
k−1
}
,
{
. . . , T t−1k−n, . . . , T

t−1
k , . . .

})
. (4.17)

If f is of the form f(x−N, . . . , x−1, . . . , y−n, . . . , y1, . . . , yn, . . .), for some N, then we say
that it is of (N,∞) type.

If f is of the form f(. . . , x−n, . . . , x−1, y−M, . . . , y1, . . . , yn, . . .), for someM, then we say
that it is of (∞,M) type.

For simplicity, we will say that they are of finite-∞ or ∞-finite types, respectively. If
both cases hold, then we say that it is of (N,M) or of finite-finite type.

Notice that the Lotka-Volterra cell automaton is of finite-finite type and the BBS is of
infinite-infinite type.

Let us denote all of the set of general automata and its subsets consisted by those of
∗-∗′ types by

GAut∗-∗′ ⊂ GAut, (4.18)

where ∗, ∗′ = finite or∞. Notice that GAut∞-∞ = GAut.
We will also denote the set of general automata presented by the max-plus equations

and its subsets by

MP∗−∗′ ⊂MP. (4.19)

One has the following inclusions:

BBS ∈MP ⊂ GAut ⊃ GAutf-f ⊃MPf-f � L-V CA. (4.20)

4.3. Loop Groupoid

Let us choose two general automata O = {Stn} andO′ = {Ttn} in GAut. A transformation from
O to O′ is the one given by a change of variables:

Ttk = F
({
. . . , Stk−n, S

t
k−n+1, . . . , S

t
k−1
}
,
{
. . . , St−1k−n, . . . , S

t−1
k , . . .

})
(4.21)

for some linear function F. We denote the transformation by

O −→ O′. (4.22)

They are mutually invertible if both O → O′ and O′ → O hold.
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Let us consider two invertible paths O0 = O → O1 → · · · → Om = O′ and O′0 = O
′ →

O′1 → · · · → O′n = O in GAut. Then, the composition

O = O0 −→ · · · −→ Om −→ O′1 −→ O′2 · · · −→ O′n = O (4.23)

gives a loop with the origin O. Clearly two loops with the origin O admit a natural
composition, and by this operation, the set of loops

ΩO =
{
O ≡ O = O0 −→ O1 · · · −→ Om = O : invertible paths

}
(4.24)

admits a group structure.

Definition 4.4. The loop groupoid Ω is given by

Ω
(
O,O′

)
=
{
O = O0 −→ O1 −→ · · · −→ On : invertible paths

}
. (4.25)

Therefore, Ω(O) ≡ Ω(O,O) is called the loop group.

Let O0 be the LV cell automaton, and denote all of the set of the solutions of the
equation

SLV =
{{
vtn
}
t,n : solutions of the LV cell automaton

}
. (4.26)

Let us take an element O ∈ ΩO0 . Then correspondingly, there is a bijective map between
solutions of the equations:

O∗ : SLV
∼= SLV. (4.27)

We call it as an induced map associated with O ∈ ΩO0 .
In Section 6 we construct and study an involution on some classes of GAut by use of

tropical geometry and projective duality in affine algebraic varieties.

Example 4.5. Let us use the notations in Section 4.1. Let {Btn} and {V t
n} be the BBS and LV cell

automaton, respectively. In Section 4.1, one has obtained a path O = {O0 = {V t
n} → O1 =

{Ut
n} → O2 = {Stn} → O3 = {Btn}}.

Let us put a general automaton

Ttn = Btn+1 − Bt+1n . (4.28)

Then, O′1 ≡ {Ttn} ∈ GAut is linearly invertible with {Ut
n} by the relations

Ut
n = Σn

i=−∞T
t
i ⇐⇒ Ttn = Ut

n −Ut
n−1. (4.29)

Thus one has obtained another path O
′
= {O0 → O′1 → O2 → O3}.
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5. Actions on the Boundary of Trees

5.1. Actions on the Boundary and Compactification

For any graph with marking on each edge, we denote by m(e) the marking at the edge e. A
tree T is said to be biinfinite if, for any vertex v ∈ T , it contains a geodesic real line v ∈ R ⊂ T .

Let T2 be the marked biinfinite binary tree with marking {0, 1} so that it contains a base
path l0 : R → T2 with m(l0(t)) = 0, t ∈ Z. Let P = {R → T2} be all of the set of geodesics.
Then, there is a canonical inclusion

P ⊂ Σ2, (5.1)

where Σ2 is the set of two-sided sequences with the alphabets {0, 1}. Thus Σ2 can be regarded
as a compactification of the set of all geodesics in T2.

Let us put

P0 =
{
l ∈ P : m(l(t)) = 0 ∀ sufficiently large |t| � 0

}
. (5.2)

Then, we have the following proper inclusions:

P0 ⊂ P ⊂ Σ2. (5.3)

It is easy to see that P0 ⊂ Σ2 is dense. In fact Σ2 \ P0 consist of elements l = (. . . , a−1, a0, a1, . . .)
such that the sets {i : m(ai) = 1} are unbounded at least for one direction.

Now we have a natural identification (Section 2.2)

Σ0
2
∼= P0 ⊂ Σ2. (5.4)

Then, the BBS system is described by an isomorphism

Φ : P0 ∼= P0. (5.5)

Notice that the only fixed point is (. . . , 0, 0, . . .).

Proposition 5.1. Φ can be naturally extended to the continuous map

Φ : Σ2 −→ Σ2, (5.6)

where

Φ((. . . , 1, 1, . . .)) = (. . . , 0, 0, . . .). (5.7)

Thus the extended map is not an isomorphism. More generally one has noninjective
points

Φ((. . . , 0, 1, 0, . . .)) = (. . . , 0, 0, 1, . . .) = Φ((. . . , 0, 1, 1, 0, 1, . . .)). (5.8)

The extension also has one fixed point (. . . , 0, . . .).
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In Section 4.1, we have assigned the following isomorphic procedures:

O0 = BBS −→ O1 −→ O2 −→ O3 = LV cell automaton, (5.9)

where we denote each step by Fi : Oi → Oi+1, i = 0, 1, 2. Each Oi admits an N action by the
flow. By the construction, we have that F0 and F1 both are equivariant with respect to the
flow, but F2 is not.

Let us put Σ0
∞ ≡

⋃∞
m=1 Σ

0
m, and Σ∞ is defined similarly. Then, by the above procedure

F : O0 → O3, we have an injection

F : P0 ↪→ Σ0
∞ (5.10)

which assigns the solution of the BBS to the one of LV.
Notice that F extends as F : P → Σ∞ with respect to the compactification of P0 defined

above; on the other hand, it cannot be extended as F : Σ2 → Σ∞.

Lemma 5.2. F : P → Σ∞ is not a surjection to the set of all solutions of the LV cell automaton.

Proof. Recall that, in the transformations above, F0 and F1 : O1 → O2 are equivariant, and F2

is just change of indices. Then, the result follows since there are at least two fixed points for
O2 as

{(. . . , 0, 0, . . .), (. . . , 1, 1, . . .)}. (5.11)

Question 1. Let us choose a largeN � 0. Describe compactification of F(P0) ∩ ΣN ⊂ Σ0
N .

5.2. Embedding of the Lamplighter Group

Let S and A be finite sets. An automata group G is an infinite group acting on the rooted tree
T ∗m,m = #A, which is determined by a transition function φ : S ×A → S and an exit function
ψ : S ×A → A such that ψ(a) ∈ Sm is an element of the permutation group for each a ∈ A.

Let T2 be as in Section 5.1. Recall that the lamplighter group is an automata group
which acts on the rooted binary tree T ∗2 , and it has a presentation (see [11])

G =
〈
a, γ : γ2 = 1,

[
γa

i

, γa
j
]
= 1, i, j ∈ Z

〉
. (5.12)

The action of G preserves each level set of T ∗2 , since it is constructed using an automaton. The
automaton is given in Table 2:

ψ(a) = ε, ψ(b) = id, (5.13)

where ε ∈ S2 is the nontrivial permutation on {0, 1}. We call it the lamplighter automaton.
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Table 2: Values of φ.

a b

0 a a

1 b b

Let us construct another group G̃ which contains G and acts on T2. Recall that T2
contains a line (. . . , 0, 0, . . .) ⊂ T2, and choose a base vertex ∗ on the line. By identifying ∗
with the root in T ∗2 , one can embed T ∗2 into T2:

T ∗2 ↪→ T2. (5.14)

Now passing through this embedding, one can make G act on T2 by letting the same action
as the lamplighter group on T ∗2 ↪→ T2 and by putting the identity on T2 \ T ∗2 .

Now Aut T2 ⊃ G̃ ⊃ G is generated by G and another element τ . Let us describe τ .
Notice that each edge of T2 is assigned by one of {0, 1}. We say that an automorphism g on
T2 preserves the marking if g(e) has the same marking as the one of e in {0, 1}. Now τ is an
automorphism preserving the marking and uniquely defined by the property that it shifts
i-zero in ((. . . , 0, 0, . . .)) to i + 1-one. Thus τ preserves the line. Then, G̃ is generated by a, γ ,
and τ .

The action of G̃ on T̃2 has no fixed point. Moreover it is finitely generated and has
quotient isomorphic to Z. Thus the Bass-Serre theory suggests the following.

Question 2. Is G̃ an amalgam? If so, write down explicitlyG1,G2, andAwith an isomorphism

G̃ ∼= G1∗AG2. (5.15)

5.3. Actions on Tree by Cellular Automata

The action of the automata group on T ∗2 is determined by the levelwise way. In fact it is an
action on each vertex of T ∗2 . This is not the case for general cellular automata, like LV cell
automaton. In fact the action is determined for each path in T ∗2 , rather than points in T ∗2 . More
precisely, for many automata including LV case, the image of a vertex v by an element g ∈ G
is determined by a neighbourhood of v.

5.3.1. LV Cell Automaton as a Transition Function

Let us consider a cell automaton

Φ : N ×N2 −→ N, (5.16)

where eachUt
n is determined inductively byUt+1

n = Φ(Ut+1
n−1, U

t
n,U

t
n+1).
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We say that {Ut
n} degenerates with respect to Φ if there is another function G so that it

satisfies the following relation:

Ut+1
n = Φ

(
G
(
Ut
n,U

t
n+1

)
, Ut

n,U
t
n+1

)
. (5.17)

Recall that the lamplighter automaton has two states {a, b} and the alphabets {0, 1}.
In order to compare the LV cell automaton with the transition function of it, we regard the
flow {U0

t }t → {U1
t }t as an output of a transition function. By this way let us regard that the

initial flow (U0
0, U

0
1, . . .),U

0
i ∈ {0, 1} is a sequence of the alphabets and (U1

0, U
1
1, . . .) is another

sequence of the states, where one identifies a and b with 0 and 1, respectively.

Lemma 5.3. Suppose an initial sequence (a0, a1, . . .) consists of only {0, 1} entries.
Then, the degeneration of the LV cell automaton by G(x, y) = x is the same as the transition

function φ of the lamplighter automaton.

When one expresses the flow of Φ by an automaton, one puts an exit function by:

ψ(a, i) = 0, ψ(b, i) = 1, i = 0, 1. (5.18)

In particular, the corresponding continuous map on the rooted tree is not an automorphism
(it is not one to one).

In general flows of the LV cell automaton take integer elements Ut
n ∈ N. In order to

treat these cases, let us put a sequence of states

(a0, a1, . . .), (5.19)

where a0 = a and a1 = b. Let S∞ be the group of compactly supported permutation on
{0, 1, . . .}. Then, consider an exit function

ψ : N −→ S∞ (5.20)

with ψ(0) = ε ∈ S2 ⊂ S∞ and ψ(1) = id.
In general let Φ : N ×N2 → N be a transition function, and choose an initial sequence

(i0, i1, . . .) ⊂ N and anyU1
0 ∈ N.

Now we define the generalized automaton (Φ, ψ) as follows. As an output, we will exit
another sequence (i10, i

1
1, . . .) ⊂ N as follows.

Firstly determine the sequence of the states (U1
0, U

1
1, . . .) inductively by Φ:

U1
n = Φ

(
U1
n−1, i

t
n, i

t
n+1

)
. (5.21)

Then, inductively we obtain the exits by

i1n = ψ
(
U1
n

)(
i0n

)
. (5.22)
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By this way one obtains an assignment which is in fact an isomorphism:

gU1
0
: X∞ ∼= X∞, (5.23)

where XN are the sets of one-sided sequences with N alphabets and X∞ is their union. The
group G(Φ, ψ) generated by gm, m = 0, 1, . . . , is also called the generalized automata group
given by (Φ, ψ).

In the case when Φ0 is the LV cell automaton, the equation of the transition function
becomes

U1
t+1 = i

t
n +max

(
L, itn+1

) −max
(
L,Ut+1

n−1
)
. (5.24)

Definition 5.4. The LV cell automata group is a group acting on the boundary ∂̃T ∗∞ ≡
⋃
i ∂T

∗
i of

the rooted infinite tree defined by the transition function Φ0 and an exit function ψ as above.

A generalized automata group is of bounded type byN if it induces an action between
XN = ∂T ∗N .

5.4. Quasi Actions on Trees

Let G be a group acting on the boundary of the rooted tree T ∗2 .
We say that an element γ ∈ G is a k0-quasi action on T ∗2 if there is some k0 ≥ 0 such that,

if we write γ(a0, a1, . . .) = (a′0, a
′
1, . . .), then a′M is determined by the data (a0, a1, . . . , aM+k0)

for eachM = 0, 1, . . . .We denote

γ(a0, a1, . . .)M =
(
a′0, . . . , a

′
M

) ∈ F2, (5.25)

where F2 is the free group generated by {α, β}. We denote the word length by |g|.
Suppose that γ is a 1-quasi action. Then, we have a map

Fγ : F2 −→ F2,

Fγ
(
g
)
=
(
γ
(
gα
)
|g|
)−1

γ
(
gβ
)
|g| ∈ F2,

(5.26)

which we call the differential of γ . Notice that, when γ is an automorphism on the tree, then F
is the identity map.

We say that a quasi action by γ is (k0, l0)-semi Markov if there is some l0 ≥ 0 such that
a′M is determined by (aM−l0 , . . . , aM+k0) for eachM = 0, 1, . . . .

Let γ has a 1-quasi action on T ∗2 . We say that it is bounded if there is a bounded function
B : F2 → F2 so that the differential satisfies the following equality:

Fγ
(
g
)
= B

(
gα
)−1

B
(
gβ
)
. (5.27)
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Lemma 5.5. A bounded quasi action γ is semi-Markov.

Proof. In fact one has the equality

γ
(
gα
)
|g|B
(
gα
)−1 = γ(gβ)|g|B

(
gβ
)−1

. (5.28)

This implies the equality

γ
(
gα
)
|g|−N = γ

(
gβ
)
|g|−N, (5.29)

whereN = sup{|B(g)| : g ∈ F2}. This completes the proof.

6. Associated Algebraic Varieties

6.1. Tropical Algebra

Maslov introduced a kind of scale transform called the dequantization of the real line R. It is
given by deformations of the arithmetics over the real number R, which are parameterized
by a family of semirings Rt for t > 1.

The multiplications and the additions are, respectively, given by

x
⊕
t

y = logt(t
x + ty), x

⊗
t

y = x + y. (6.1)

Notice the following particular property:

x
⊕
∞
y ≡ lim

t→∞
x
⊕
t

y = max
{
x, y

}
. (6.2)

This is called the tropical semiring.
Corresponding to polynomials over the usual real numbers, one obtainsRt-polynomials

as

ϕt(x) =
(
α1 + j1x

)⊕
t

· · ·
⊕
t

(
αk + jkx

) (
x ∈ Rn, jl ∈ Zn

)
(6.3)

whose limit t → ∞ satisfies the following max-plus equation:

ϕ∞(x) = max
(
α1 + j1x, . . . , αk + jkx

)
. (6.4)

Let Logt : (C
∗)n → Rn be defined as

Logt(z1, . . . , zn) ≡
(
log|z1|, . . . , log|zn|

)
. (6.5)

The following can be checked easily by direct calculations, but the conclusions are
highly nontrivial and interesting.
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Proposition 6.1 (see [4, 12]). ft ≡ (logt)
−1 ◦ ϕt ◦ Logt : Rn

+ → R+ is in fact a polynomial map
ft(z) = Σj t

αj zj .

Thus Rt-polynomials are conjugate to the standard real polynomials by logt.
Conversely let ϕ : Rn

+ → R+ be a piecewisely linear map equipped with the
presentation by a max-plus equation. Then, one can associate a parameterized Rt and
R polynomials, respectively, since their presentations are determined by the coefficients
α1, . . . , αk, j

1, . . . , jk. Later on, we will denote them, respectively, by ϕt and ft and call the
associated Rt and R polynomials with respect to ϕ.

6.2. Tropical Maps in LV Cell Automaton

It is immediate to generalize Section 6.1 to the relative case [16].
Let Ft : CN → C be a family of rational functions given by

F(z1, . . . , zN) =
Σlt

alzj
l

Σmtbmzj
m
, (6.6)

where j = (j1, . . . , jN) ∈ ZN and z = (z1, . . . , zN) ∈ CN . Then, we define the corresponding
tropical polynomial f = ftr as a piecewise linear map on RN by

ftr(x1, . . . , xN) = max
l

{
al + jlx

}
−max

m

{
bm + jmx

}
. (6.7)

where x = (x1, . . . , xN) ∈ RN . Such functions are called the relative (max,+) functions.
Let us recall the Lotka-Volterra cell automaton in Section 4. We describe it as flows of

the generalized interactions in Section 2.2.

Proposition 6.2 (see [3]). There is a family of smooth maps {fi,j}i,j=0,...,L so that the corresponding
flow Φ(x)t, t = 0, 1, . . . , determined by {fi,j}i,j gives the solutions of the Lotka-Volterra cell
automaton.

Proof. Let us construct the map

Φ̃ : {0, . . . , L} × {0, . . . , L}2 −→ {0, . . . , L},

Φ̃
(
ktn−1, k

t−1
n , kt−1n+1

)
= ktn ∈ {0, , . . . , L}.

(6.8)

Let us put a piecewise linear map fLV by

fLV(x1, x2, x3) = x1 +max{L0, x2} −max{L0, x3}
= x1 +max{0, x2 − L0} −max{0, x3 − L0}.

(6.9)
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Then, we renormalize them and put fi,j : [0, 1] → [0, 1] by

fi,j(x) =
1
L
fLV
(
i, j, Lx

) ∈ [0, 1]. (6.10)

Let us divide the interval [0, 1] into L+1 intervals, and denote them as I0 < I1 < · · · < IL. Then,
fi,j(Il) ⊂ IΦ̃(l,i,j) are satisfied for all i, j, l ∈ {0, 1, . . . , L}. This is the desired family of maps.

This completes the proof.

6.3. Associated Hypersurfaces

In order to avoid minus sign in the defining equations, one can transpose some terms there.
Then, the equation can be expressible by max-plus equations in both sides. So when a
bounded automaton is determined by a relative (max,+) function ϕ, then it associates the
pair of (max,+) functions (ϕ1, ϕ2).

For example, the LV-CA can be immediately rewritten as

V t+1
n+1 +max

{
L, V t+1

n

}
= V t

n+1 +max
{
L, V t

n+2

}
. (6.11)

Let us consider a bounded automaton defined by a relative (max,+) function:

V t+1
n+1 = ϕ

(
V t−l
n−k, . . . , V

t+1
n

)
. (6.12)

Let ϕ1 and ϕ2 be two max-plus equations with respect to ϕ. Then, the above equation can be
rewritten as

ϕ1

(
V t−l
n−k, . . . , V

t+1
n+1

)
= ϕ2

(
V t−l
n−k, . . . , V

t+1
n

)
, n = 0, 1, . . . , (6.13)

for some k and l. Notice that ϕ1 can be rewritten as

ϕ1

(
V t−l
n−k, . . . , V

t+1
n+1

)
= V t+1

n+1 + ϕ̃1

(
V t−l
n−k, . . . , V

t+1
n

)
(6.14)

for another some (max,+) function ϕ̃1, and they satisfy the relation

ϕ
(
V t−l
n−k, . . . , V

t+1
n

)
= ϕ2

(
V t−l
n−k, . . . , V

t+1
n

)
− ϕ̃1

(
V t−l
n−k, . . . , V

t+1
n

)

= ϕ2

(
V t−l
n−k, . . . , V

t+1
n

)
− ϕ1

(
V t−l
n−k, . . . , V

t+1
n+1

)
+ V t+1

n+1.

(6.15)

One may assume that both ϕ̃1 and ϕ2 have the sameN variables.
Let f1

t and f2
t be the associated R polynomials and assign the complex variables z =

(z1, z2, . . . , zN+1) with respect to (V t−l
n−k, . . . , V

t+1
n+1).
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Definition 6.3. The associated affine hypersurfaces are a parameterized family of hypersur-
faces given by the following equations:

V (A)t =
{
z ∈ CN+1 : f1

t (z) = f
2
t (z)

}
. (6.16)

Example 6.4. Let us consider the LV cell automaton. Let us put a parameterized polynomial
of degree 2 by ft(z,w) = tLz + zw. Then, the corresponding equation becomes ft(z4, z3) =
ft(z1, z2), where each zi corresponds to z1 ↔ V t

n+1, z2 ↔ V t
n+2, z3 ↔ V t+1

n , and z4 ↔ V t+1
n+1. Thus

the associated hypersurfaces V (LV)t ⊂ C4 are a family defined by

V (LV)t =
{
(z1, z2, z3, z4) ∈ C4 : ft(z4, z3) = ft(z1, z2)

}
. (6.17)

6.3.1. The Associated Complex Dynamics

Let us consider a bounded automaton A given by a relative (max,+) function ϕ. As above, it
is given by a pair of (max,+) functions (ϕ1, ϕ2). Let ft and (f1

t , f
2
t ) be the associated rational

and the pair of polynomial functions with respect to ϕ and (ϕ1, ϕ2)mutually. Notice that they
are related in the following way:

ft(z1, z2, . . . , zN) =
zN+1f

2
t (z1, z2, . . . , zN)

f1
t (z1, z2, . . . , zN, zN+1)

. (6.18)

For the LV cell automaton, ft above is given by

ft(z1, z2, z3) =
(
tL + z3

)−1(
tLz1 + z1z2

)
. (6.19)

Now for t = 0, 1, . . ., let us consider a flow given by infinite sequences of complex
numbers (zt1, z

t
2, z

t
3, . . .) ∈ C∞ which obey the equation

zt+1n+1 = ft
(
zt−ln−k, . . . , z

t+1
n

)
. (6.20)

Notice that, if (zt−ln−k, . . . , z
t+1
n ) ∈ RN

>0, then z
t+1
n+1 ∈ (0,∞).

Since it also satisfies the equation

f1
t

(
zt−ln−k, . . . , z

t+1
n+1

)
= f2

t

(
zt−ln−k, . . . , z

t+1
n

)
, (6.21)

each building block ztn = (zt−l
n−k, . . . , z

t+1
n ) lies on V (A)t for all n ≥ k and t ≥ l. We say that the

sequences

{
ztn
}
n≥k, t≥l ⊂ V (A)t (6.22)

are the induced dynamics on V (A)t.



International Journal of Mathematics and Mathematical Sciences 33

6.3.2. Stability

So far, we have discussed by fixing the parameter t. Here we consider the asymptotics of
flows as t → ∞.

Let (ϕ1, ϕ2) be a bounded automaton given by two max-plus functions with theN + 1
variables (V t−l

n−k, . . . , V
t+1
n+1) as above. Let us denote the associated polynomials ϕit and f

i
t , i = 1, 2.

Lemma 6.5. Let zt ∈ RN+1
>0 be a family of points. Suppose that the convergent condition

x ≡ lim
t→∞

Logt
(
zt
)

(6.23)

is satisfied. Then, x ∈ RN+1 satisfies the following equation:

ϕ1(x) = ϕ2(x). (6.24)

Proof. We recall the equality ft = log−1t ◦ ϕt ◦ Logt on the positive real numbers. Thus they
satisfy the following equation:

ϕ1
t ◦ Logt

(
zt
)
= ϕ2

t ◦ Logt
(
zt
)
. (6.25)

Then the conclusion holds, since ϕit converge to the original max-plus functions ϕi. This
completes the proof.

Let [v] ∈ Z be the integer part of v ∈ R. For a sequence v = (v1, v2, . . .), we denote by
[v] ≡ ([v1], [v2], . . .).

Definition 6.6. Let A be a bounded automaton, and choose parameterized families of
sequences {ztn}n≥k, t≥l ⊂ CN+1.

We say that they are stable, if there is t0 so that, for all t ≥ t0,
{[
Logt

(
ztn
)]}

n≥k, t≥l ⊂ ZN+1 (6.26)

gives a flow of the solutions of the original automaton A.

Let A be the LV cell automaton. Then, as in Section 6.2, there is a family of interval
maps {fi,j}i,j so that the flow of the solutions of LV-CA can be represented by interactions
of maps between {fi,j}. Thus existence of stable families above will be heavily influenced by
stability of dynamical properties of the family {fi,j} under continuous deformations of these
maps.

6.4. Cell Automatic Varieties

Let A1 and A2 be two cell automata, and consider an integer-valued flow

{
Vt =

(
V t
1 , V

t
2 , . . .

)}
t≥0 ⊂ Z∞. (6.27)
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If it satisfies both equations for A1 and A2, then we say that {Vt}t is a flow for A1 and A2.
Let us denote the set of such flows by

F(A1, A2) =
{{

Vt}
t=0,1,2,... ⊂ Z∞ : flows for both A1, A2

}
. (6.28)

We say that F(A1, A2) is a cell automatic variety for A1 and A2.
Let A1, . . . , Am be a family of cell automata. By considering flows for them, one also

obtains the cell automatic variety F(A1, . . . , Am).

6.4.1. Compatible Automata

Let A1 and A2 be two cell automata given by ϕ and ϕ′, respectively:

V t+1
n+1 = ϕ

(′)({V t
n−k, . . . , V

t
n+l

}
,
{
V t+1
n−k′ , . . . , V

t+1
n

})
[∗](′). (6.29)

Let us denote the following sets:

Vt
n ≡

(
V t
n−k, . . . , V

t
n+l, V

t+1
n−k′ , . . . , V

t+1
n

)
∈ ZN. (6.30)

We say that A2 is compatible with A1 if the following holds; suppose that V t
n satisfies

both [∗] and [∗]′. Let V t
n+1 be determined by [∗]′. Then, it also satisfies [∗].

In the case of compatible automata (A1, A2), the cell automatic variety F(A1, A2) will
be nonempty, which does not hold in general.

Example 6.7. Let A1 and A2 be both automata given by linear maps as follows:

un+1 = αun + βun−1 + γ, (A1),

un−1 = aun + b, (A2).
(6.31)

If these coefficients satisfy the following relations:

(
1 − β)a = α,

(
1 − β)b = γ, (6.32)

then A2 is compatible with A1.

6.4.2. Associated Varieties

LetA1 andA2 be two CA. Let us denote the associated R-polynomials by fit and g
i
t for i = 1, 2,

respectively. Then, one obtains the parameterized affine algebraic varieties given by the following
equations:

V (A1, A2)t =
{
z ∈ CN : f1

t (z) = f
2
t (z), g

1
t (z) = g

2
t (z)

}
. (6.33)
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Let us consider the associated systems of complex dynamics. Let (zt1, z
t
2, z

t
3, . . .) ∈ C∞

which obey the following system of the equations:

f1
t

(
zt−ln−k, . . . , z

t+1
n+1

)
= f2

t

(
zt−ln−k, . . . , z

t+1
n

)
,

g1
t

(
zt−ln−k, . . . , z

t+1
n+1

)
= g2

t

(
zt−ln−k, . . . , z

t+1
n

)
.

(6.34)

Again each building block ztn = (zt−ln−k, . . . , z
t+1
n ) lies on V (A1, A2)t, and we say that {ztn}n,t is

the induced dynamics on V (A1, A2)t.
Let A1, . . . , Am be a family of CA. Then, by the same way as above, one obtains the

following parameterized associated affine algebraic variety:

V (A1, . . . , Am)t =
{
z ∈ CN :

(
fkt

)1
(z) =

(
fkt

)2
(z), k = 1, . . . , m

}
, (6.35)

where (fkt )
i, i = 1, 2, are the associated R-polynomials with respect to Ak.

6.5. Duality

Herewe introduce a new duality on the set of automata. It passes through the projective duality
between algebraic varieties [17].

Let V be a complex n-dimensional vector space and let P(V ) be its projective space.
There is a natural isomorphism P(V ) ∼= P ∗(V ∗), where P ∗(W) is the set of all hyperplanes in
W and V ∗ is the dual space to V .

Projective duality generalizes this operation to varieties. Let us quickly describe its
construction. Let X ⊂ P(V ) be an algebraic variety. Then, one can associate another variety
X∨ ⊂ P(V ∗) as follows. A hyperplane H ⊂ P(V ) is said to be tangent to X if there exists a
smooth point x ∈ H ∩ X and the tangent space of X at x is contained in H. Let X∗ ⊂ P ∗(V )
be all of the set of tangent hyperplanes, and passing through the above isomorphism, one
obtains a set X∨ ⊂ P(V ∗) which is the desired one. It is called the projective dual variety. In
the case when X∨ ⊂ P(V ∗) is a hypersurface, then its defining polynomial ΔX is called the
X-discriminant.

Let {A1, . . . , Am} be a family of automata. Thus one obtains a parameterized family of
projective varieties V ({Ai})t ⊂ CPN by taking closure of the associated affine varieties.

Let Ṽ ({Ai})∨t ⊂ CPN be the corresponding parameterized projective dual varieties.
Suppose that these are hypersurfaces, and denote the defining functions by Σj t

αj ajzj .
When one can modify the polynomial as Σj t

αjwj by change of variables alzl = wl, then we
call Σj t

αjwj the {Ai}-discriminant and denote it by

Δ({Ai})t. (6.36)

We will denote the corresponding modified varieties by

V ({Ai})∨t (6.37)
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and call them as the associated dual varieties with respect to {Ai}i. They are isomorphic with
Ṽ ({Ai})∨t .

Definition 6.8. Let ϕt be the associated Rt-polynomials to Δ({Ai})t). The automaton defined
by ϕ∞ = limt→∞ϕt is called the projectively dual automaton.

We denote the projectively dual automaton by

{Ai}∨. (6.38)

6.5.1. Curves in CP2

In general it is not easy to calculate the defining equations of the projective varieties. However
as far as the simplest case is that of the curves in CP2, one can write down them explicitly.
Using this fact, we verify the following.

Proposition 6.9. Consider

[max{aun, α + aun+1} = c]∨

= max
{

a

a − 1
(
c − α

a

)
+

a

a − 1un+1,
ac

a − 1 +
a

a − 1un
}

= c.
(6.39)

Proof. Let X ⊂ CP2 be an irreducible curve. Then, it is known that X∨ ⊂ CP2 is also another
irreducible one. In the affine coordinate, if X has a parameterization x = x(s) and y = y(s),
s ∈ C, then X∨ has a parameterization given by the following (see [17]):

p(s) =
−y′(s)

x′(s)y(s) − x(s)y′(s) , q(s) =
x′(s)

x′(s)y(s) − x(s)y′(s) . (6.40)

Using this, let us consider the very simple case above. Let a ≥ 2, let α and c be integers,
and consider an automaton A given by

max{aun, α + aun+1} = c. (6.41)

The associated polynomial and the associated varieties are given by

X =
{(
x, y

) ∈ C2 ⊂ CP2 : xa + tαya = tc
}
. (6.42)

Choosing a parameterization as

x = s, y = t−α/a(tc − sa)1/a, (6.43)

one can immediately obtain the parameterization of X∨ as

t(a/(a−1))(c−α/a)qa/(a−1) + tac/(a−1)pa/(a−1) = tc (∗) (6.44)
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which gives the dual varieties

V (A)∨t =
{(
p, q
) ∈ C2 ⊂ CP2 : (∗)

}
. (6.45)

Thus the projectively dual automaton admits the desired presentation. This completes the
proof.

6.6. Transformations

Let us take two automata O and O′, and let O = {O = O0 → O1 → · · ·Om = O′} ∈ Ω(O,O′)
be an invertible path, as in Section 4.3, whose associated R-polynomials are given as the pairs
(f1

t , f
2
t )i, i = 0, . . . , m. Then, correspondingly the associated hypersurfaces {V (Oi)}i=0,...,m ⊂

CN are obtained. We call this a lifting of O ∈ ΩO.

Question 3. What are geometric structure of such liftings?

Recall that we have obtained other cell automata O1 and O2 during the process of
transforming from BBS to LV; see Section 4.1. Similarly, as above we rewrite these as

Ut+1
n+1 +max

{
1, Ut

n+1

}
= Ut

n +max
{
1, Ut+1

n

}
,

St+1n+1 +max
{
St+1n + 1, Stn+1

}
= Stn + S

t+1
n + 1.

(6.46)

Let us assign the variables as

z1 ←→ Xt
n, z2 ←→ Xt

n+1, z3 ←→ Xt+1
n , z4 ←→ Xt+1

n+1 (6.47)

for both X = S and X = U. Then, we have the corresponding polynomial pairs as

f1
t (z2, z4) = z4(t + z2), f2

t (z1, z3) = z1(t + z3), for U,

f1
t (z2, z3, z4) = z4(tz3 + z2), f2

t (z1, z3) = tz3z1, for S.
(6.48)

Thus one has obtained three associated hypersurfaces as follows:

V (LV), V (U), V (S) ⊂ C4. (6.49)

Below we study one aspect of Question 3 for this case.

6.6.1. Representatives by Homogeneous Maps

Let us consider a bounded automaton A given by a relative (max,+) function ϕ. As in
Section 6.3.1, it is given by a pair of (max,+) functions (ϕ1, ϕ2). Let (f1

t , f
2
t ) be the associated

polynomials with respect to (ϕ1, ϕ2).
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If both f1
t and f2

t are homogeneous polynomials of the same degree, then we say that
A is a homogeneous cell automaton.

The LV-CA is not homogeneous; see Section 6.3. However one can deform it so that
the result becomes homogeneous as below.

Let O be a cell automaton. We say that O admits a homogeneous representative if there is
an invertible transformation O = O0 → O1 → · · · → Ok so that Ok is homogeneous.

Lemma 6.10. LV cell automaton admits a homogeneous representative.

Proof. Let O0 = LV → O1 → O2 → O3 = BBS be the invertible path in Lemma 4.1. Then,
certainly O2 is homogeneous as above.

This completes the proof.

Let O be a homogeneous cell automaton. Then, one obtains the associated projective
hypersurface

V (O) ⊂ CPN−1. (6.50)

We say that V (O) is the associated projective hypersurface.

7. Interaction Graphs

Let f, g : [0, 1] → [0, 1] be two interval maps and let Φ(x, f, g) : X2 → X2 be the interaction
map. Recall that π : [0, 1] \ 1/2 → {0, 1} is the projection. Let us choose another map d :
[0, 1] → [0, 1].

Suppose that, for a point z ∈ [0, 1] and some k ∈ X2, the following equality holds:

Φ
(
x, f, g

)(
k
)
= π

((
d(z), d2(z), . . .

))
≡
(
π(d(z)), π

(
d2(z)

)
, . . .
)
. (7.1)

Then, we express this by a marked oriented edge as

(
f, x

) (g,k)−−−−→ (d, z). (7.2)

Let us choose families of maps {f0, . . . , fk} and points {x0, . . . , xl}. For each (i, j, x) ∈
{0, . . . , k}2×{x0, . . . , xl}, let us assign an element k(i, j, x) ∈ X2. Thus we obtain another family
{k(i, j, xh)}i,j=k,h=li,j,h=0 ⊂ X2. Then, we put the following two sets:

V =
{(
fi, xj

)
: 0 ≤ i ≤ k, 0 ≤ j ≤ l} (the set of vertices),

E =

{
ei,j,k :

(
fi, xh

)
(
fj ,k(i,j,xh)

)

−−−−−−−−−−−→ (
fk, xv

)
:

} (
the set of edges

)
.

(7.3)
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Definition 7.1. An interaction graph is a marked oriented graph, where the sets of vertices V
and edges E are given as above. We denote it by

G

({
fi
}k
i ;
{
xj
}l
j
;
{
k
(
i, j, xh

)}i,j=k,h=l
i,j,h=0

)
. (7.4)

We will denote the set of interaction graphs arising from {f0, . . . , fk} and {x0, . . . , xl} by

G
({
fi
}k
i=0;
{
xj
}l
j=0

)
. (7.5)

Notice that this is a finite set.

Let us put

Xk,l
2 ≡ Xk2+l

2 = X2 ×X2 × · · · ×X2. (7.6)

Then, any element in Xk,l
2 can be written as k(i, j, x) as above. Then, the family of the

interaction map gives a map

Φ : Xk,l
2 −→ Xk,l

2 , (7.7)

where

Φ
({
k
(
i, j, x

)})
=
{
k
′(
i, j, x

)}
,

k
′(
i, j, x

) ≡ Φ
(
fi, fj , x

)(
k
(
i, j, x

))
.

(7.8)

This induces a map on the set of the interaction graph as

Φ∗ : G
({
fi
}k
i=0;
{
xj
}l
j=0

)
−→ G

({
fi
}k
i=0;
{
xj
}l
j=0

)
(7.9)

by

Φ∗
(
G
({
fi
}k
i ;
{
xj
}l
j
;
{
k
(
i, j, xh

)}))
= G

({
fi
}k
i ;
{
xj
}l
j
;Φ
({
k
(
i, j, xh

)}))
. (7.10)

Thus one obtains a sequence of the interaction graphs as follows:

(G0, G1, . . .),

Gi = G
({

fi
}k
i ;
{
xj
}l
j
;Φi

({
k
(
i, j, xh

)}i,j=k,h=l
i,j,h=0

))
.

(7.11)
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This gives a dynamics of the interaction graphs. Below we will formulate several geometric
spaces arising from dynamics of the interaction graphs which we call the spaces from the
interaction graphs.

7.1. Veronese Map

Here we have an easy example of spaces from the interaction graphs. Let ({fi}, {xj},
{k(i, j, xh)}) be an interaction system, and denote the corresponding interaction graphs by
(G0, G1, . . .). Passing through the forgetful map, one obtains a sequence of finite graphs
(G′0, G

′
1, . . .).
For each vertex v ∈ G′i, let e(v) be the number of the edges with a common vertex v.

Let us fixm ≥ 0 and put

P(m,G) =
{
(i0, . . . , ik) : Σk

a=0e(ia) = m, k ≤N
}
. (7.12)

LetN + 1 be the number of the edges in the interaction graphs. The Veronese mapwith
respect to {G′i}i is a family of embeddings:

Ii : CPN ↪→ CPM,

[x0, . . . , xN] −→
[{
xi00 . . . , x

ik
k
: (i0, . . . , ik) ∈ P(m,Gi)

}]
,

(7.13)

whereNi = #P(mi,Gi) + 1 andM = (N + 1)N/2 is the maximum number of the edges in the
graphs.

7.1.1. Reduction to Dynamics of Toric Ideals

Let G be the set of finite graphs, and let

F : G
({
fi
}k
i=0;
{
xj
}l
j=0

)
−→ G (7.14)

be the forgetful map. Then, one obtains a family of finite graphs

G1, G2, . . . ⊂ G (7.15)

consisted by the images of F of the interaction graphs. We call them just the associated graphs.
Let {G0, G1, . . .} be a family of finite graphs. We say that the family is strongly regular

if the numbers of edges of Gi are all the same. In Section 7.1, we will always assume that
sequences consisted by the images of F of the interaction graphs are strongly regular.

For each G ∈ G, let us associate a configuration

A = {a1, . . . , am} ⊂ ZN (7.16)
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as follows, whereN = (k + 1)(l + 1) is the number of the vertices. Let us make a numbering
of the set of vertices, v1, . . . , vN, and let ei ∈ ZN be the unit vector (0, . . . , 0, 1, 0, . . . , 0), where
1 appears only at the ith. Then, ei + ej ∈ A if and only if vi and vj are mutually connected by
an edge.

Thus one obtains a reduction from dynamics of the interaction graphs to the one of the
following configurations:

{A0,A1, . . .}, (7.17)

which we call the transcripted configurations.
For a configuration A = {a1, . . . , am} ⊂ ZN , we associate a Laurent polynomial:

C[A] ≡ C
[
ta1 , . . . , tam

]
⊂ C

[
t±11 , . . . , t

±1
N

]
, (7.18)

where tak = t
a1
k

1 · · · t
aN
k

N , ak = (a1
k
, . . . , aN

k
). We call C[A] as the associated toric ring.

By assigning yi → tai , one obtains a ring homomorphism

π : C
[
y1, . . . , ym

] −→ C[A] (7.19)

and its kernel IA is called the toric ideal.
For each interaction graph Gi ∈ G({fi}ki=0, {xj}lj=0), one forgets markings on edges and

orientation and then obtains a finite graph F(Gi). Then, one can assign a configuration Ai ⊂
ZN . Now correspondingly one has the associated toric ideal Ii ⊂ C[y1, . . . , ym]. Thus one has
obtained a sequence of toric ideals as

I0, I1, . . . , Ik, Ik+1, . . . ⊂ C
[
y1, . . . , ym

]
(7.20)

which we will call the associated ideals. Notice that there are a finite number of ideals
{J1, . . . , Jd} such that each Ii coincides with one of {Jj}. We say that the associated ideals
are regular if all Ii has the same dimension.

Let us fix a total ordering < on the set of monomials of the polynomial ring
C[y1, . . . , ym], for example, lexicographic or its reverse ones.

Let I ⊂ C[y1, . . . , ym] be an ideal, and let z = {z1, . . . , zk} be a generating set. We
denote by intzi to imply the leading term of the polynomial with respect to the ordering. Let
int I ⊂ C[y1, . . . , yN] be another ideal generated by int z for all z ∈ I. It is called the initial
ideal. We say that z is a Gröbner basis if

int I = gen{int z1, . . . , int zk}. (7.21)

Notice that the sequence of the toric ideals {Ii}i is obtained originally from the data
({fi}i, {xj}j , {k(i, j, xh)}). The following problem seems natural, since, in some cases, these
interactions come from some combinatoric structures, like cell automata [3].

Question 4. Can one find an algorithm to find out Gröbner basis successively for I0, I1, . . . from
the interaction data?
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7.1.2. Gröbner Fans and Translated Varieties

Let w = (w1, . . . , wm) ∈ Rm be a vector which is called the weight vector. Then, the weight of
a monomial ya11 · · ·yamm is equal to 〈w, a〉 = w1a1 + w2a2 + · · · + wmam. For each polynomial
f = Σcaya ∈ C[y1, . . . , ym], let inw(f) = Σbcby

b, where any b satisfies 〈w, b〉 = maxca /= 0〈w,a〉.
Let I be an ideal. Then, we denote the corresponding initial ideal inw(I) generated by

all elements of the form inw(f). It is known that, for every ideal I and ordering <, a weight
vector w is associated which satisfies in<(I) = inw(I).

For an ideal I, we say that w and w′ are equivalent if they give the same initial ideal
intwI = intw′I. The equivalence class

C(I,w) =
{
w′ ∈ Rm : intwI = intw′I

}
(7.22)

is an open polyhedral cone in Rm.
The set of the cones {C(I,w)}w is finite and defines a polyhedral fan F(I). We say that

it is the Gröbner fan of I (see [18]).
For each fan, there associated with a toric variety. Thus for each interaction graph G,

one associates with a toric variety XG which we call the translated variety.
Thus corresponding to a sequence of the associated ideals I0, I1, . . ., one obtains a

sequence of fans over Rm and the associated translated varieties

X = (X0, X1, . . . , Xi, . . .). (7.23)

Remark 7.2. In order to study structure of X, one may use resultants for the defining
polynomials of these ideals.

Now we have started from a finite data

D =
({
fi
}k
i=0,
{
xj
}l
j=0,
{
a
(
i, j, h

)}i,j=k,h=l
i,j,h=0

)
. (7.24)

We will call such data an interaction data.
Then, we have obtained a sequence of the interaction graphs:

G0, G1, . . . ,

Gi = G
({
fi
}k
i=0,
{
xj
}l
j=0,Φ

i
∗
({
a
(
i, j, h

)}))
.

(7.25)

By forgetting extra data, one obtains a sequence of the transcripted configurations:

A0,A1, . . ., (7.26)

where Ai ⊂ ZN . Then, one has obtained a sequence of the toric ideals {I0, I1, . . .} and the
translated toric varieties:

{X0, X1, . . .} ⊂ CPm−1, (7.27)

where each Xi coincides with one in a finite set of toric varieties {Y1, . . . , Yl} ⊂ CPm−1.
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7.1.3. Correspondence on Polytopes

Let ({fi}k, {xj}l, {a(i, j, h)}) be a triple, and consider the corresponding interaction graphs
{Gi}∞i=0. Then, there are finite configurations {A1, . . . ,Al} ⊂ ZN such that each Gi associates
one of Aj for some j = j(i).

Let A ⊂ ZN be a configuration, and letm be the number of the elements in A.
LetΔ be a triangulation of A. Then, every ψ ∈ Rm defines the corresponding piecewise

linear function gψ,Δ on Rm satisfying gψ,Δ(ai) = ψ(ai) for each vertex ai of Δ which is affine
on each simplex of Δ.

Then, we put

C(A,Δ) ≡ {ψ ∈ Rm : gψ,Δ is concave and gψ,Δ ≥ ψ(ai) whenever ai is not a vertex of Δ
}
.

(7.28)

Moreover, C(A,Δ) is a closed polyhedral cone, and

F(A) ≡ {C(A,Δ) : Δ is a triangulation
}

(7.29)

forms a complete fan on Rm and is called the secondary fan of A [17, page 219]. It is known
that the Gröbner fan is a refinement of the secondary fan [18].

Let Q ⊂ Rm be a polytope. Then, for each p ∈ Q, let us define the normal cone

N
(
Q, p

) ≡ {v ∈ Rm :
〈
v, p

〉 ≥ 〈v, y〉 ∀y ∈ Q}. (7.30)

The set of the normal cones

N(Q) =
⋃

p∈VertQ
N
(
Q, p

)
(7.31)

is called the normal fan.

Theorem 7.3 (see [17]). For a configuration A, there is a polytope Q ≡ Σ(A) and an assignment
of a vertex ϕΔ ∈ Q for each triangulation Δ such that the normal cone N(Σ(A), ϕΔ) coincides with
C(A,Δ).

In particular there is a natural correspondence from the secondary fan F(A) to the correspond-
ing normal fanN(Q).

Σ(A) is called the secondary polytope.
Let us denote A = {a1, . . . , am}. Then, one can describe Q explicitly as follows. Let us

put

φΔ =
(
φ1
δ, . . . , φ

m
Δ

)
∈ Rm,

φiΔ = Σ{vol(τ) : τ ∈ Δ, ai ∈ τ}.
(7.32)
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Then, Q = Σ(A) is given by

Q ≡ Conv
{
φΔ : Δ is a triangulation of A

}
, (7.33)

where vol(τ) is the volume of τ .
Now let {A0, . . . ,Al, . . .} ⊂ ZN be the transcripted configurations. Then, correspond-

ingly one obtains other sequences of polytopes:

{Σ(A0),Σ(A1), . . .}, (7.34)

which is called the secondary transcripted polytopes.

7.2. Dynamics over Local Charts

Let us fix two sets {fi}ki=0 and {xj}lj=0. Then, there associates with finite numbers of toric ideals
{J1, . . . , Jm} ⊂ C[y1, . . . , yN].

If we choose a finite subset {a(i, j, h)} ⊂ X2, then one obtains an infinite sequence of
ideals

I
({
a
(
i, j, h

)})
= (I0, I1, . . . , Ii, . . .) (7.35)

among a finite set {Jj}j above.
Let us put all of the set of sequences

I =
{
I
({
a
(
i, j, h

)})
:
{
a
(
i, j, h

)} ⊂ X2
}
. (7.36)

We call it the sequence of local charts.
One may consider this as though it might be a symbolic dynamics of some “Markov

partition” over some algebraic variety V , by regarding each Ik as a defining ideal of a local
chart of V .

7.2.1. Algebraic Markov Partition

Let V be an algebraic variety with the affine coordinates Vi defined by an ideal Ji. Let us take
an automorphismA on V . We say that an affine coordinate {(Vi, Ji)}mi=1 is an (stable) algebraic
Markov partition for A if, for each i, there is some j so that

A(Vi) ⊂ Vj (7.37)

holds.

Example 7.4. Let A be an automorphism on CPN by [z0, z1, . . . , zN] → [z1, z0, z2, z3, . . . , zN].
Then, for Vi = {[z0, z1, . . . , zN] : zi /= 0}, CPN admits an affine covering by V0 ∪ V1. Moreover
A(Vi) = Vi+1 mod 2.
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Let A : V ∼= V be an automorphism, and consider its iteration At : V ∼= V . Let us have
an algebraic Markov partition by the set {Vi}i. Then, one obtains a symbolic dynamics of the
algebraic Markov partition:

Σ(A; {Vl}l) = {(a0, a1, . . .) : A(Vai) ⊂ Vai+1)} ⊂ Xm, (7.38)

where m is the number of the local charts. It can be expressed by a set of sequences of the
defining ideals {(I0, I1, . . .)}.

One can consider its converse. Let us put the set of all sequences coming from the
algebraic Markov partition:

A = {(I0, I1, . . .)}. (7.39)

When one is given an interaction data ({fi}i, {xj}j , {a(i, j, h)}), then one obtains a
sequence of ideals. Thus a fundamental question in symbolic dynamics of ideals will be to
construct correspondence from interaction data to algebraic Markov partitions.

Question 5. Let I be a set of sequences of ideals among a finite set of ideals. Then, can
one construct an algebraic Markov partition {J1, . . . , Jk} for an algebraic variety V and an
automorphism A, so that I ⊂ A might hold? Namely, when are a set of sequences of ideals
symbolic dynamics of algebraic Markov partitions?

Conversely, given A, can one find some {fi}ki=0 and {xj}lj=0 so that the corresponding I
might satisfy I ⊂ A?

We say that associated ideals I = (I0, I1, . . .) are regular if they have the same dimension
as the others. Let us put

⋃
i Ii = {J1, . . . , Jk}.

Definition 7.5. Let ({fi}i, {xj}j , {a(i, j, h)}) be an interaction data, and suppose that the
associated ideals by I = (I0, I1, . . .) are regular. The sequence is called a symbolic flow of an
automorphism if there is an algebraic Markov partition for (V,A) with an affine coordinate
{(Vi, Ji}ki=1 and some x ∈ V so that its orbit {An(x)}n=0,1,... corresponds to the sequence.

We call such pair (V,A) corresponding to I a prohedron. (One may imagine as though
it represents some state of a protein.)

Let us consider the simplest case. Let us consider the partition of CPN = V0 ∪ V1 and
the involution A in Example 7.4.

Lemma 7.6. Let ({fi}ki=0, {xj}lj=0, {a(i, j, h)}) be an interaction data such that the corresponding
sequence of the interaction graphs G0, G1, . . . satisfies that (1) the numbers of edges are all constantm,
that (2) F(G2i) and F(G2i+1) are mutually the same finite graphs G and G′, respectively for all i, and
(3) there are no primitive loops of even length for any graph.

Then, the corresponding sequence of ideals gives an algebraic Markov partition for (V0, V1, A)
above.
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This follows from the following general facts.

Sublemma 6.1

The toric ideal is generated by the set of primitive loops of the even length.
It follows from this that the corresponding ideals are all zero, which defines the affine

plane CN . This completes the proof.
This simple case suggests that, in general, possibility of construction of algebraic

Markov partitions will be reflected by combinatorics of the transcripted configurations.

7.2.2. Automorphism Groups

Let us choose a family of interval maps {fi}k, and let V be an algebraic variety. We denote

D
({
fi
}k
, V
)
≡
{({

xj
}l
,
{
a
(
i, j, h

)})
:
({
fi
}k
,
{
xj
}l
,
{
k
(
i, j, h

)})

give algebraic Markov partitions for some A on V
} (7.40)

in (∪l([0, 1]l+1 ×Xk,l
2 ).

Let us put the set of the associated automorphisms E and the automorphism groups G
generated by E as

E
({
fi
}k
, V
)
≡
{
A = A

({
fi
}k
,
{
xj
}k
,
{
k
(
i, j, h

)})
:
({
xj
}l
,
{
k
(
i, j, h

)}) ∈ D
({
xj
}l
, V
)}
,

G
({
fi
}k
, V
)
= genE

({
fi
}k
, V
)
.

(7.41)

We also put the closure of G({fi}k, V ) by G({fi}k, V ) ⊂ AutV .
Thus for each algebraic variety V , one has obtained a map from a set of interval maps

and a Lie subgroup of Aut V :

({
fi
}k
, V
)
−→ G

({
fi
}k
, V
)
⊂ AutV. (7.42)

It is known that, when V is compact and nonsingular toric variety, then Aut V is linear,
and its root system can be written explicitly from the fan of V . Thus in this case G ⊂ Aut V is
a closed subgroup of a linear algebraic group. Thus it will be natural to ask the following.

Question 6. Whether one might write down the above subgroups from the information of the
associated family of Gröbner fans.

7.3. Zariski Subsets on the Moduli of Interaction Graphs

Let us choose an interaction data: (1) a set of interval maps {f1, . . . , fk}, (2) an index {1, . . . , l},
and (3) a set of {0, 1} sequences {a(i, j, h)}i,j,h ⊂ X2.
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For each assignment from {1, . . . , l} to {x1, . . . , xl}, one obtains the associated
interaction graph G. Each edge e = ((i, h), (k, v)) ∈ G is assigned with some j ∈ {1, . . . , k}
so that (fi, xh)

(fj ,a(i,j,h))−−−−−−−−−→ (fk, xv) hold. So an interaction graph Gk is a weighted finite graph
such that each edge is assigned with an element in {1, . . . , k}.

Let us fix k and l as above and denote the set of interaction graphs as follows:

G(k, l) =
{
G(k, l) : interaction graphs

}
. (7.43)

Then G(k, l) can be parameterized as

GN
∼= [0, 1]l ×Map

[
({1, . . . , k} × {1, . . . , l})2 −→ {0, 1, . . . , k}

] ∼= [0, 1]M, (7.44)

where 0 in the last term implies no edges andM =M(k, l).
So once one gives an interaction data

({
f1, . . . , fk

}
,
{
a
(
i, j, h

)})
, (7.45)

then one obtains the family of the associated interaction graphs as follows:

G
({
fi
}
i,
{
a
(
i, j, h

)})
=

⋃

{xj}j∈[0,1]l
G
({
fi
}
i,
{
xj
}
j
,
{
a
(
i, j, h

)})
(7.46)

in G(k, l) ∼= [0, 1]M.

Definition 7.7. A Zariski subset X ⊂ G(k, l) ∼= [0, 1]M is a subset of the form

X = G
({
fi
}
i,
{
a
(
i, j, h

)}) ⊂ [0, 1]M. (7.47)

Let A be all of the set of the interval maps. Then, we have obtained a map

J : Ak × [0, 1]l ×Xk2+l
2 �−→ G(k, l). (7.48)

Let {fi} and {gi} be two k interval maps. Then consider the following.

Question 7. (1) In order to guarantee that J({fi}, ) = J({gi}, ) implies that {fi} = {gi}, how
should k and l be large?

(2) Can one find some continuous properties for J?

Let X be a Zariski subset, and consider a proper decreasing Zariski subsets

X = X0 ⊃ X1 ⊃ · · · ⊃ Xn. (7.49)

We define the dimension of X to be the largest number nwith the above property.
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7.3.1. Dynamics on Zariski Subsets

Let us choose a set {xj}l ⊂ [0, 1]l. Then, one obtains sequences {a(i, j, h)n}n=0,1,... by using the
interaction map. Thus one obtains a sequence of Zariski subsets as follows:

X0, X1, . . . , Xn,Xn+1, . . . ⊂ [0, 1]M,

Xn = G
({
fi
}
,
{
a
(
i, j, h

)n})
.

(7.50)

We say that
⋂
n Xn is an invariant subset. If limnXn ⊂ G(k, l) exists, then we say that the

associated dynamics of the Zariski subsets converges.
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