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Using Jackson’s q-derivative and the q-Stirling numbers, we establish some transformation
theorems leading to the values of some convergent q-series.

1. Introduction

The operator (x(d/dx))n has many assets and plays a central role in arithmetic fields and in
computation of some finite or infinite sums. For example, when we try to compute the sum
∑+∞

k=0 k
nxk, we use the operators (x(d/dx))n, which give

+∞∑

k=0

knxk =
(

x
d

dx

)n( 1
1 − x

)

, |x| < 1, n = 0, 1, 2 . . . . (1.1)

These operators are intimately related to the Stirling numbers of second kind { n
k } by the

formula (see [1])

(

x
d

dx

)n

f(x) =
n∑

k=1

{
n
k

}

xk d
kf

dxk
, (1.2)

where f is a suitable function. We note that the q-analogue of formula (1.2) has been studied
by many authors (see [2, 3] and references therein) and has found applications in many fields
such as arithmetic partitions and asymptotic expansions.

This paper deals with the analogues of the operators (x(d/dx))n in Quantum Calculus
and some q-transformation theorems that will be used to establish the sums of some q-series.
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This paper is organized as follows. In Section 2, we present some preliminary notions
and notations useful in the sequel. Section 3 gives three applications of a result proved in
[2], states a transformation theorem using the q-Stirling numbers, and presents some related
applications. Section 4 attempts to give a new q-analogue of formula (1.2) by studying the
transformation theorem related to a q-derivative operator.

2. Notations and Preliminaries

To make this paper self-containing and easily decipherable, we recall some useful
preliminaries about the Quantum Calculus and we select Gasper-Rahman’s book [4], for the
notations and for a deep study in this way. Throughout this paper, we fix q ∈]0, 1[.

2.1. q-Shifted Factorials

For a ∈ � , the q-shifted factorials are defined by

(
a; q
)
0 = 1,

(
a; q
)
n =

n−1∏

k=0

(
1 − aqk

)
,

(
a; q
)
∞ =

+∞∏

k=0

(
1 − aqk

)
. (2.1)

We also write

(
a1, . . . , ak; q

)
n
=

k∏

j=1

(
aj ; q

)
n
, n = 0, 1, . . . ,∞. (2.2)

We put

[x]q =
1 − qx

1 − q
, x ∈ � ,

[n]q! =

(
q; q
)
n

(
1 − q

)n , n ∈ �.

(2.3)

For a, x ∈ � and n ∈ �, we adopt the following notation [5]:

(x − a)nq =

⎧
⎨

⎩

1 if n = 0,

(x − a)
(
x − aq

) · · · (x − aqn−1
)

if n � 1.
(2.4)

The q-analogue of the Jordan factorial is given by

[x]k,q = [x]q[x − 1]q · · · [x − k + 1]q

=

(
1 − qx

)(
1 − qx−1

) · · · (1 − qx−k+1
)

(
1 − q

)k ,
(2.5)
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and the q-binomial coefficient is defined by

[
x

k

]

q

=
[x]k,q
[k]q!

. (2.6)

2.2. The Jackson’s q-Derivative

The q-derivativeDqf of a function f is defined by (see [4])

Dqf(x) =
f
(
qx
) − f(x)

(
q − 1

)
x

if x /= 0, (2.7)

and (Dqf)(0) = f ′(0) provided f ′(0) exists. Note that when f is differentiable, at x, then
(Dq)f(x) tends to f ′(x) as q tends to 1−.

It is easy to see that for suitable functions f and g, we have

Dq

(
fg
)
(x) = f

(
qx
)
Dqg(x) + g(x)Dqf(x), (2.8)

Dq

(
f

g

)

(x) =
g
(
qx
)
Dqf(x) − f

(
qx
)
Dqg(x)

g(x)g
(
qx
) . (2.9)

2.3. Elementary q-Special Functions

Two q-analogues of the exponential function are given by (see [4])

eq(z) =
+∞∑

n=0

zn

[n]q!
=

1
((
1 − q

)
z; q
)
∞
, |z| < (1 − q

)−1
,

Eq(z) =
+∞∑

n=0

qn(n−1)/2
zn

[n]q!
=
(−(1 − q

)
z; q
)
∞, z ∈ � .

(2.10)

They satisfy the relations

Dqeq(z) = eq(z), DqEq(z) = Eq

(
qz
)
,

eq(z)Eq(−z) = Eq(z)eq(−z) = 1, Eq(z) = e1/q(z).
(2.11)

In 1910, F. H. Jackson defined a q-analogue of the Gamma function by (see [4, 6])

Γq(x) =

(
q; q
)
∞(

qx; q
)
∞

(
1 − q

)1−x
, x /= 0,−1,−2, . . . . (2.12)
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It satisfies the following functional equations:

Γq(x + 1) = [x]qΓq(x), Γq(1) = 1, Γq(n + 1) = [n]q!, n ∈ �. (2.13)

2.4. q-Stirling Numbers of Noncentral Type

In [7], Charalambides introduced the so-called noncentral q-Stirling numbers, which are
q-analogues of the Stirling numbers and classified into two kinds.

The noncentral q-Stirling numbers of the first kind sq(n, k; r) are defined by the
following generating relation:

[t − r]n,q = q−(
n
2 )−rn

n∑

k=0

sq(n, k; r)[t]kq , n = 0, 1, . . . , (2.14)

and they are given by

sq(n, k; r) =
1

(
1 − q

)n−k

n∑

j=k

(−1)j−kq
(
n−j
2

)
+r(n−j)

[
n

j

]

q

(
j

k

)

. (2.15)

The noncentral q-Stirling numbers of the second kind Sq(n, k; r) are defined by the following
generating relation:

[t]nq =
n∑

k=0

q
(
k
2

)
−rk

Sq(n, k; r)[t − r]k,q, n = 0, 1, . . . , (2.16)

and they are given by

Sq(n, k; r) =
1

[k]q!

k∑

j=0
(−1)k−jq

(
j+1
2

)
−(r+j)k

[
k

j

]

q

[
r + j

]n
q

=
1

(
1 − q

)n−k

n∑

j=k

(−1)j−kqr(j−k)
(
n

j

)[
j

k

]

q

.

(2.17)

Remark 2.1. Note that when r = 0, then sq(n, k; r) and Sq(n, k; r) reduce to the q-Stirling
numbers, respectively, of the first and the second kind studied by Gould, Carlitz, and Kim
(see [8–11]).

Properties

The noncentral q-Stirling numbers satisfy the following properties.

(i) For n = 1, 2, . . . and k = 1, 2, . . . , n,

sq(n, k; r) = sq(n − 1, k − 1; r) − [n + r − 1]qsq(n − 1, k; r), (2.18)
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under the following conditions:

sq(0, 0; r) = 1, sq(n, 0; r) = q

(n

2

)

+rn
[−r]n,q, n > 0,

sq(0, k; r) = 0, k > 0, sq(n, k; r) = 0, k > n.

(2.19)

(ii) For n = 1, 2, . . . and k = 1, 2, . . . , n,

Sq(n, k; r) = Sq(n − 1, k − 1; r) + [r + k]qSq(n − 1, k; r), (2.20)

under the following conditions:

Sq(0, 0; r) = 1, Sq(n, 0; r) = [r]nq , n > 0,

Sq(0, k; r) = 0, k > 0, Sq(n, k; r) = 0, k > n.
(2.21)

3. The Operator (xDq)
m and Some Related Transformations Theorems

As in the classical case (see [1]), the iterate (xDq)
m, m ∈ �, can be expanded in finite terms

involving the q-Stirling numbers. This is the purpose of the following result.

Lemma 3.1 (see [2, 3]). Letting f be a differentiable function, then one has

(
xDq

)m
f(x) =

m∑

k=1

{
m
k

}

q,1
xkDk

qf(x), m = 1, 2, . . . , (3.1)

where

{
m
k

}

q,1
= qk(k−1)/2Sq(m − 1, k − 1; 1) =

1
[k − 1]q!

k−1∑

j=0

(−1)jq
(
j
2

)[k − 1

j

]

q

[
k − j

]m−1
q

. (3.2)

Now, let us give three applications of the previous lemma.

Example 3.2 (q-binomial series). The q-binomial theorem asserts that

1Φ0
(
qa;−; q, x) =

+∞∑

n=0

(
qa; q

)
n(

q; q
)
n

xn =

(
qax; q

)
∞(

x; q
)
∞

, |x| < 1. (3.3)

Using the fact that, for all m ∈ �,

(
xDq

)m
xn = [n]mq x

n (3.4)
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and the previous lemma, we deduce that

+∞∑

n=0

(
qa; q

)
n(

q; q
)
n

[n]mq x
n =

m∑

k=1

{
m
k

}

q,1
xkDk

q

((
qax; q

)
∞(

x; q
)
∞

)

, |x| < 1. (3.5)

On the other hand, the definition of q-derivative (2.9) gives

Dq

((
qax; q

)
∞(

x; q
)
∞

)

= [a]q

(
qa+1x; q

)
∞(

x; q
)
∞

, (3.6)

and by iteration we have

Dk
q

((
qax; q

)
∞(

x; q
)
∞

)

=
Γq(a + k)
Γq(a)

(
qa+kx; q

)
∞(

x; q
)
∞

. (3.7)

Thus,

+∞∑

n=0

(
qa; q

)
n(

q; q
)
n

[n]mq x
n =

1
Γq(a)

(
x; q
)
∞

m∑

k=1

{
m
k

}

q,1
xkΓq(a + k)

(
qa+kx; q

)

∞
. (3.8)

So, taking a = 1, we obtain

+∞∑

n=0
[n]mq x

n =
1

1 − x

m∑

k=1

{
m
k

}

q,1
xk

[k]q!
(
xq; q

)
k

. (3.9)

Remark that if q tends to 1−, we obtain the formula given in [13, page 366].

Example 3.3 (q-Bessel function). We consider the function

Cp(x) =
+∞∑

k=0

(−1)kxk

[k]q!
[
k + p

]
q
!
=
(x

2

)−p
J
(1)
p

((
1 − q

)√
2x, q

)
, (3.10)

where J (1)p (·, q) is the first Jackson’s q-Bessel function of order p (see [12, 13]).
By application of the operator (xDq)m to C0(x) and the use of relation (3.4), we obtain

(
xDq

)m
C0(x) =

+∞∑

k=0

(−1)k
[k]mq
(
[k]q!

)2 x
k. (3.11)

Then, using Lemma 3.1 and the fact that

DqCp(x) = −Cp+1(x), (3.12)
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we get

+∞∑

k=0

(−1)k
[k]mq
(
[k]q!

)2 x
k =

m∑

k=1

{
m
k

}

q,1
(−1)kxkCk(x). (3.13)

Example 3.4 (q-polynomial exponential). Take f(x) = eq(x). From relation (3.4) and
Lemma 3.1, we obtain

(
xDq

)m
eq(x) = eq(x)Φm,q(x) =

+∞∑

n=1

[n]mq
[n]q!

xn, (3.14)

where

Φm,q(x) =
m∑

k=1

{
m
k

}

q,1
xk, (3.15)

which is called the q-polynomial exponential. So,

m∑

k=1

{
m
k

}

q,1
xk = Eq(−x)

+∞∑

n=1

[n]mq
[n]q!

xn =
+∞∑

n=1

n∑

k=1

(−1)kq
(
k
2

) [n − k]mq
[k]q![n − k]q!

xn. (3.16)

Inmanymathematical fields there are some transformation theorems using the Stirling
numbers leading one to compute certain sums (see [14]). The purpose of the following result
is to give a q-analogue context.

Theorem 3.5. Let f(x) and g(x) be two functions satisfying

f(x) =
+∞∑

n=0

an[x]nq , g(x) =
+∞∑

n=0

cnx
n. (3.17)

Then

+∞∑

n=0

cnf(n)xn =
+∞∑

m=1

am

m∑

k=1

{
m
k

}

q,1
xkDq

kg(x) (3.18)

provided the series

+∞∑

n=0

cnf(n)xn (3.19)

converges absolutely.
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Proof. From Lemma 3.1 and the properties of the q-Stirling numbers of the second kind (2.21),
we obtain

+∞∑

m=1

am

m∑

k=1

{
m
k

}

q,1
xkDk

qg(x) =
+∞∑

m=1

am

(
xDq

)m
g(x)

=
+∞∑

m=1

am

(
xDq

)m
(

+∞∑

n=0

cnx
n

)

.

(3.20)

The result follows, then, from relations (3.4) and (3.19).

Corollary 3.6. Let f(x) =
∑+∞

n=0 an[x]nq . Then

+∞∑

n=0

f(n)xn =
+∞∑

m=1

am

m∑

k=1

{
m
k

}

q,1
xk

[k]q!
(
x; q
)
k+1

(3.21)

provided the series
∑+∞

n=0 f(n)x
n converges absolutely.

Proof. By taking g(x) = 1/(1 − x) =
∑+∞

n=0 x
n, |x| < 1, in the previous theorem, and by

application of relation (3.7), we obtain

+∞∑

n=0

f(n)xn =
+∞∑

m=1

am

m∑

k=1

{
m
k

}

q,1
xkDk

q

(
1

1 − x

)

=
+∞∑

m=1

am

m∑

k=1

{
m
k

}

q,1
xk

Γq(k + 1)
Γq(1)

(
qk+1x; q

)
∞(

x; q
)
∞

=
+∞∑

m=1

am

m∑

k=1

{
m
k

}

q,1
xk

[k]q!
(
x; q
)
k+1

.

(3.22)

Example 3.7. Let f(x) = [x]n,q. Then, the fact that

[x]n,q = q−(
n
2 )

n∑

k=0

sq(n, k; 0)[x]kq , n = 0, 1, . . . (3.23)

and Corollary 3.6 give

+∞∑

k=0

[k]n,qx
k =

q−(
n
2 )

1 − x

n∑

m=1

sq(n,m; 0)
m∑

l=1

{
m
l

}

q,1
xl

[l]q!
(
qx; q

)
l

. (3.24)

Remark that when q tends to 1−, we obtain the formula given in [1, (6.4), page 3863].

Some others summation formulas are presented in the following statements.
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Corollary 3.8. For f(x) =
∑+∞

n=0 an[x]nq , the transformation formulas lead to the following:

(1)
∑+∞

n=0 q
n(n−1)/2[ α

n ]qf(n)x
n =
∑+∞

n=1 an
∑n

k=1 q
k(k−1)/2{ n

k }q,1[k]q![ α
k ]qx

k(1 + qkx)α−kq ;

(2)
∑+∞

n=0((1 − qα)nq/(1 − q)nq)f(n)x
n =
∑+∞

n=1 an
∑n

k=1 { n
k }q,1

[
α+k−1
k−1
]
q
(xk/(1 − x)α+kq );

(3)
∑+∞

n=0(f(n)/[n]q!)x
n = eq(x)

∑+∞
n=1 an

∑n
k=1 { n

k }q,1xk = eq(x)
∑+∞

n=1 anΦn,q(x);

(4)
∑+∞

n=0 q
n(n−1)(f(n)/[n]q!)x

n =
∑+∞

n=1 an
∑n

k=1 { n
k }q,1qk(k−1)/2(xk/(−(1 − q)qkx; q)∞)

provided the series converge absolutely.

Proof. The results are direct consequences of Theorem 3.5 by putting the following:

(1) g(x) = (1 + x)αq =
∑+∞

n=0 q
n(n−1)/2[ α

n ]qx
n and remark that Dk

q (1 + x)αq =

qk(k−1)/2[α]q[α − 1]q · · · [α − k + 1]q(1 + qkx)α−kq ;

(2) g(x) = 1/(1 − x)αq =
∑+∞

n=0((1 − qα)nq/(1 − q)nq)x
n and remark that Dk

q (1/(1 − x)αq) =

[α]q[α + 1]q · · · [α + k − 1]q/(1 − x)α+kq ;

(3) g(x) = eq(x);

(4) g(x) = Eq(x) and remark that Dk
qEq(x) = qk(k−1)/2Eq(qkx).

Remark 3.9. The last formulas coincide with some of the ones given in [15]when q tends to 1−.

4. The Operator ((x; q)1Dq)
m and Related Transformation Theorem

Lemma 4.1. For a suitable function f , one has form = 1, 2, . . .

[
(x; q)1Dq

]m
f(x) =

m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)
(
x; q
)
k
Dk

qf(x). (4.1)

Proof. The formula can be obtained by induction with respect to m. Indeed, for m = 1, we
have

[(
x; q
)
1Dq

]
f(x) =

(
x; q
)
1Dqf(x) = Sq(0, 0; 1)

(
x; q
)
1Dqf(x). (4.2)
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Assuming that formula (4.1) is true for m, then

[(
x; q
)
1Dq

]m+1
f(x) =

(
x; q
)
1Dq

[
m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)
(
x; q
)
k
Dk

qf(x)

]

=
(
x; q
)
1

m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)
(
qx; q

)
k
Dk+1

q f(x)

− (x; q)1
m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)[k]q
(
qx; q

)
k−1D

k
qf(x)

=
m+1∑

k=2

(−1)m−k+1Sq(m − 1, k − 2; 1)
(
x; q
)
kD

k
qf(x)

−
m∑

k=1

(−1)m−k[k]qSq(m − 1, k − 1; 1)
(
x; q
)
k
Dk

qf(x)

=
m∑

k=2

(−1)m−k+1
[
Sq(m − 1, k − 2; 1) − [k]qSq(m − 1, k − 1; 1)

](
x; q
)
k
Dk

qf(x)

+ Sq(m − 1, m − 1; 1)
(
x; q
)
m+1D

m+1
q f(x)

− (−1)m−1Sq(m − 1, 0; 1)
(
x; q
)
1Dqf(x).

(4.3)

The result is easily deduced by formulas (2.20), and (2.21).

Theorem 4.2. Let f(x) and g(x) be two functions defined by

f(x) =
+∞∑

n=0
(−1)nαn[x]nq , g(x) =

+∞∑

n=0

cn
(
x; q
)
n. (4.4)

If the series

+∞∑

n=0

cnf(n)
(
x; q
)
n (4.5)

converges absolutely, then

+∞∑

n=0

cnf(n)
(
x; q
)
n =

+∞∑

m=1

αm

m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)
(
x; q
)
kD

k
qg(x). (4.6)

Proof. From the previous lemma, we obtain for m = 1, 2, . . .,

+∞∑

m=0

αm

[
(x; q)1Dq

]m
g(x) =

+∞∑

m=1

αm

m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)
(
x; q
)
kD

k
qg(x). (4.7)
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So, the absolute convergence of the series (4.5) and the fact that

[
(x; q)1Dq

]m(
x; q
)
n = (−1)m[n]mq

(
x; q
)
n, m ∈ � (4.8)

achieve the proof.

Corollary 4.3. Let f(x) =
∑+∞

m=0(−1)mαm[x]
m
q . Then

+∞∑

m=1

αm

m∑

k=1

(−1)m−kSq(m − 1, k − 1; 1)
(
x; q
)
k[n]k,qx

n−k =
n∑

k=0

(−q)ksq(k, 0,−n)f(k)
(
x; q
)
k.

(4.9)

Proof. Put g(x) = xn.
Using the representation (see [5])

xn =
n∑

k=0

(−1)k
[
n

k

]

q

q−(n−1)kq
(
k
2

)
(
x; q
)
k
=

n∑

k=0

(−q)ksq(k, 0,−n)
(
x; q
)
k
, (4.10)

relation (4.6) and the fact that

Dk
q (x

n) = [n]k,qx
n−k (4.11)

give the desired result.

Remark 4.4. Note that recently Liu in his paper (see [16]) has obtained some interesting q-
identities in showing that the solutions of two difference equations involve some series of
q-operators Dn

q of q-Cauchy type.
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