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For fixed complex q with |q| > 1, the q-logarithm Lq is the meromorphic continuation of the series∑
n>0 z

n/(qn −1), |z| < |q|, into the whole complex plane. IfK is an algebraic number field, one may
ask if 1, Lq(1), Lq(c) are linearly independent over K for q, c ∈ K× satisfying |q| > 1, c /= q, q2, q3, . . ..
In 2004, Tachiya showed that this is true in the Subcase K = Q, q ∈ Z, c = −1, and the
present authors extended this result to arbitrary integer q from an imaginary quadratic number
field K, and provided a quantitative version. In this paper, the earlier method, in particular its
arithmetical part, is further developed to answer the above question in the affirmative if K is
the Eisenstein number field Q(

√−3), q an integer from K, and c a primitive third root of unity.
Under these conditions, the linear independence holds also for 1, Lq(c), Lq(c−1), and both results
are quantitative.

1. Introduction and Results

For fixed complex q of absolute value greater than 1, the q-logarithm Lq is defined by the
power series

Lq(z) :=
∞∑

n=1

zn

qn − 1
, (1.1)

which converges in |z| < |q| and has the meromorphic continuation

z
∞∑

n=1

1
qn − z

(1.2)
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into the whole complex plane. In the early 1990s, the irrationality investigations on this q-
logarithm got a fresh impetus by two papers of Borwein [1, 2], where he introduced new
analytic tools to demonstrate quantitative versions of the following. If q ∈ Z \ {0,±1} and if
c ∈ Q× \qN, then both numbers Lq(c) and Lq2(c)−Lq2(cq) are irrational, with the second result
appearing only in [2].

The next important step was made by Tachiya [3], who succeeded in proving, for
q ∈ Z \ {0,±1}, the linear independence of 1, Lq(1), Lq(−1) over Q using Borwein’s function
theoretic method from [2]. Shortly later, quantitative refinements of this result and also
of the linear independence of 1, Lq(1), L′

q(1) were obtained independently by Zudilin [4]
and by the present authors [5]; here the dash indicates differentiation with respect to z.
Somehow related to Tachiya’s above-mentioned theorem is the linear independence over Q

of 1, Lq(
√
q), Lq(−√q) for squares q ∈ Z \ {0, 1}, which was established in [6]. Another result,

proved in [7], is the linear independence of 1, Lq(1), L−q(1) for any q ∈ Z \ {0, 1}. It should
be noted that all these linear independence statements remain true if one replaces Q by an
arbitrary imaginary quadratic number field and if one supposes q to be in its ring of integers.

One starting point of our present work was the question whether we can replace in
Tachiya’s result the primitive second root of unity (−1, of course) by a primitive third root of
unity. Aswewill see in Theorem 1.2 below, this is indeed true if we study linear independence
over the particular quadratic number field Q(

√−3). The parameter q has to be from its ring
of integers, which is sometimes called ring of Eisenstein integers since Eisenstein (1844) was
the first to thoroughly investigate its algebraic properties in the course of his proof of a cubic
reciprocity law.

Another interesting question concerns the linear independence of 1 and the values of
Lq at both primitive third roots of unity is to be answered quantitatively as follows.

Theorem 1.1. Let c be a primitive third root of unity, and let OK denote the ring of integers of
K := Q(c). Then, for any q ∈ OK with |q| > 1, the numbers 1, Lq(c), Lq(c−1) are linearly independent
over K. Moreover, there exists a constant γ ∈ R+ depending at most on |q| such that, for any Q =
(Q0, Q1, Q2) ∈ O3

K with |Q| := max(|Q1|, |Q2|) large enough, the inequality
∣
∣
∣Q0 +Q1Lq(c) +Q2Lq

(
c−1
)∣
∣
∣ ≥ |Q|−η−γ(log log |Q|)/(log |Q|)1/2 (1.3)

holds with η := 39.9475 . . ..

This question arose when preparing our recent work [8], where, as a very particular
application, we obtained a quantitative version of the irrationality of the series

Sq(a) :=
∞∑

n=1

qn

q2n + aqn + 1
(1.4)

for q ∈ Z \ {0,±1} and rational a (with some necessary exceptions). Namely, it is easily seen
that

Sq(1) =
Lq(c) − Lq

(
c−1
)

c − c−1
(1.5)

holds for c as in Theorem 1.1.
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Next, we formulate our analogue of Tachiya’s result for third roots of unity.

Theorem 1.2. Under the hypotheses of Theorem 1.1, the numbers 1, Lq(1), Lq(c) are linearly
independent over K. Moreover, there exists a constant γ ∈ R+ depending at most on |q| such that,
for any Q = (Q0, Q1, Q2) ∈ O3

K with |Q| := max(|Q1|, |Q2|) large enough, the inequality

∣
∣Q0 +Q1Lq(1) +Q2Lq(c)

∣
∣ ≥ |Q|−η−γ(log log |Q|)/(log |Q|)1/2 (1.6)

holds with η := 56.6026 . . ..

It should be noted that here the value of η can be slightly decreased using more
involved considerations, on which we will briefly comment at the end of Section 4 (see
Remarks 4.1 and 4.2).

Of course, Theorems 1.1 and 1.2 together suggest the following problem. Is it true
that the four numbers 1, Lq(1), Lq(c), Lq(c−1) are linearly independent over K assuming the
hypotheses of our above results? We have to admit that, at least at the moment, we are not
in a position to prove this statement. Another even more tantalizing problem is the natural
question if it is possible to prove analogues of Theorems 1.1 and 1.2 for c a primitive fourth
or sixth root of unity, the other two cases, where Q(c) is simultaneously a cyclotomic and an
imaginary quadratic number field. On the difficulties with this problem we will make some
comments at the end of Section 3 (see Remark 3.4).

To prove Theorems 1.1 and 1.2, we will essentially use our generalization [5]
of Borwein’s function theoretical method from [2]. In Section 2, the analytical tools are
presented in a way suitable for both situations. Sections 3 and 4 contain the necessary
arithmetic considerations to conclude the proofs of Theorems 1.1 and 1.2, respectively.

2. The Analytic Construction

The following extensive lemma contains all analytic information we need for the proofs of
our main results.

Lemma 2.1. With q, c1, c2, Q1, Q2 ∈ C satisfying |q| > max(1, |c1|, |c2|) define the meromorphic
function

V (z) :=
∞∑

k=1

(
Q1

qk − c1z
+

Q2

qk − c2z

)

(2.1)

and consider, for large parameters L1, L2,M,N ∈ N, the (positively oriented) integral

J :=
1

2πi

∮

|z|=1

∏2
t=1
∏Lt

�=1

(
q� − ctz

)

zM
∏N

n=1
(
1 − qnz

) V (z)dz. (2.2)
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(a) Then the following explicit formula holds:

J =
N∑

n=1

Rn

(

V (1) −
n∑

k=1

2∑

t=1

Qt

qk − ct

)

+
∑

κ+λ+ν=M−1
Pκ,λ ·

Q1c
ν
1 +Q2c

ν
2

qν+1 − 1
, (2.3)

where, for n = 1, . . . ,N,

Rn := (−1)N+1−nq(M−L1−L2)n+n(n−1)/2
∏2

t=1
∏

n<�≤n+Lt

(
q� − ct

)

∏n−1
ν=1
(
qν − 1

) ·∏N−n
ν=1
(
qν − 1

) (2.4)

and all Pκ,λ in the above triple sum over all (κ, λ, ν) of nonnegative integers with κ + λ + ν = M − 1
are in Z[q, c1, c2].

(b) Supposing additionally that |c1| = |c2| = 1, |L1 − L2| = 1 and defining L := max(L1, L2),
one has the evaluation

∣
∣
∣
∣
∣

N∑

n=1

Rn

∣
∣
∣
∣
∣
=
∣
∣q
∣
∣L

2+MN+O(1) (2.5)

forM large enough and, the O-constant depending on |q| at most.
(c) Supposing, moreover, that c1/c2 /∈ qZ, L2 = L1 − 1 if |Q1| ≤ |Q2| but L2 = L1 + 1 if

|Q1| > |Q2|, then the asymptotic formula

|J | = max(|Q1|, |Q2|) ·
∣
∣q
∣
∣−(M+N−2L)L−N2/2+O(N) (2.6)

holds as soon as L,M,N have the same order of magnitude and M + N − 2L is large enough. Here
the O-constant depends on |q| and |c1 − c2| at most.

Proof. (a)We apply the residue theorem to the integral J defined in (2.2) and use the poles of
the integrand in |z| < 1 noting that V (z) is holomorphic in |z| ≤ 1, by (2.1) and the hypothesis
|c1|, |c2| < |q|. Thus, we obtain

J = −
N∑

n=1

q(M−L1−L2)n
∏2

t=1
∏Lt

�=1

(
q�+n − ct

)

∏n−1
ν=1
(
1 − q−ν

) ·∏N−n
ν=1
(
1 − qν

) · V
(
q−n
)

qn

+
∑

κ+λ+ν=M−1

1
κ!

(
d

dz

)κ
{

2∏

t=1

Lt∏

�=1

(
q� − ctz

)
}∣
∣
∣
∣
∣
z=0

· 1
λ!

(
d

dz

)λ N∏

n=1

(
1 − qnz

)−1
∣
∣
∣
∣
∣
z=0

· V
(ν)(0)
ν!

,

(2.7)
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the first sum coming from the simple poles at q−n (n = 1, . . . ,N) and the second one from the
M-fold pole at the origin. The above first sum leads immediately to the n-sum in (2.3) using
the definition of Rn in (2.4) and the fact

V
(
q−n
)
= qn

∞∑

k=1

2∑

t=1

Qt

qk+n − ct
= qn

∑

k>n

2∑

t=1

Qt

qk − ct
= qn

(

V (1) −
n∑

k=1

2∑

t=1

Qt

qk − ct

)

(2.8)

for any n ∈ N. In the above triple sum, the factor in front of V (ν)(0)/ν! is just what we denoted
in (2.3) by Pκ,λ, hence Pκ,λ ∈ Z[q, c1, c2] is evident. From (d/dz)ν(qk−ctz)−1 = ν!cνt (q

k−ctz)−ν−1
for any ν ∈ N0 := N ∪ {0} and from (2.1)we simply deduce that

1
ν!
V (ν)(0) =

∞∑

k=1

(
Q1c

ν
1 +Q2c

ν
2

)
q−k(ν+1), (2.9)

whence, the triple sum in (2.3).
(b) If c ∈ C satisfies |c| = 1, then we have for any � ∈ N

1 − ∣∣q∣∣−� ≤
∣
∣
∣1 − cq−�

∣
∣
∣ ≤ 1 +

∣
∣q
∣
∣−� <

(
1 − ∣∣q∣∣−�

)−1
, (2.10)

whence, by (2.4),

|Rn| < γ40
∣
∣q
∣
∣(M−L1−L2)n+

∑2
t=1
∑n+Lt

�=n+1 �−(1/2)(N−n)(N+1−n) (2.11)

with γ0 :=
∏∞

�=1(1 − |q|−�)−1. Notice that |Rn| can be bounded below by γ−40 times the same |q|-
power as in (2.11). Our additional hypothesis on the Lt’s means that either L1 = L, L2 = L − 1
or L1 = L − 1, L2 = L; hence the exponent of |q| in (2.11) equals

(M + 1 − 2L)n +
1
2

2∑

t=1

Lt(Lt + 2n + 1) −
(
N + 1 − n

2

)

= Mn + L2 −
(
N + 1 − n

2

)

. (2.12)

Thus, we have for n = 2, . . . ,N

∣
∣
∣
∣
Rn−1
Rn

∣
∣
∣
∣ < γ80

∣
∣q
∣
∣−M−N−1+n ≤ γ80

∣
∣q
∣
∣−M−1 (2.13)

and the right-hand side is ≤1/3 forM large enough (in terms of |q| only). Under this condition
we find

∣
∣
∣
∣
RN−1
RN

+
RN−1
RN

· RN−2
RN−1

+ · · · + RN−1
RN

· · · · · R1

R2

∣
∣
∣
∣ <

1
2
, (2.14)

whence, (1/2)|RN | < |RN + RN−1 + · · · + R1| < (3/2)|RN | and the inequalities γ−40 |q|L2+MN <

|RN | < γ40 |q|L
2+MN (compare (2.11) and (2.12)) establish (2.5).
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(c) We may assume that (Q1, Q2)/= (0, 0) since otherwise (2.6) is trivial. In contrast to
the situation in (a), to evaluate |J | asymptotically from (2.2), we use the poles of the integrand
outside the unit circle. As a matter of fact, one can easily show that −J is just the sum of the
residues at all these (simple) poles appearing precisely at the points qkt/ct with kt > Lt (t =
1, 2). To justify this equality, the estimate |V (z)| = |Q| ·O(H|q|−H) on |z| = |q|H+(1/2) for large
H ∈ N is useful; theO-constant depends only on |q|. The distinctness of the before-mentioned
poles is guaranteed by our hypothesis c1/c2 /∈ qZ. Thus, we are led to an expression of J as
sum

Q1c
M+N−1−L2
1

∑

k>L1

∏L1
�=1

(
q� − qk

) ·∏L2
�=1

(
c1q

� − c2q
k
)

qMk
N∏

n=1

(
c1 − qn+k

) (2.15)

plus the same sum, where the subscripts 1 and 2 are interchanged.
Denoting the kth summand in (2.15) by Sk, similar considerations as for (2.11) show

the existence of a constant γ1 > 1 depending only on |q| and |c1 − c2| such that

γ−11
∣
∣q
∣
∣(2L−1−M−N)k−N(N+1)/2 ≤ |Sk| ≤ γ1

∣
∣q
∣
∣(2L−1−M−N)k−N(N+1)/2 (2.16)

holds for every k > L1. This implies that

∣
∣
∣
∣
Sk+1

Sk

∣
∣
∣
∣ ≤ γ21

∣
∣q
∣
∣2L−1−M−N (2.17)

for the same k, and here the right-hand side is bounded by 1/3, say, since M + N − 2L is
supposed to be large enough. As in (b), this leads to

1
2
|SL1+1| ≤

∣
∣
∣
∣
∣

∑

k>L1

Sk

∣
∣
∣
∣
∣
≤ 3

2
|SL1+1| (2.18)

for the sum in (2.15). Thus, the absolute value of term (2.15) is bounded above by

(
3γ1
2

)

|Q1|
∣
∣q
∣
∣−(2L−1−M−N)(L1+1)−N(N+1)/2 (2.19)

and below by the same expression with 3γ1/2 replaced by 1/(2γ1) (compare (2.16)).
If Q1Q2 = 0, we may assume that Q1 /= 0, Q2 = 0 without loss of generality. Then we

have L1 = L − 1, L2 = L, by one of our additional hypotheses in (c), and (2.15) and (2.19)
together with the remark after (2.19) lead to (2.6) noting that all quotients of any two of
L,M,N are bounded above and below by certain absolute constants.



International Journal of Mathematics and Mathematical Sciences 7

Suppose finally that Q1Q2 /= 0. Denoting term (2.15) by J1 and term (2.15) with
subscripts 1 and 2 interchanged by J2, we know that J1J2 /= 0 (see (2.19) and the remark
thereafter). Then, in the case |Q1| ≤ |Q2|, we have |J | = |J2‖1 + (J1/J2)| and

∣
∣
∣
∣
J1
J2

∣
∣
∣
∣ ≤

(
3γ1/2

)|Q1|
(
1/
(
2γ2
))|Q2|

∣
∣q
∣
∣(2L−1−M−N)(L1−L2) ≤ 3γ1γ2

∣
∣q
∣
∣2L−1−M−N

, (2.20)

by (2.19) and the corresponding lower bound for |J2|, where the constant γ1 from (2.19) is
replaced by γ2. Hence |J1/J2| ≤ 1/2 as soon as M +N − 2L is large enough, and this leads to
(1/2)|J2| ≤ |J | ≤ (3/2)|J2| giving (2.6) for |Q1| ≤ |Q2| if we use for |J2| evaluation (2.19) and
thereafter with subscript 1 replaced by 2. The case |Q1| > |Q2| is treated analogously.

3. Proof of Theorem 1.1

For c as in Theorem 1.1, we have (X − c)(X − c−1) = X2 + X + 1, which is the cyclotomic
polynomial Φ3(X). The main arithmetical tool for the proof of this theorem concerns certain
divisibility properties of the polynomial Φ3(Xk) and is contained in Lemma 3.2, the proof of
which will be prepared in the following auxiliary result.

Lemma 3.1. For any k ∈ N, one has

Φ3

(
Xk
)
= X2k +Xk + 1 =

∏

d|k,3d�k

Φ3d(X). (3.1)

Proof. From the well-known formula Xk − 1 =
∏

d|kΦd(X) we find

X3k − 1 =
∏

d|3k,3|d
Φd(X) ·

∏

d|3k,3�d
Φd(X) =

∏

δ|k
Φ3δ(X) ·

∏

d|k,3�d
Φd(X) (3.2)

whence,

Φ3

(
Xk
)
=

X3k − 1
Xk − 1

=

∏
d|kΦ3d(X) ·∏d|k,3�dΦd(X)

∏
d|k,3�dΦd(X) ·∏d|k,3|dΦd(X)

, (3.3)

and after cancellation we obtain the desired result.

Lemma 3.2. For any n ∈ N, all polynomials Φ3(Xk) (k = 1, . . . , n) divide (in Z[X]) the product

∏

n<�≤2n
Φ3

(
X�
)
. (3.4)

Proof. According to Lemma 3.1, product (3.4) equals

∏

n<�≤2n

∏

δ|�,3δ��

Φ3δ(X). (3.5)
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Since the factors on the right-hand side of (3.1) are pairwise coprime in Z[X], it suffices to
show that each Φ3d(X) with d|k, 3d � k appears in product (3.5).

Clearly, Φ3k(X) divides Φ3(Xk). If k > n/2, then we put �∗ := 2k and have n < �∗ ≤ 2n,
and we consider the contribution

∏

δ|�∗,3δ��∗
Φ3δ(X) (3.6)

to product (3.5), in whichΦ3k(X) obviously occurs. We now suppose that d | k, d /= k, or d = k
but k ≤ n/2. In the first case, we have dd′ = k with some integer d′ ≥ 2, hence d ≤ k/2. Thus,
in both remaining situations, we have d ≤ n/2. Then at least two successive multiples of d are
in the �-set {n+1, . . . , 2n} appearing in (3.4). Take two successive multiples of thosemultiples,
ρd and (ρ + 1)d. Then ρ, ρ + 1 are not both divisible by 3, and with such a number ρ∗ we put
�∗ := ρ∗d. Clearly, Φ3d(X) appears in product (3.6), whence it appears also in (3.5).

We are now in a position to prove Theorem 1.1. With c, q,Q1, Q2 as there, we apply
Lemma 2.1 to c1 = c, c2 = c−1, and obtain from (2.1)

V (1) = Q1Lq(c) +Q2Lq

(
c−1
)
, (3.7)

the “interesting” part of the linear form to be bounded below in Theorem 1.1. On the
parameters L1, L2 (hence on L),M,N we assume that all conditions mentioned in Lemma 2.1
(a), (b), (c). Rewriting (2.3) as

J = Q∗V (1) + P ∗ with Q∗ :=
N∑

n=1

Rn (3.8)

and obvious definition of P ∗, it is clear that P ∗ and Q∗ are both in K. Furthermore, |Q∗| and
|J | are asymptotically evaluated in (2.5) and (2.6), respectively. Our next aim is to determine
a D ∈ OK \ {0} such that Q := D ·Q∗ and P := D · P ∗ are both in OK.

To this purpose, we first remark that the double sum over k and t appearing in (2.3)
equals

n∑

k=1

Q1
(
qk − c−1

)
+Q2

(
qk − c

)

Φ3
(
qk
) (3.9)

and Rn from (2.4) equals

±qE(n)
[
N − 1

n − 1

]

q

(
qn+L − c∗

)∏
n<l≤n+L−1Φ3

(
q�
)

∏N−1
ν=1
(
qν − 1

) (3.10)

with E(n) := (M + 1 − 2L)n + n(n − 1)/2, with a suitable c∗ ∈ {c, c−1} and the q-binomial
coefficient

[
N−1
n−1

]

q
being in Z[q]. Assuming furthermore that L > N, we see that, for every

n ∈ {1, . . . ,N}, all numbersΦ3(qk) (k ≤ n) appearing in the denominators of (3.9) divide the
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product
∏

n<�≤2nΦ3(q�) (in Z[q], thus inOK), by Lemma 3.2, whence they divide the product
appearing in the numerators of (3.10).

Secondly, considering the triple sum in (2.3), it is clear that D must contain the factor

lcm
{
q − 1, q2 − 1, . . . , qM − 1

}
=
∏

d≤M
Φd

(
q
) (

up to a unit inOK

)
; (3.11)

see, for example, [6, Lemma 4(i)]. According to [6, Lemma 3(i)], we have for the denominator
appearing in (3.10)

∏

ν<N

(
qν − 1

)
=
∏

d<N

Φd

(
q
)[(N−1)/d] = PN

(
q
) ·
∏

d<N

Φd

(
q
)
, (3.12)

a formula by which PN(q) ∈ OK is defined. Note that, therefore,

∣
∣PN

(
q
)∣
∣ =
∣
∣q
∣
∣(1/2−3/π2)N2+O(N logN) (3.13)

holds with an O-constant depending only on |q|.
To sum up, our above considerations and a comparison of (3.11) and (3.12) show that

we may take

D := qE
∗ · PN

(
q
) ·
∏

d≤M
Φd

(
q
)

(3.14)

assuming additionally thatM ≥ N−1, where E∗ ∈ N0 has to satisfy the inequalities E(n)+E∗ ≥
0 (n = 1, . . . ,N); see after (3.10). Clearly, E(n) ≥ 0 holds for all n ∈ N if M ≥ 2L − 1. But if
M ≤ 2L − 2, then minn≥1E(n) = −(1/2)(2L −M)(2L −M − 1) and this minimum is attained at
one of the successive positive integers 2L −M − 1 or 2L −M, which, by M +N > 2L − 1 ⇔
N ≥ 2L −M, are both in {1, . . . ,N}. Therefore we may choose in (3.14)

E∗ :=

⎧
⎪⎨

⎪⎩

0 if M ≥ 2L − 1,

1
2
(2L −M)(2L −M − 1) if M ≤ 2L − 2.

(3.15)

Collecting all inequalities on L,M,N we met so far, we now choose L = N + 1,M =
[αN]with suitable α > 1 to be fixed later. In particular, if 1 < α ≤ 2 holds, then E∗ = (1/2)(2 −
α)2N2 +O(N), by the second alternative in (3.15). Thus, we may write (3.15) as

E∗ = ε∗N2 +O(N) with ε∗ :=

⎧
⎪⎨

⎪⎩

0 if α ≥ 2,

1
2
(2 − α)2 if 1 < α ≤ 2.

(3.16)

This, (3.13), and the well-known asymptotic formula for the product in (3.14) lead to

|D| = ∣∣q∣∣τN2+O(N logN) with τ := ε∗ +
1
2
+

3
π2

(
α2 − 1

)
. (3.17)
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Further, we deduce from (3.8) and (2.5) that

|Q∗| = ∣∣q∣∣σN2+O(N) with σ := α + 1 (3.18)

and from (2.6)

|J | = |Q|∣∣q∣∣−βN2+O(N) with β := α − 1
2

(3.19)

with all O-constants depending at most on |q|.
With Q,P ∈ OK as defined after (3.8), (3.8) is equivalent to

D · J = QV (1) + P. (3.20)

In the sequel, we have to be sure that this OK-linear form QV (1) + P is “very small”, that is,
D · J is “very small”. From (3.17) and (3.19)we have the inequalities

|Q|∣∣q∣∣−(β−τ)N2−γ3N logN ≤ |D · J | ≤ |Q|∣∣q∣∣−(β−τ)N2+γ3N logN
, (3.21)

where γ3 (and all subsequent γ ’s) is a positive constant depending only on |q|. To guarantee
the “smallness” of D · J , we have to suppose

β > τ. (3.22)

We now take our linear form Q0 + Q1Lq(c) + Q2Lq(c−1) =: L with large |Q| =
max(|Q1|, |Q2|) and define N ∈ N uniquely by

∣
∣q
∣
∣(β−τ)(N−1)2−γ3(N−1) log(N−1)

< 2|Q| ≤ ∣∣q∣∣(β−τ)N2−γ3N logN
. (3.23)

Clearly N becomes large exactly if |Q| does. Combination of the right-hand sides of (3.21)
and (3.23) yields the right half of

∣
∣q
∣
∣−γ4N logN ≤ |D · J | ≤ 1

2
, (3.24)

whereas the left half comes from the left-hand inequalities in (3.21) and (3.23).
From our above definition of L and from (3.7), we see that L = Q0 + V (1), whence

QL = QQ0 − P +DJ, (3.25)

by (3.20). Thus, if P /=QQ0, then |QL| ≥ 1/2 using the right-hand side of (3.24), whereas
|QL| ≥ |q|−γ4N logN if P = QQ0. This remark and the asymptotic evaluation of |Q| = |DQ∗|
from (3.17) and (3.18) give us

|L| ≥ ∣∣q∣∣−(σ+τ)N2−γ5N logN
. (3.26)
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Since (3.23) implies that log |Q| = (β − τ)N2 log |q| + O(N logN), we can eliminate N from
the right-hand side of (3.26)with the final result

|L| ≥ |Q|−η−γ(log log |Q|)/(log |Q|)1/2 with η :=
σ + τ

β − τ
. (3.27)

For the numerical evaluation of η, we have to ensure (3.22), which, by (3.17) and (3.19),
is equivalent to

α − 1 > ε∗ +
3
π2

(
α2 − 1

)
. (3.28)

If α ≥ 2 this is equivalent to α < (π2/3)− 1 = 2.28986 · · · =: α2; see the definition of ε∗ in (3.16).
If 1 < α ≤ 2, then (3.28) reads as

α − 1 >
1
2
(2 − α)2 +

3
π2

(
α2 − 1

)
, (3.29)

which, after some calculation, yields α > 1.50852 · · · =: α1.
Finally, we minimize η in terms of α ∈]α1, α2[=: I or, more conveniently,

η + 1 =
β + σ

β − τ
, (3.30)

where τ occurs only once. As a function of α, this is positive continuously differentiable in
I and tends to +∞ as α ↑ α2 and α ↓ α1. Furthermore, its derivative vanishes in I exactly at
α0 := (1/4)(

√
(121π2 − 90)/(π2 + 6) − 1) = 1.8353799 . . ., whence (3.30) reaches its minimal

value in I exactly at α0. Evaluation of (3.30) at α0 yields the value 39.9475 . . . for η given in
Theorem 1.1.

Remark 3.3. It should be pointed out that evaluation of (3.30) simply at α = 2 would lead to
the much weaker result (7π2 + 18)/(2π2 − 18) = 50.0729 . . . for η.

Remark 3.4. Here we will try to explain to some extent the difficulties, may be unexpected
at first glance, of proving an analogue of Theorem 1.1 for primitive fourth or sixth roots of
unity c. Let us restrict ourselves to the first case, where K is the Gaussian field Q(i) and
(X − c)(X − c−1) = X2 + 1 = Φ4(X). In this situation, we have the following analogue of
Lemma 3.2: All polynomials Φ4(Xk) (k = 1, . . . , n) divide the product

∏

n<�≤3n
Φ4

(
X�
)
; (3.31)

moreover, the upper bound 3n under the product sign cannot be replaced by something
smaller. (Remember that in (3.4) this upper bound was 2n.) Thus, we have to assume L > 2N
(instead of L > N before) to guarantee that, for every n ∈ {1, . . . ,N}, all Φ4(qk) (k ≤ n)
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divide
∏

n<�≤3nΦ4(q�). Then the denominator D from (3.14) remains unchanged, and we try
it with the parameter choice

L = 2N + 1, M = [αN], (3.32)

where we need α > 3 since M +N − 2L has to be large (see (2.6)). The crucial question is, of
course, if we can ensure inequality (3.22) by a suitable choice of α. Clearly, comparing (2.6)
and (3.19), we now have to work with β = 2α − (11/2) and with τ from (3.17) but with ε∗ = 0
if α ≥ 4 and ε∗ = (1/2)(4 − α)2 if 4 ≥ α > 3 (see (3.15) and (3.16)). It is easily checked that,
unfortunately, there is no α > 3, for which (3.22) holds.

It should be added that the situation becomes even worse if c is a primitive sixth root
of unity. Again the analogue of Lemma 3.2 is the main obstacle.

4. Proof of Theorem 1.2

With c, q,Q1, Q2 as there, we now apply Lemma 2.1 to c1 = 1, c2 = c and obtain V (1) =
Q1Lq(1) + Q2Lq(c) from (2.1), and this is again the main part of the OK-linear form to be
estimated from below in Theorem 1.2. Plainly, (3.8) remains valid but with new P ∗, Q∗ ∈ K,
namely,

Q∗ =
N∑

n=1

Rn =
N∑

n=1

(−1)N+1−nqE(n)
∏n+L1

ν=n+1

(
qν − 1

)

∏n−1
ν=1
(
qν − 1

) ·∏N−n
ν=1
(
qν − 1

) ·
n+L2∏

�=n+1

(
q� − c

)
, (4.1)

with E(n) after (3.10), and

P ∗ = −
N∑

n=1

Rn

n∑

k=1

(
Q1

qk − 1
+

Q2

qk − c

)

+
∑

κ+λ+ν=M−1
Pκ,λ · Q1 +Q2c

ν

qν+1 − 1
, (4.2)

with all Pκ,λ ∈ Z[q, c].
Next, we determine a “denominator” D for these P ∗, Q∗. Assuming L ≥ N it is clear,

by L1 ≥ L − 1 ≥ N − 1, that the quotient appearing on the right-hand side of (4.1) is in Z[q],
whence qE

∗
is a denominator for any Rn and so forQ∗, if E∗ is defined as in (3.15). To multiply

away the denominators from the triple sum in (4.2),D must contain also factor (3.11), that is,
∏

d≤M
Φd

(
q
)
. (4.3)

Assuming that M ≥ N, this factor takes also care of the qk − 1 (k ≤ n) appearing in the
denominators of the first sum in (4.2). What about the additional qk − c (k ≤ n) appearing
there? Since qk − c divides q3k − 1 in OK for any k ∈ N, it is clear: Because all q3k − 1 with
k ≤ M/3 divide the above product (3.11), it is enough to take

D = qE
∗ ·
∏

d≤M
Φd

(
q
) ·

∏

M/3<k≤N

(
qk − c

)
, (4.4)

where, as always, empty products have to be interpreted as 1.
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Choosing L,M exactly as in Section 3 (after (3.15)), we have to suppose again α > 1.
If α ≥ 3, then the second product in (4.4) is empty and we obtain |D| = |q|(3α2/π2)N2+O(N logN)

hence (3.17) with τ = 3α2/π2. Since the value of β is as in (3.19), inequality (3.22) would
mean α − 1/2 > 3α2/π2, which is never satisfied if α ≥ 3. Hence we have to check the interval
1 < α < 3, where we obtain formula (3.17)with

τ = ε∗ +
3
π2

α2 +
1
2

(

1 − α2

9

)

, (4.5)

ε∗ being as in (3.16). Omitting the calculations, it is easily seen that the decisive inequality
(3.22) holds exactly in the subinterval ]1.9119132 . . . , 2.1734402 . . . [ of ]1, 3[. So we have
to minimize the function (3.30) in this subinterval. Calculation shows that this minimum
appears exactly at α0 := (1/4)(

√
(54 + 359π2)/(54 − π2) − 1) = 2.0071097 . . . yielding the

numerical value 704.2655 . . . for η, much worse than our claim in Theorem 1.2.
Of course, our procedure to include in (4.4) the second product to take care of the

denominators qk − c with “large” k’s in (4.2) is too trivial. To decrease the last value of η
considerably, we consider the even kwith (M/3) < k ≤ N. Writing k = 2j, (M/6) < j ≤ (N/2)
and taking c = c4 into account, we find

qk − c =
(
qj − c2

)(
qj + c2

)
. (4.6)

If (N/2) ≤ (M/3) (or equivalently α ≥ 3/2), then we know that, for every even k with
(M/3) < k ≤ N, the corresponding factor qj − c2 in (4.6) is already considered in the first
product of (4.4) since it divides q3j − 1 in OK. Hence we may replace the second product in
(4.4) by

∏

(M/3)<k≤N, k odd

(
qk − c

)
·

∏

(M/6)<j≤(N/2)

(
qj + c2

)
, (4.7)

with the absolute value of which being asymptotically

∣
∣q
∣
∣(3/8)(1−α2/9)N2+O(N)

. (4.8)

Thus, for our refinement of formula (4.4), we obtain again (3.17) but τ from (4.5) is now
replaced by

τ = ε∗ +
3
π2

α2 +
3
8

(

1 − α2

9

)

. (4.9)

After a bit of calculation, we see that (3.22) is satisfied here exactly in the larger
subinterval ]1.6507301 . . . , 2.4519699 . . . [ of [3/2, 3[. The minimum of the function (3.30) in
this subinterval occurs exactly at α0 = (1/4)(

√
(72 + 1403π2)/(72 + 11π2) − 1) = 1.9449636 . . .

and the corresponding η-value is just the one given in Theorem 1.2.
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Remark 4.1. Step by step we can further refine this procedure. One possibility is to extract
from the first product in (4.7) certain factors, namely, from those with k divisible by 5. For
k = 5(2j − 1) we note, by c = c10,

qk − c = q5(2j−1) − c5·2 =
(
q2j−1 − c2

)(
q4(2j−1) + q3(2j−1)c2 + · · ·

)
. (4.10)

Since the factor q2j−1 − c2 divides q3(2j−1) − 1 in OK, we know that this factor of qk − c, for odd
k divisible by 5, appears already in the product (3.11). Thus, we may refine (4.7) to

∏

(M/3)<k≤N
(k,10)=1

(
qk − c

)
·
∏

(M/3)<k≤N
k odd, 5|k

(
q4k/5 + q3k/5c2 + · · ·

)
·

∏

(M/6)<j≤(N/2)

(
qj + c2

)
.

(4.11)

The numerical calculations show that this step reduces the η-value from 56.6026 . . . to
52.5205 . . ..

Remark 4.2. The “limit case” of reducing the k-product in (4.4) still further, possibly to a factor
Ψ ∈ OK \ {0} with asymptotic |Ψ| = |q|o(N2), would yield the following. Let α > 1. Then
(3.22) holds if and only if α ∈]1.2562872 . . . , 2.6749215 . . . [ and the optimal choice is α0 =
(1/4)(

√
(6 + 105π2)/(6 + π2) − 1) = 1.776073 . . . leading to η = 12.8692 . . ..
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