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This paper studies the existence of multiple solutions of the second-order difference boundary
value problem Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, T), u(0) = 0 = u(T + 1). By applying Morse
theory, critical groups, and the mountain pass theorem, we prove that the previous equation has at
least three nontrivial solutions when the problem is resonant at the eigenvalue λk (k ≥ 2) of linear
difference problem Δ2u(n − 1) + λu(n) = 0, n ∈ Z(1, T), u(0) = 0 = u(T + 1) near infinity and the
trivial solution of the first equation is a local minimizer under some assumptions on V .

1. Introduction

Let R, N, and Z be the sets of real numbers, natural numbers, and integers, respectively. For
any a, b ∈ Z, a ≤ b, define Z(a, b) = {a, a + 1, . . . , b}.

Consider the second-order difference boundary value problem (BVP)

Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1),
(1.1)

where V ∈ C2(R,R) and Δ denotes the forward difference operator defined by Δu(n) =
u(n + 1) − u(n), Δ2u(n) = Δ(Δu(n)).

By a solution u of the BVP (1.1), we mean a real sequence {u(n)}T+1n=0(=
(u(0), u(1), . . . , u(T + 1))) satisfying the BVP (1.1). For u = {u(n)}T+1n=0 with u(0) = 0 = u(T + 1),
we say that u/= 0 if there exists at least one n ∈ Z(1, T) such that u(n)/= 0. We say that u is
positive (and write u > 0) if for all n ∈ Z(1, T), u(n) > 0, and similarly, u is negative (u < 0)
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if for all n ∈ Z(1, T), u(n) < 0. The aim of this paper is to obtain the existence of multiple
solutions of the BVP (1.1) and analyse the sign of solutions.

Recently, a few authors applied the minimax methods to examine the difference
boundary value problems. For example, in [1], Agarwal et al. employed the Mountain Pass
Lemma to study the following BVP:

Δ2u(n − 1) + f(n, u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1)
(1.2)

and obtained the existence of multiple positive solutions, where f may be singular at u = 0. In
[2], Jiang and Zhou employed the Mountain Pass Lemma together with strongly monotone
operator principle, to study the following difference BVP:

Δ2u(n − 1) + f(n, u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = Δu(T)
(1.3)

and obtained existence and uniqueness results, where f : Z(1, T) × R → R is continuous. In
[3], Cai and Yu employed the Linking Theorem and the Mountain Pass Lemma to study the
following difference BVP:

Δ
(
p(n)(Δu(n − 1))δ

)
+ q(n)uδ(n) = f(n, u(n)), n ∈ Z(1, T),

Δu(0) = A, u(T + 1) = B

(1.4)

and obtained the existence of multiple solutions, where δ > 0 is the ratio of odd positive
integers, {p(n)}T+1n=1 and {q(n)}Tn=1 are real sequences, p(n)/= 0 for all n ∈ Z(1, T + 1), and A, B
are two given constants, f : Z(1, T) × R → R is continuous.

Although applications of the minimax methods in the field of the difference BVP have
attracted some scholarly attention in the recent years, efforts in applying Morse theory to the
difference BVP are scarce. The main purpose of this paper is to develop a new approach to the
BVP (1.1) by using Morse theory. To this end, we first consider the following linear difference
eigenvalue problem:

Δ2u(n − 1) + λu(n) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1).
(1.5)

On the above eigenvalue problem, the following results hold; see [4].

Proposition 1.1. The eigenvalues of (1.5) are

λ = λl = 4 sin2 lπ

2(T + 1)
, l = 1, 2, . . . , T, (1.6)

and the corresponding eigenfunction with λl is φl(n) = sin(lπn/(T + 1)), l = 1, 2, . . . , T .
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Remark 1.2. (1) The set of functions {φl(n), l = 1, 2, . . . , T} is orthogonal on Z(1, T) with
respect to the weight function r(n) ≡ 1, that is,

T∑
n=1

(
φl(n), φj(n)

)
= 0 ∀l /= j. (1.7)

Moreover, for each l ∈ Z(1, T),
∑T

n=1 sin
2(lπn/(T + 1)) = (T + 1)/2.

(2) It is easy to see that φ1 is positive and φl changes sign for each l ∈ Z(2, T), that is,
{n : φl(n) > 0}/= ∅ and {n : φl(n) < 0}/= ∅.

For (1.1), we assume that

V (0) = V ′(0) = 0, (1.8)

V ′′(∞) := lim
|t|→∞

V ′(t)
t

= λk, (1.9)

where λk is an eigenvalue of (1.5). Hence the BVP (1.1) has a trivial solution u ≡ 0. And we
say that BVP (1.1) is resonant at infinity if (1.9) holds.

Let

W− = span
{
φ1, φ2, . . . , φk−1

}
, W0 = span

{
φk

}
, W+ = span

{
φk+1, φk+2, . . . , φT

}
.

(1.10)

Let G(t) =
∫ t
0G

′(s)ds = V (t) − (λk/2)t2. By (1.9) we have

lim
|t|→∞

G′(t)
t

= 0. (1.11)

Assume that the following conditions on G′(t) hold.

(G±) If ‖um‖ → ∞ such that ‖vm‖/‖um‖ → 1, then there exist δ > 0 and M ∈ N such
that

±
T∑

n=1

(
G′(um(n)), vm(n)

) ≥ δ, ∀m ≥ M, (1.12)

where um = vm +wm, vm ∈ W0, wm ∈ W := W+ ⊕W−.
The main result of this paper is as follows.

Theorem 1.3. Let (1.8), (1.9) hold and

(V 1) V ′′(t) > 0 for all t ∈ R,

(V 2) V ′′(0) < λ1
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hold. Then the BVP (1.1) has at least three nontrivial solutions, with one positive solution and one
negative solution, in each of the following cases:

(i) (G+) and k ≥ 2;

(ii) (G−) and k ≥ 3.

To the author’s best knowledge, only Bin et al. [5] deal with the existence and
multiplicity of nontrivial periodic solutions for asymptotically linear resonant difference
problem by the aid of Su [6]. In [5], G satisfies

∣∣G′(z)
∣∣ ≤ c1|z|s + c2, (1.13)

lim
‖v‖→∞

inf
v∈W0

1

‖v‖2s
G(z) ≥ 4β2

δT
, (1.14)

where c1 > 0, c2 > 0, s ∈ (0, 1), β = c1T
(1−s)/2, δ > 0. In [5], the authors obtained the existence

of one nontrivial periodic solution. Notice that (1.13) implies that (1.11) holds; however, (G±)
is not covered by (1.14). In fact, conditions (1.13) and (1.14) are borrowed from [6]. The
conditions in Theorem 1.3 coincide with the assumptions of Theorem 1 in [7]. The aim of this
paper is to develop a new approach to study the discrete systems by using Morse theory,
minimax theorems, and some analysis technique. We wish to have some breakthrough points
with the aid of the method of discretization.

The remaining part of this paper proceeds as follows. In the next section, we establish
the variational framework of the BVP (1.1) and collect some results which will be used in the
proof of Theorem 1.3. In Section 3, we give the proof of Theorem 1.3. Finally, in Section 4,
we give an example to illustrate our main result and summarize conclusions and future
directions.

2. Variational Framework and Auxiliary Results

Let

E =
{
u : u = {u(n)}T+1n=0 with u(0) = 0 = u(T + 1) ∈ R

}
. (2.1)

E can be equipped with the norm ‖ · ‖ and the inner product 〈·, ·〉 as follows:

‖u‖ =

(
T∑

n=0
|Δu(n)|2

)1/2

, ∀u ∈ E,

〈u, v〉 =
T∑

n=0
(Δu(n),Δv(n)), ∀u, v ∈ E,

(2.2)
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where | · | denotes the Euclidean norm in R and (·, ·) denotes the usual scalar product in R. It
is easy to see that (E, 〈·, ·〉) is a Hilbert space. Consider the functional defined on E by

J(u) =
1
2

T∑
n=0

|Δu(n)|2 −
T∑

n=1

V (u(n)). (2.3)

We claim that if u ∈ E is a critical point of J , then u is precisely a solution of the BVP (1.1).
Indeed, for every u, v ∈ E, we have

〈J ′(u), v〉 =
T∑

n=0
(Δu(n),Δv(n)) −

T∑
n=1

(
V ′(u(n)), v(n)

)
= −

T∑
n=1

(
Δ2u(n − 1) + V ′(u(n)), v(n)

)
.

(2.4)

So, if J ′(u) = 0, then we have

T∑
n=1

(
Δ2u(n − 1) + V ′(u(n)), v(n)

)
= 0. (2.5)

Since v ∈ E is arbitrary, we obtain

Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, T). (2.6)

Therefore, we reduce the problem of finding solutions of the BVP (1.1) to that of seeking
critical points of the functional J in E.

According to Proposition 1.1 and Remark 1.2, E can be decomposed as E = W− ⊕W0 ⊕
W+. For all u ∈ E, denote u = w0 +w+ +w− with w0 ∈ W0, w+ ∈ W+, and w− ∈ W−, then we
have the following Wirtinger type inequalities:

λ1
T∑

n=1

(u(n), u(n)) ≤ ‖u‖2 ≤ λT
T∑

n=1

(u(n), u(n)), ∀u ∈ E, (2.7)

λ1
T∑

n=1

(
w−(n), w−(n)

) ≤ ∥∥w−∥∥2 ≤ λk−1
T∑

n=1

(
w−(n), w−(n)

)
, ∀w− ∈ W−, (2.8)

λk+1
T∑

n=1

(w+(n), w+(n)) ≤ ‖w+‖2 ≤ λT
T∑

n=1

(w+(n), w+(n)), ∀w+ ∈ W+, (2.9)

see [4] for details.
Now we collect some results on Morse theory and the minimax methods.
Let E be a real Hilbert space and J ∈ C1(E,R). Denote

Jc = {u ∈ E : J(u) ≤ c}, Kc =
{
u ∈ E : J ′(u) = 0, J(u) = c

}
(2.10)

for c ∈ R. The following is the definition of the Palais-Smale condition ((PS) condition).



6 International Journal of Mathematics and Mathematical Sciences

Definition 2.1. The functional J satisfies the (PS) condition if any sequence {um} ⊂ E such that
{J(um)} is bounded and J ′(um) → 0 as m → ∞ has a convergent subsequence.

In [8], Cerami introduced a weak version of the (PS) condition as follows.

Definition 2.2. The functional J satisfies the Cerami condition ((C) condition) if any sequence
{um} ⊂ E such that {J(um)} is bounded and (1 + ‖um‖)‖J ′(um)‖ → 0 as m → ∞ has a
convergent subsequence.

If J satisfies the (PS) condition or the (C) condition, then J satisfies the following
deformation condition which is essential in Morse theory (cf. [9, 10]).

Definition 2.3. The functional J satisfies the (Dc) condition at the level c ∈ R if for any ε > 0
and any neighborhoodN ofKc, there are ε > 0 and a continuous deformation η : [0, 1]×E →
E such that

(1) η(0, u) = u for all u ∈ E;

(2) η(t, u) = u for all u/∈ J−1([c − ε, c + ε]);

(3) J(η(t, u)) is nonincreasing in t for any u ∈ E;

(4) η(1, Jc+ε \N) ⊂ Jc−ε.

J satisfies the (D) condition if J satisfies the (Dc) condition for all c ∈ R.

Let u0 be an isolated critical point of J with J(u0) = c ∈ R, and letU be a neighborhood
of u0, the group

Cq(J, u0) := Hq(Jc ∩U, Jc ∩U \ {u0}), q ∈ Z, (2.11)

is called the qth critical group of J at u0, where Hq(A,B) denotes the qth singular relative
homology group of the pair (A,B) over a field F, which is defined to be quotient Hq(A,B) =
Zq(A,B)/Bq(A,B), where Zq(A,B) is the qth singular relative closed chain group and
Bq(A,B) is the qth singular relative boundary chain group.

Let K = {u ∈ E : J ′(u) = 0}. If J(K) is bounded from below by a ∈ R and J satisfies
the (Dc) condition for all c ≤ a, then the group

Cq(J,∞) := Hq(E, Ja), q ∈ Z, (2.12)

is called the qth critical group of J at infinity [11].
Assume that #K < ∞ and J satisfies the (D) condition. The Morse-type numbers of

the pair (E, Ja) are defined by

Mq = Mq(E, Ja) =
∑
u∈K

dimCq(J, u), (2.13)

and the Betti numbers of the pair (E, Ja) are

βq := dimCq(J,∞). (2.14)
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By Morse theory [12, 13], the following relations hold:

q∑
j=0

(−1)q−jMj ≥
q∑
j=0

(−1)q−jβj , q ∈ Z,

∞∑
q=0

Mq =
∞∑
q=0

βq.

(2.15)

Thus, if Cq(J,∞) � 0, for some k ∈ Z, then there must exist a critical point u of J with
Cq(J, u) � 0, which can be rephrased as follows.

Proposition 2.4. Let E be a real Hilbert space and J ∈ C2(E,R). Assume that #K < ∞ and that J
satisfies the (D) condition. If there exists some q ∈ Z such that Cq(J,∞) � 0, then J must have a
critical point u with Cq(J, u) � 0.

In order to prove our main result, we need the following result about the critical group
on Cq(J,∞).

Proposition 2.5. Let the functional J : E → R be of the form

J(u) =
1
2
〈Au, u〉 +Q(u), (2.16)

where A : E → E is a self-adjoint linear operator such that 0 is isolated in σ(A), the spectrum of A.
Assume that Q ∈ C1(E,R) satisfies

lim
‖u‖→∞

‖Q′(u)‖
‖u‖ = 0. (2.17)

Denote V := kerA, W := V ⊥ = W+ ⊕ W−, where W+ (W−) is the subspace of E on which A is
positive (negative) definite. Assume that μ := dimW−, ν := dimV /= 0 are finite and that J satisfies
the (D) condition. Then

Cq(J,∞) ∼= δq,k±F, q ∈ Z, (2.18)

provided that J satisfies the angle conditions at infinity.

(AC±
∞): there existM > 0 and α ∈ (0, 1) such that

±〈J ′(u), v〉 ≥ 0 for u = v +w, ‖u‖ ≥ M, ‖w‖ ≤ α‖u‖, (2.19)

where k+ = μ, k− = μ + ν, v ∈ V , and w ∈ W .

Remark 2.6. Conditions (2.16) and (2.17) imply that J is asymptotically quadratic. Bartsch and
Li [11] introduced the notion of critical groups at infinity and proved that if J satisfied some
angle properties at infinity, the critical groups can be completely figured out. Proposition 2.5
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is a slight improvement of [11, Proposition 3.10] by Su and Zhao [7]. There are many
other papers considering concrete problems by computing the critical groups at infinity with
different methods, for example, see [14–17].

We will use the Mountain Pass Lemma (cf. [12, 18]) in our proof.
Let Bρ denote the open ball in E about 0 of radius r and let ∂Bρ denote its boundary.

Theorem 2.7 (mountain pass lemma). Let E be a real Banach space and J ∈ C1(E,R) satisfying
the (PS) condition. Suppose J(0) = 0 and that

(J1) there are constants ρ > 0, a > 0 such that J |∂Bρ ≥ a > 0,

(J2) there is a u0 ∈ E \ Bρ such that J(u0) ≤ 0,

then J possesses a critical value c ≥ a. Moreover c can be characterized as

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)), (2.20)

where

Γ = {h ∈ C([0, 1], E) | h(0) = 0, h(1) = u0}. (2.21)

Definition 2.8 (mountain pass point). An isolated critical point u of J is called a mountain
pass point, if C1(J, u) � 0.

The following result is useful in computing the critical group of a mountain pass point;
see [13, 19] for details.

Theorem 2.9. Let E be a real Hilbert space. Suppose that J ∈ C2(E,R) has a mountain pass point u,
and that J ′′(u) is a Fredholm operator with finite Morse index, satisfying

J ′′(u0) ≥ 0, 0 ∈ σ
(
J ′′(u0)

)
=⇒ dimker

(
J ′′(u0)

)
= 1, (2.22)

then

Cq(J, u0) ∼= δq,1F, q ∈ Z. (2.23)

3. Proof of Theorem 1.3

Wegive the proof of Theorem 1.3 in this section. Firstly, we prove that the functional J satisfies
the (C) condition (Lemma 3.1) and compute the critical group Cq(J,∞) (Lemma 3.2). Then,
we employ the cut-off technique and the Mountain Pass Lemma to obtain two critical points
u+, u− of J and compute the critical groups Cq(J, u+) and Cq(J, u−) (Lemmas 3.3 and 3.4).
Finally, we prove Theorem 1.3.

Rewrite the functional J as

J(u) =
1
2

T∑
n=0

|Δu(n)|2 − λk
2

T∑
n=1

|u(n)|2 −
T∑

n=1

G(u(n)), ∀u ∈ E. (3.1)
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Lemma 3.1. Let (1.8) and (1.9) hold. If G satisfies (G±), then the functional J satisfies the (C)
condition.

Proof. We only prove the case where (G+) holds. Let {um} ⊂ E such that

J(um) −→ c ∈ R, (1 + ‖um‖)
∥∥J ′(um)

∥∥ −→ 0 as m −→ ∞. (3.2)

Then for all ϕ ∈ E, we have

〈J ′(um), ϕ〉 = 〈um, ϕ〉 − λk
T∑

n=1

(
um(n), ϕ(n)

) −
T∑

n=1

(
G′(um(n)), ϕ(n)

)
. (3.3)

Denote um = vm + w+
m + w−

m with vm ∈ W0, w+
m ∈ W+ and w−

m ∈ W−. Since E is a finite-
dimensional Hilbert space, it suffices to show that {um} is bounded. Suppose that {um} is
unbounded. Passing to a subsequence we may assume that ‖um‖ → ∞ asm → ∞.

By (1.11), for any ε > 0, there exists b ∈ R such that

∣∣G′(t)
∣∣ ≤ ε|t| + b, ∀t ∈ R. (3.4)

Let ϕ = w+
m in (3.3). Then by (2.7), (2.9), and (3.4), we have

c1‖w+
m‖2 :=

(
1 − λk

λk+1

)
‖w+

m‖2

≤ ‖w+
m‖2 − λk

T∑
n=1

(w+
m(n), w

+
m(n))

=
T∑

n=1

(
G′(um(n)), w+

m(n)
)
+ 〈J ′(um), w+

m〉

≤ ‖w+
m‖ +

T∑
n=1

(ε|um(n)| + b)|w+
m(n)|

≤ ‖w+
m‖ +

ε√
λ1λk+1

‖um‖‖w+
m‖ +

b
√
T√

λk+1
‖w+

m‖

:= c2‖w+
m‖ + c3‖um‖‖w+

m‖,

(3.5)

where

c1 = 1 − λk
λk+1

> 0, c2 = 1 +
b
√
T√

λk+1
, c3 =

ε√
λ1λk+1

. (3.6)
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And since ε > 0 is arbitrary, we have

‖w+
m‖

‖um‖ −→ 0 as m −→ ∞. (3.7)

Similarly, let ϕ = w−
m in (3.3), by (2.8) and (3.4)we get

−c4
∥∥w−

m

∥∥2 =:
(
1 − λk

λk−1

)∥∥w−
m

∥∥2

≥ ∥∥w−
m

∥∥2 − λk
T∑

n=1

(
w−

m(n), w
−
m(n)

)

=
T∑

n=1

(
G′(um(n)), w−

m(n)
)
+ 〈J ′(um), w−

m〉

≥ −∥∥w−
m

∥∥ −
T∑

n=1

(ε|um(n)| + b)
∣∣w−

m(n)
∣∣

≥ −∥∥w−
m

∥∥ − ε

λ1
‖um‖

∥∥w−
m

∥∥ − b
√
T√
λ1

∥∥w−
m

∥∥

:= −c5
∥∥w−

m

∥∥ − c6‖um‖
∥∥w−

m

∥∥,

(3.8)

where

c4 =
λk
λk−1

− 1 > 0, c5 = 1 +
b
√
T√
λ1

, c6 =
ε

λ1
. (3.9)

And hence we also have

‖w−
m‖

‖um‖ −→ 0 as m −→ ∞. (3.10)

By (3.7) and (3.10), we have

‖wm‖
‖um‖ −→ 0,

‖vm‖
‖um‖ −→ 1 as m −→ ∞. (3.11)

By (G+), there exist δ > 0 andM ∈ N such that

T∑
n=1

(
G′(um(n)), vm(n)

) ≥ δ, ∀m ≥ M. (3.12)
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This implies that

〈J ′(um), vm〉 = −
T∑

n=1

(
G′(um(n)), vm(n)

) ≤ −δ, ∀m ≥ M, (3.13)

and hence

∥∥J ′(um)
∥∥‖um‖ ≥ ∥∥J ′(um)

∥∥‖vm‖ ≥ ∣∣〈J ′(um), vm〉
∣∣ ≥ δ, ∀m ≥ M, (3.14)

which is a contradiction to (3.2). Thus {um} is bounded. The proof is complete.

Lemma 3.2. Let (1.8) and (1.9) hold. Then

(1) Cq(J,∞) ∼= δq,kF provided that (G+) holds;

(2) Cq(J,∞) ∼= δq,k−1F provided that (G−) holds.

Proof. We only prove the case (1). Define a bilinear function

a(u, v) = λk
T∑

n=1

(u(n), v(n)), ∀u, v ∈ E. (3.15)

Then by (2.7)we have

|a(u, v)| ≤ λk
λ1

‖u‖‖v‖. (3.16)

And hence there exists a unique continuous bounded linear operator K : E → E such that

〈Ku, v〉 = λk
T∑

n=1

(u(n), v(n)). (3.17)

Since 〈Ku, u〉 ∈ R for all u ∈ E, we can conclude that K is a self-adjoint operator and

J(u) =
1
2
〈(I −K)u, u〉 −

T∑
n=1

G(u(n)). (3.18)

Then J has the form (2.16)with

Q(u) = −
T∑

n=1

G(u(n)), (3.19)

and (1.11) implies that (2.17) holds. Let A = I − K. Then kerA = W0 = span{φk}. Next we
show that (G+) implies that the angle condition (AC−

∞) at infinity holds.
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If not, then for anym ∈ N and each αm = 1/m, there exists um = vm +wm ∈ W0 ⊕ (W+ ⊕
W−)with vm ∈ W0, wm ∈ W+ ⊕W− such that

‖um‖ ≥ m, ‖wm‖ ≤ 1
m
‖um‖, (3.20)

〈J ′(um), vm〉 > 0. (3.21)

On the other hand, (3.20) implies

‖um‖ −→ ∞,
‖vm‖
‖um‖ −→ 1 as m −→ ∞. (3.22)

Thus, by (G+) there exist δ > 0 and M ∈ N such that

T∑
n=1

(
G′(um(n)), vm(n)

) ≥ δ, ∀m ≥ M. (3.23)

Therefore,

〈J ′(um), vm〉 = −
T∑

n=1

(
G′(um(n)), vm(n)

) ≤ −δ, ∀m ≥ M, (3.24)

which is a contradiction to (3.21). Consequently (AC−
∞) holds and by Lemma 3.1 and

Proposition 2.5, Cq(J,∞) = δq,kF. Similarly, we can prove that (2) holds.

In order to obtain a mountain pass point, we need the following lemmas.

Lemma 3.3. Let

V ′+(t) =

⎧
⎨
⎩
V ′(t), t ≥ 0,

0, t ≤ 0,
V ′−(t) =

⎧
⎨
⎩
V ′(t), t ≤ 0,

0, t ≥ 0,
(3.25)

and V ±(t) =
∫ t
0V

′±(s)ds. If

lim
|t|→∞

V ′(t)
t

= α/=λ1, (3.26)

then the functional

J±(u) =
1
2

T∑
n=0

|Δu(n)|2 −
T∑

n=1

V ±(u(n)) (3.27)

satisfies the (PS) condition.
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Proof. We only prove the case (J+). Let {um} ⊂ E such that

J(um) −→ c ∈ R, J ′+(um) −→ 0 (3.28)

asm → ∞. Since E is a finite-dimensional space, it suffices to show that {um} is bounded in E.
Suppose that {um} is unbounded. Passing to a subsequence we may assume that ‖um‖ → ∞
and for each n, either |um(n)| → ∞ or {um(n)} is bounded.

Noticing that for all ϕ ∈ E,

〈J ′+(um), ϕ〉 = 〈um, ϕ〉 −
T∑

n=1

(
V ′+(um(n)), ϕ(n)

)
. (3.29)

Denotewm := um/‖um‖, for a subsequence,wm converges to somew with ‖w‖ = 1. By
(3.29), we have

〈J ′+(um), ϕ〉
‖um‖ = 〈wm, ϕ〉 −

T∑
n=1

(
V ′+(um(n))

‖um‖ , ϕ(n)
)
. (3.30)

If |um(n)| → ∞, then

lim
m→∞

V ′+(um(n))
um(n)

wm(n) = αw+(n), (3.31)

where w+(n) = max{w(n), 0}with n ∈ Z(1, T). If {um(n)} is bounded, then

lim
m→∞

V ′+(um(n))
‖um‖ = 0, w(n) = 0. (3.32)

Since w/= 0, there is an n for which |um(n)| → ∞. So passing to the limit in (3.30), we have

T∑
n=0

(
Δw(n),Δϕ(n)

) − α
T∑

n=1

(
w+(n), ϕ(n)

)
= 0. (3.33)

This implies that w/= 0 satisfies

Δ2w(n − 1) + αw+(n) = 0, n ∈ Z(1, T),

w(0) = 0 = w(T + 1).
(3.34)

Now, we claim that

w(n) > 0, ∀n ∈ Z(1, T). (3.35)
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In fact, let

w(n0) = min{w(n) : n ∈ Z(1, T)}. (3.36)

We only need to prove w(n0) > 0. If not, assume that w(n0) ≤ 0. Then by (3.34), we have
Δ2w(n0 − 1) = 0 and hence w(n0 − 1) = w(n0) = w(n0 + 1). By induction, it is easy to get
w(n) = 0 for all n ∈ Z(1, T)which is a contradiction to w/= 0 and hence (3.35) holds.

On the other hand, by Proposition 1.1 and Remark 1.2, we see that only the
eigenfunction corresponding to the eigenvalue λ1 is positive, which is a contradiction to
α/=λ1. The proof is complete.

Lemma 3.4. Under the conditions of Theorem 1.3, the functional J+ has a critical point u+ > 0 and
Cq(J+, u+) ∼= δq,1F; the functional J− has a critical point u− < 0 and Cq(J−, u−) ∼= δq,1F.

Proof. We only prove the case of J+. Firstly, we prove that J+ satisfies the Mountain Pass
Lemma and hence J+ has a nonzero critical point u+. In fact, J+ ∈ C1(E,R) and by Lemma 3.3
we see that J+ satisfies the (PS) condition. Clearly J+(0) = 0. Thus we need to show that J+

satisfies (J1) and (J2). To verify (J1), by (1.8) and (V 2), there exist ρ1 > 0 and ρ2 > 0 with
V ′′(0) < ρ2 < λ1 such that

V (t) ≤ 1
2
ρ2t

2 (3.37)

for |t| ≤ ρ1. So, for all u ∈ E, if ‖u‖ ≤
√
λ1ρ1, then for each n ∈ Z(1, T), |u(n)| ≤ ρ1 and

J+(u) =
1
2
‖u‖2 −

T∑
n=1

V +(u(n))

=
1
2
‖u‖2 −

∑
n∈N1

V (u(n))

≥ 1
2
‖u‖2 − 1

2
ρ2
∑
n∈N1

(u(n), u(n))

≥ 1
2
‖u‖2 − 1

2
ρ2

T∑
n=1

(u(n), u(n))

≥ 1
2
‖u‖2 − 1

2
ρ2
λ1

‖u‖2,

(3.38)

where N1 = {n ∈ Z(1, T) | u(n) ≥ 0}. Let

ρ =
√
λ1ρ1, a =

1
2

(
1 − ρ2

λ1

)
ρ2. (3.39)
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Then J+(u)|∂Bρ ≥ a > 0 and hence (J1) holds. For (J2), by V ′′(∞) = λk ∈ (λk−1, λk+1), we claim
that there exist γ > λk−1 (≥ λ1), b ∈ R such that

V (t) ≥ γ

2
t2 + b, ∀t ∈ R. (3.40)

In fact, by assumption (1.9), there existM > 0 and b1 ∈ R such that V (t) ≥ (γ/2)t2 + b1
for |t| ≥ M. Meanwhile, there exists b2 ∈ R such that V (t) − (γ/2)t2 ≥ b2 for |t| ≤ M by virtue
of the continuity of V . Let b = min{b1, b2}, we get the conclusion.

Thus, if we choose e ∈ span{φ1}with e > 0 and ‖e‖ = 1, then

J+(te) =
t2

2
−

T∑
n=1

V (te(n))

≤ t2

2
− γt2

2
(e, e) − bT

=
t2

2
− γt2

2λ1
− bT −→ −∞

(3.41)

as 0 < t → +∞. Thus, we can choose a constant t large enough with t > ρ and u0 = te ∈ E
such that J+(u0) ≤ 0. (J2) holds.

Therefore, by Theorem 2.7, J+ has a critical point u+ /= 0 and similar to the proof of
Lemma 3.3, we can prove that u+ > 0. So u+ is also a critical point of J . In the following we
compute the critical group Cq(J+, u+) by using Theorem 2.9.

Assume that

〈J ′′(u+)v, v〉 = 〈v, v〉 −
T∑

n=1

(
V ′′(u+(n))v(n), v(n)

) ≥ 0, ∀v ∈ E, (3.42)

and that there exists v0 /≡ 0 such that

〈J ′′(u+)v0, v〉 = 0, ∀v ∈ E. (3.43)

This implies that v0 satisfies

Δ2v0(n − 1) + V ′′(u+(n))v0(n) = 0, n ∈ Z(1, T),

v0(0) = v0(T + 1) = 0.
(3.44)

Hence the eigenvalue problem

Δ2v(n − 1) + λV ′′(u+(n))v(n) = 0, n ∈ Z(1, T),

v(0) = v(T + 1) = 0
(3.45)
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has an eigenvalue λ = 1. (V 1) implies that 1 must be a simple eigenvalue; see [4]. So,
dim ker(J ′′(u0)) = 1. Since E is a finite-dimensional Hilbert space, the Morse index of u+

must be finite and J ′′(u+) must be a Fredholm operator. By Theorem 2.9, Cq(J+, u+) ∼= δq,1F.
The proof is complete.

Remark 3.5. We can choose the neighborhoodU of u+ such that u > 0 for all u ∈ U. Therefore,

Cq(J, u+) ∼= Cq(J+, u+) ∼= δq,1F. (3.46)

Similarly,

Cq

(
J, u−) ∼= Cq

(
J−, u−) ∼= δq,1F. (3.47)

Now, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. We only prove the case (i). By Lemma 3.2,

Cq(J,∞) ∼= δq,kF. (3.48)

Hence by Proposition 2.4 the functional J has a critical point u1 satisfying

Ck(J, u1) � 0. (3.49)

Since

〈J ′′(0)u, u〉 ≥
(
1 − V ′′(0)

λ1

)
‖u‖2, (3.50)

by (V 2) and J(0) = J ′(0) = 0, we see that 0 is a local minimum of J . Hence

Cq(J, 0) ∼= δq,0F. (3.51)

By Remark 3.5, (3.49), (3.51), and k ≥ 2 we get that u+, u−, and u1 are three nonzero critical
points of J with u+ > 0 and u− < 0. The proof is complete.

4. An Example and Future Directions

To illustrate the use of Theorem 1.3, we offer the following example.

Example 4.1. Consider the BVP

Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, 5),

u(0) = 0 = u(6),
(4.1)



International Journal of Mathematics and Mathematical Sciences 17

where V ∈ C2(R,R) is defined as follows:

V (t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
10

t2, |t| ≤ 1,

1
2
t2 +

3
4
t4/3, |t| ≥ 10,

a strictly convex function, otherwise.

(4.2)

It is easy to verify that V satisfies (1.8), (1.9), (1.11), (V 1), and (V 2) with k = 2. To verify the
condition (G+), note that G′(t) = t1/3 for |t| ≥ 10, we claim that

5∑
n=1

(
G′(um(n)), vm(n)

) −→ +∞, as m −→ ∞ (4.3)

which implies that (G+) holds.
To this end, for any constant r > 1, we introduce another norm in E(T = 5) as follows:

‖u‖r =
(

5∑
n=1

|u(n)|r
)1/r

, ∀u ∈ E. (4.4)

Since E is finite dimensional, there exist two constants C2 ≥ C1 > 0 such that

C1‖u‖ ≤ ‖u‖r ≤ C2‖u‖, ∀u ∈ E. (4.5)

Now, by (G+), for any ε small enough, it is easy to see that

‖wm‖ ≤ ε‖um‖ (4.6)

holds for m large enough.
Set

Ω1 = {n ∈ Z(1, 5) : |um(n)| ≥ 10}, Ω2 = Z(1, 5) \Ω1. (4.7)

Since ‖um‖ → ∞, Ω1 /= ∅, for m large enough. And form large enough, we have

5∑
n=1

(
G′(um(n)), vm(n)

)
=
∑
n∈Ω1

(
u1/3
m (n), vm(n)

)
+
∑
n∈Ω2

(
G′(um(n)), um(n)

)

−
∑
n∈Ω2

(
G′(um(n)), wm(n)

)

≥
∑
n∈Ω1

(
u1/3
m (n), vm(n)

)
− c − cε‖um‖

=
∑
n∈Ω1

(
u1/3
m (n), um(n)

)
−
∑
n∈Ω1

(
u1/3
m (n), wm(n)

)
− c − cε‖um‖.

(4.8)
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Here and below we denote by c various positive constants. Since

∑
n∈Ω1

(
u1/3
m (n), um(n)

)
=

5∑
n=1

(
u1/3
m (n), um(n)

)
−
∑
n∈Ω2

(
u1/3
m (n), um(n)

)

= ‖um‖4/34/3 − c,

∑
n∈Ω1

(
u1/3
m (n), wm(n)

)
≤

5∑
n=1

|um(n)|1/3|wm(n)|

≤
(

5∑
n=1

|um(n)|4/3
)1/4( 5∑

n=1

|wm(n)|4/3
)3/4

= ‖um‖1/34/3‖wm‖4/3 ≤ cε‖um‖4/34/3.

(4.9)

Hence

5∑
n=1

(
G′(um(n)), vm(n)

) ≥ (1 − cε)‖um‖4/34/3 − cε‖um‖ − c. (4.10)

Since ε is small enough, we get (4.3) holds by the above and (4.5). Hence, by Theorem 1.3,
BVP (4.1) has at least three nontrivial solutions.

Morse theory has been proved very useful in proving the existence and multiplicity
of solutions of operator equations with variational frameworks. However, it is well known
that the minimax methods is also a useful tool for the same purpose. The advantage of
the minimax methods is that it provides an estimate of the critical value. But it is hard to
distinguish critical points obtained by this methods with those by other methods, if the local
behavior of the critical points is not very well known. However, critical groups serve as a
topological tool in distinguishing isolated critical points. Hence, in order to obtain multiple
solutions by using Morse theory, it is crucial to describe critical groups clearly.

A natural question is: can we use the same methods in this paper to other BVPs?
Noticing that the key conditions which guarantee the multiplicity of solutions of the BVP
(1.1) are as follows:

(1) the BVP has a variational framework;

(2) the eigenvalues of the corresponding linear BVP are nonzero and there is a one-sign
eigenfunction,

hence, if the difference equation

Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, T) (4.11)

subject to some other boundary value conditions satisfying (1) and (2), then we can obtain
similar results to Theorem 1.3.
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Example 4.2. Consider the BVP

Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = Δu(T).
(4.12)

Let

E =
{
u : u = {u(n)}T+1n=0 with u(0) = 0 = Δu(T)

}
. (4.13)

Then E is a T -dimensional Hilbert space with the inner product

〈u, v〉 =
T∑

n=0
(Δu(n),Δv(n)). (4.14)

Define the functional J on E by

J(u) =
T∑

n=0

1
2
|Δu(n)|2 −

T∑
n=1

V (u(n)). (4.15)

It is easy to see that u is a critical point of J in E if and only if u is a solution of the BVP (4.12).
The eigenvalues of the linear BVP

Δ2u(n − 1) + λu(n) = 0, n ∈ Z(1, T),

u(0) = 0 = Δu(T)
(4.16)

are

λ = λl = 4 sin2 lπ

2(2T + 1)
, l = 1, 2, . . . , T, (4.17)

and the corresponding eigenfunctions are

φl(n) = sin
lπn

2T + 1
, l = 1, 2, . . . , T. (4.18)

Hence, λl /= 0 for all l ∈ Z(1, T) and φ1(n) > 0 for all n ∈ Z(1, T). Therefore, the BVP (4.12)
satisfies (1) and (2) and hence we can obtain similar results as in Theorem 1.3.

However, consider the following difference BVP:

Δ2u(n − 1) + V ′(u(n)) = 0, n ∈ Z(1, T),

u(0) = u(T), Δu(0) = Δu(T).
(4.19)
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It is easy to verify that the variational functional of the BVP (4.19) is

J(u) =
T∑

n=1

[
1
2
|Δu(n)|2 − V (u(n))

]
, ∀u ∈ E1, (4.20)

where

E1 =
{
u : u = {u(n)}T+1n=0 with u(0) = u(T),Δu(0) = Δu(T + 1)

}
. (4.21)

But, λ = 0 is an eigenvalue of the linear BVP:

Δ2u(n − 1) + λu(n) = 0, n ∈ Z(1, T),

u(0) = u(T), Δu(0) = Δu(T).
(4.22)

So, for the BVP (4.19), we need to find other techniques (e.g., dual variational methods if
possible) to study the BVP (4.19).
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