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The notions of N-subalgebras and N-closed ideals in BCH-algebras are introduced, and the
relation between N-subalgebras and N-closed ideals is considered. Characterizations of N-
subalgebras andN-closed ideals are provided. Using special subsets,N-subalgebras andN-closed
ideals are constructed. A condition for anN-subalgebra to be anN-closed ideal is discussed. Given
an N-structure, the greatestN-closed ideal which is contained in the N-structure is established.

1. Introduction

In [1, 2], Hu and Li introduced the notion of BCH-algebras which are a generalization
of BCK/BCI-algebras. Ahmad [3] classified BCH-algebras, and decompositions of BCH-
algebras are considered by Dudek and Thomys [4]. Jun et al. [5] discussed the notion of
N-structures and applied it to BCK/BCI-algebras. In [6], Chaudhry et al. studied closed
ideals and filters in BCH-algebras. In this paper, we apply theN-structures to the closed ideal
theory in BCH-algebras. We introduced the notion of N-subalgebras and N-closed ideals in
BCH-algebras, and investigate the relation between N-subalgebras and N-closed ideals. We
provide characterizations of N-subalgebras and N-closed ideals. Using special subsets, we
construct N-subalgebras and N-closed ideals. We provide a condition for an N-subalgebra
to be an N-closed ideal. Given an N-structure (X, μ), we make the greatest N-closed ideal
which is contained in (X, μ).



2 International Journal of Mathematics and Mathematical Sciences

2. Preliminaries

By a BCH-algebrawe mean an algebra (X, ∗, 0) of type (2, 0) satisfying the following axioms:

(H1) x ∗ x = 0,

(H2) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(H3) (x ∗ y) ∗ z = (x ∗ z) ∗ y

for all x, y, z ∈ X.
In a BCH-algebra X, the following conditions are valid (see [1, 4]).

(a1) x ∗ 0 = x,

(a2) x ∗ 0 = 0 implies x = 0,

(a3) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),
(a4) 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x.

A nonempty subset S of a BCH-algebra X is called a subalgerba of X if x ∗ y ∈ S for all
x, y ∈ S. A nonempty subset A of a BCH-algebra X is called a closed ideal of X (see [7]) if it
satisfies:

(1) (for all x ∈ X)(x ∈ A ⇒ 0 ∗ x ∈ A),

(2) (for all y ∈ X)(for all x ∈ A)(y ∗ x ∈ A ⇒ y ∈ A).

Note that every closed ideal is a subalgebra, but the converse is not true (see [7]). Since every
closed ideal is a subalgebra, we know that any closed ideal contains the element 0.Denote by
S(X) and I(X) the set of all subalgebras and closed ideals of X, respectively.

For any family {ai | i ∈ Λ} of real numbers, we define

∨{ai | i ∈ Λ} :=

⎧
⎨

⎩

max{ai | i ∈ Λ} if Λ is finite,

sup{ai | i ∈ Λ} otherwise,
(2.1)

∧{ai | i ∈ Λ} :=

⎧
⎨

⎩

min{ai | i ∈ Λ} if Λ is finite,

inf{ai | i ∈ Λ} otherwise.
(2.2)

3. N-Closed Ideals of BCH-Algebras

Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We say that an
element of F(X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly, N-function on
X). By anN-structurewemean an ordered pair (X, μ) ofX and anN-function μ onX. In what
follows, let X denote a BCH-algebra and μ anN-function on X unless otherwise specified.

For any N-structure (X, μ) and t ∈ [−1, 0], the set

C
(
μ; t
)
:=
{
x ∈ X | μ(x) ≤ t

}
(3.1)

is called a closed (μ, t)-cut of (X, μ).
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Using the similar method to the transfer principle in fuzzy theory (see [8, 9]), we can
consider transfer principle in N-structures. Let A be a subset of X and satisfy the following
property P expressed by a first-order formula:

P :
t1
(
x, . . . , y

) ∈ A, . . . , tn
(
x, . . . , y

) ∈ A

t
(
x, . . . , y

) ∈ A
, (3.2)

where t1(x, . . . , y), . . . , tn(x, . . . , y) and t(x, . . . , y) are terms of X constructed by variables
x, . . . , y. We note that the subset A satisfies the property P if, for all elements a, . . . , b ∈
X, t(a, . . . , b) ∈ A whenever t1(a, . . . , b), . . . , cn(a, . . . , b) ∈ A. For the subset A we define an
N-structure (X, μA)which satisfies the following property

P : μA

(
t
(
x, . . . , y

)) ≤ ∨{μA

(
t1
(
x, . . . , y

))
, . . . μA

(
tn
(
x, . . . , y

))}
. (3.3)

We establish a statement without proof, and we call it N-transfer principle inN-structures.

Theorem 3.1. (N-transfer principle) An N-structure (X, μ) satisfies the property P if and only if
for all α ∈ [−1, 0],

C
(
μ;α
)
/= ∅ =⇒ C

(
μ;α
)
satisfies the property P. (3.4)

Definition 3.2. By an N-subalgebra of X we mean an N-structure (X, μ) in which μ satisfies:

(∀x, y ∈ X
) (

μ
(
x ∗ y) ≤ ∨{μ(x), μ(y)}). (3.5)

Theorem 3.3. For an N-structure (X, μ), the following are equivalent:

(1) (X, μ) is an N-subalgerba of X;

(2) (for all t ∈ [−1, 0])(C(μ; t) ∈ S(X) ∪ {∅}).

Proof. It follows from the N-transfer principle.

Definition 3.4. By an N-closed ideal of X we mean anN-structure (X, μ) in which μ satisfies:

(∀x, y ∈ X
) (

μ(0 ∗ x) ≤ μ(x) ≤ ∨{μ(x ∗ y), μ(y)}). (3.6)

It is clear that if (X, μ) is an N-closed ideal or an N-subalgebra, then μ(0) ≤ μ(x) for
all x ∈ X.



4 International Journal of Mathematics and Mathematical Sciences

Table 1: Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 0 4
3 3 3 3 0 4
4 4 4 4 4 0

Theorem 3.5. EveryN-closed ideal is an N-subalgebra.

Proof. Let (X, μ) be an N-closed ideal of X. For any x, y ∈ X,we have

μ
(
x ∗ y) ≤ ∨{μ((x ∗ y) ∗ x), μ(x)}

= ∨{μ((x ∗ x) ∗ y), μ(x)}

= ∨{μ(0 ∗ y), μ(x)}

≤ ∨{μ(x), μ(y)}.

(3.7)

Hence (X, μ) is an N-subalgebra of X.

The converse of Theorem 3.5 may not be true as seen in the following example.

Example 3.6. Consider a BCH-algebra X = {0, 1, 2, 3, 4} with the Cayley table which is given
in Table 1 (see [7]). Let (X, μ) be an N-structure in which μ is given by

μ =

(
0 1 2 3 4

−0.8 −0.3 −0.3 −0.3 −0.8

)

. (3.8)

It is easy to check that (X, μ) is anN-subalgebra ofXbut it is not anN-closed ideal ofX since
μ(3) = −0.3 > −0.8 = ∨{μ(3 ∗ 4), μ(4)}.

In order to discuss the converse of Theorem 3.5 we need to strengthen some
conditions. We first consider the following lemma.

Lemma 3.7. EveryN-subalgebra (X, μ) of X satisfies the following inequality:

(∀x ∈ X)
(
μ(x) ≥ μ(0 ∗ x)). (3.9)

Proof. For any x ∈ X, we get

μ(0 ∗ x) ≤ ∨{μ(0), μ(x)} = ∨{μ(x ∗ x), μ(x)}

= ∨{∨{μ(x), μ(x)}, μ(x)} = μ(x),
(3.10)

which is the desired result.
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Theorem 3.8. If an N-subalgerba (X, μ) satisfies

(∀x, y ∈ X
) (

μ
(
y
) ≤ ∨{μ(y ∗ x), μ(x)}), (3.11)

then (X, μ) is an N-closed ideal of X.

Proof. It is straightforward by Lemma 3.7.

Proposition 3.9. Let (X, μ) be an N-closed ideal of X that satisfies the following inequality

(∀x ∈ X)
(
μ(x) ≤ μ(0 ∗ x)). (3.12)

Then (X, μ) satisfies the inequality

(∀x, y ∈ X
) (

μ
(
y ∗ x) ≤ μ

(
x ∗ y)). (3.13)

Proof. Using (3.12), (3.6), (a3), (H1), and (H3), we have

μ
(
y ∗ x) ≤ μ

(
0 ∗ (y ∗ x))

≤ ∨{μ((0 ∗ (y ∗ x)) ∗ (x ∗ y)), μ(x ∗ y)}

= ∨{μ(((0 ∗ y) ∗ (0 ∗ x)) ∗ (x ∗ y)), μ(x ∗ y)}

= ∨{μ(((0 ∗ y) ∗ (x ∗ y)) ∗ (0 ∗ x)), μ(x ∗ y)}

= ∨{μ(((0 ∗ (x ∗ y)) ∗ y) ∗ (0 ∗ x)), μ(x ∗ y)}

= ∨{μ((((0 ∗ x) ∗ (0 ∗ y)) ∗ (0 ∗ x)) ∗ y), μ(x ∗ y)}

= ∨{μ((0 ∗ (0 ∗ y)) ∗ y), μ(x ∗ y)}

= ∨{μ(0), μ(x ∗ y)} = μ
(
x ∗ y)

(3.14)

for all x, y ∈ X.

Using the N-transfer principle, we have a characterization of an N-closed ideal.

Theorem 3.10. For anN-structure (X, μ), the following are equivalent:

(1) (X, μ) is an N-closed ideal of X.

(2) (for all t ∈ [−1, 0])(C(μ; t) ∈ I(X) ∪ {∅}).

Consider two subsets of X as follows:

D1 := {x ∈ X | 0 ∗ x = 0}, D2 := {x ∈ X | 0 ∗ (0 ∗ x) = x}. (3.15)

Since D1 and D2 are a closed ideal and a subalgebra, respectively, the following
theorems are direct results of theN-transfer principle.
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Theorem 3.11. Let (X, μ) be an N-structure in which μ is given by

μ(x) =

⎧
⎨

⎩

α if x ∈ D1,

β otherwise
(3.16)

for all x ∈ X where α < β. Then (X, μ) is an N-closed ideal of X.

Theorem 3.12. Let (X, μ) be an N-structure in which μ is given by

μ(x) =

⎧
⎨

⎩

α if x ∈ D2,

β otherwise
(3.17)

for all x ∈ X where α < β. Then (X, μ) is an N-subalgebra of X.

We provide a condition for anN-subalgebra to be an N-closed ideal.

Theorem 3.13. Let (X, μ) be an N-subalgebra of X in which μ satisfies

(∀x, y ∈ X
) (

μ
(
y ∗ x) ≥ μ

(
x ∗ y)). (3.18)

Then (X, μ) is anN-closed ideal of X.

Proof. Taking x = 0 in (3.18) induces μ(0∗y) ≤ μ(y ∗0) = μ(y) for all y ∈ X.Using (a1), (3.18),
(H1), (H3), and (3.5), we have

μ
(
y
)
= μ
(
y ∗ 0) ≤ μ

(
0 ∗ y)

= μ
(
(x ∗ x) ∗ y) = μ

((
x ∗ y) ∗ x)

≤ ∨{μ(x ∗ y), μ(x)} ≤ ∨{μ(y ∗ x), μ(x)}
(3.19)

for all x, y ∈ X. Therefore (X, μ) is an N-closed ideal of X.

For any N-structure (X, μ) and any element w ∈ X, we consider the set

Xw :=
{
x ∈ X | μ(x) ≤ μ(w)

}
. (3.20)

Then Xw is nonempty subset of X.
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Theorem 3.14. If anN-structure (X, μ) is anN-closed ideal of X, then Xw is a closed ideal of X for
all w ∈ X.

Proof. If x ∈ Xw, then μ(x) ≤ μ(w) which implies from (3.6) that μ(0 ∗ x) ≤ μ(x) ≤ μ(w).
Thus 0 ∗ x ∈ Xw. Let x, y ∈ X be such that y ∈ Xw and x ∗ y ∈ Xw. Then μ(y) ≤ μ(w) and
μ(x ∗ y) ≤ μ(w). Using (3.6), we have

μ(x) ≤ ∨{μ(x ∗ y), μ(y)} ≤ μ(w), i.e., x ∈ Xw. (3.21)

Therefore Xw is a closed ideal of X.

Proposition 3.15. Let (X, μ) be an N-structure such that Xw is a closed ideal of X for all w ∈ X.
Then (X, μ) satisfies the following assertion:

μ(x) ≥ ∨{μ(y ∗ z), μ(z)} =⇒ μ(x) ≥ μ
(
y
)

(3.22)

for all x, y, z ∈ X.

Proof. Let x, y, z ∈ X be such that μ(x) ≥ ∨{μ(y ∗ z), μ(z)}. Then y ∗ z ∈ Xx and z ∈ Xx.
Since Xx is a closed ideal of X, it follows that y ∈ Xx so that μ(y) ≤ μ(x). This completes the
proof.

Theorem 3.16. If anN-structure (X, μ) satisfies (3.22) and μ(0 ∗ x) ≤ μ(x) for all x ∈ X, then Xw

is a closed ideal of X for all w ∈ X.

Proof. For each w ∈ X, let x, y ∈ X be such that x ∗ y ∈ Xw and y ∈ Xw. Then μ(x ∗ y) ≤ μ(w)
and μ(y) ≤ μ(w), which imply that ∨{μ(x ∗ y), μ(y)} ≤ μ(w). It follows from (3.22) that
μ(x) ≤ μ(w) so that x ∈ Xw. If x ∈ Xw, then μ(0 ∗ x) ≤ μ(x) ≤ μ(w) by assumption. Hence
0 ∗ x ∈ Xw. Therefore Xw is a closed ideal of X.

Theorem 3.17. Given an N-structure (X, μ), let (X, μ∗) be an N-structure in which μ∗ is defined
by

μ∗(x) = ∧{t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉} (3.23)

for all x ∈ X. Then (X, μ∗) is the greatest N-closed ideal of X such that (X, μ∗) ⊆ (X, μ), where
〈C(μ; t)〉 is a closed ideal of X generated by C(μ; t).

Proof. For any s ∈ Im(μ∗), let sn = s + (1/n) for any n ∈ N. Let x ∈ C(μ∗; s). Then μ∗(x) ≤ s,
and so

∧{t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉} ≤ s < s +
1
n
= sn (3.24)

for all n ∈ N. Hence there exists t∗ ∈ {t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉} such that t∗ < sn.
Thus C(μ; t∗) ⊆ C(μ; sn), and so x ∈ 〈C(μ; t∗)〉 ⊆ 〈C(μ; sn)〉 for all n ∈ N. Consequently
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x ∈ ⋂n∈N
〈C(μ; sn)〉, . On the other hand, if x ∈ ⋂n∈N

〈C(μ; sn)〉, , then sn ∈ {t ∈ [−1, 0] | x ∈
〈C(μ; t)〉} for any n ∈ N. Therefore

μ∗(x) = ∧{t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉} ≤ sn = s +
1
n

(3.25)

for all n ∈ N. Since n is arbitrary, it follows that μ∗(x) ≤ s so that x ∈ C(μ∗; s). Thus C(μ∗; s) =
⋂

n∈N
〈C(μ; sn)〉, which is a closed ideal of X. Using Theorem 3.10, we conclude that (X, μ∗) is

anN-closed ideal of X. For any x ∈ X, let

s ∈ {t ∈ [−1, 0] | x ∈ C
(
μ; t
)}

. (3.26)

Then x ∈ C(μ; s) and thus x ∈ 〈C(μ; s)〉. It follows that

s ∈ {t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉} (3.27)

so that {t ∈ [−1, 0] | x ∈ C(μ; t)} ⊆ {t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉}. Hence

μ(x) = ∧{t ∈ [−1, 0] | x ∈ C
(
μ; t
)}

≥ ∧{t ∈ [−1, 0] | x ∈ 〈C(μ; t)〉}

= μ∗(x),

(3.28)

and so (X, μ∗) ⊆ (X, μ). Finally, let (X, ν) be an N-closed ideal of X such that (X, ν) ⊆ (X, μ).
Let x ∈ X. If μ∗(x) = 0, then clearly ν(x) ≤ μ∗(x). Assume that μ∗(x) = s /= 0. Then x ∈
C(μ∗; s) =

⋂
n∈N

〈C(μ; sn)〉, and so x ∈ 〈C(μ; sn)〉 for all n ∈ N. It follows that ν(x) ≤ μ(x) ≤
sn = s + (1/n) for all n ∈ N so that ν(x) ≤ s = μ∗(x) since n is arbitrary. This shows that
(X, ν) ⊆ (X, μ∗). This completes the proof.
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