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We investigate several results concerning the differential subordination of analytic andmultivalent
functions which is defined by using a certain fractional derivative operator. Some special cases are
also considered.

1. Introduction and Definitions

Let A(p) denote the class of functions f(z) of the form

f(z) = zp +
∞∑

k=1

ap+kz
p+k (

p ∈ N := {1, 2, 3, . . .}), (1.1)

which are analytic in the open unit disk U = {z : z ∈ C, |z| < 1}. Also let A0 denote
the class of all analytic functions p(z) with p(0) = 1 which are defined on U. If f and g
are analytic in U with f(0) = g(0), then we say that f is said to be subordinate to g in
U, written f ≺ g or f(z) ≺ g(z), if there exists the Schwarz function w, analytic in U

such that w(0) = 0, |w(z)| < 1 (z ∈ U), and f(z) = g(w(z)) (z ∈ U). In particular, if
the function g is univalent, then the above subordination is equivalent to f(0) = g(0) and
f(U) ⊂ g(U).

Let a, b, and c be complex numbers with c /= 0,−1,−2, . . . . Then the Gaussian
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hypergeometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!
, (1.2)

where (η)k is the Pochhammer symbol defined, in terms of the Gamma function, by

(η)k =
Γ
(
η + k

)

Γ
(
η
) =

⎧
⎨

⎩
1 (k = 0),

η
(
η + 1

) · · · (η + k − 1
)

(k ∈ N).
(1.3)

The hypergeometric function 2F1(a, b; c; z) is analytic in U, and if a or b is a negative integer,
then it reduces to a polynomial.

There are a number of definitions for fractional calculus operators in the literature (cf.,
e.g., [1, 2]). We use here the Saigo-type fractional derivative operator defined as follows (see
[3]; see also [4]).

Definition 1.1. Let 0 ≤ λ < 1 and μ, ν ∈ R. Then the generalized fractional derivative operator
Jλ,μ,ν

0,z of a function f(z) is defined by

Jλ,μ,ν

0,z f(z) =
d

dz

(
zλ−μ

Γ(1 − λ)

∫z

0
(z − ζ)−λ 2F1

(
μ − λ, 1 − ν; 1 − λ; 1 − ζ

z

)
f(ζ)dζ

)
. (1.4)

The function f(z) is an analytic function in a simply-connected region of the z-plane
containing the origin, with the order

f(z) = O
(|z|ε) (z −→ 0) (1.5)

for ε > max{0, μ−ν}−1, and the multiplicity of (z−ζ)−λ is removed by requiring that log(z−ζ)
be real when z − ζ > 0.

Definition 1.2. Under the hypotheses of Definition 1.1, the fractional derivative operator
Jλ+m,μ+m,ν+m

0,z of a function f(z) is defined by

Jλ+m,μ+m,ν+m
0,z f(z) =

dm

dzm
Jλ,μ,ν

0,z f(z) (z ∈ U;m ∈ N0 := {0} ∪ N). (1.6)

With the aid of the above definitions, we define a modification of the fractional
derivative operator Δλ,μ,ν

z,p by

Δλ,μ,ν
z,p f(z) =

Γ
(
p + 1 − μ

)
Γ
(
p + 1 − λ + ν

)

Γ
(
p + 1

)
Γ
(
p + 1 − μ + ν

) zμJλ,μ,ν

0,z f(z), (1.7)
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for f(z) ∈ A(p) and μ − ν − p < 1. Then it is observed that Δλ,μ,ν
z,p also mapsA(p) onto itself as

follows:

Δλ,μ,ν
z,p f(z) = zp +

∞∑

k=1

(
p + 1

)
k(p + 1 − μ + ν)k

(p + 1 − μ)k(p + 1 − λ + ν)k
ak+pz

k+p

(
z ∈ U; 0 ≤ λ < 1; μ − ν − p < 1; f ∈ A(p)).

(1.8)

It is easily verified from (1.8) that

z
(
Δλ,μ,ν

z,p f(z)
)′

=
(
p − μ

)
Δλ+1,μ+1,ν+1

z,p f(z) + μΔλ,μ,ν
z,p f(z). (1.9)

Note that Δ0,0,ν
z,p f = f , Δ1,1,ν

z,p f = zf ′/p, and Δλ,λ,ν
z,p f = Ω(λ,p)

z f , where Ω(λ,p)
z is the fractional

derivative operator defined by Srivastava and Aouf [5, 6].
In this manuscript, we will use the method of differential subordination to derive

certain properties of multivalent functions defined by fractional derivative operator Δλ,μ,ν
z,p .

2. Main Results

In order to establish our results, we require the following lemma due to Miller and Mocanu
[7].

Lemma 2.1. Let q(z) be univalent in U and let θ(w) and φ(w) be analytic in a domainD containing
q(U) with φ(w)/= 0 whenw ∈ q(U). SetQ(z) = zq′(z)φ(q(z)), h(z) = θ(q(z))+Q(z) and suppose
that

(1) Q(z) is starlike (univalent) in U,

(2) Re{zh′(z)/Q(z)} = Re{θ′(q(z))/φ(q(z)) + zQ′(z)/Q(z)} > 0 (z ∈ U).

If p(z) is analytic in U, with p(0) = q(0), p(U) ⊂ D, and

θ
(
p(z)

)
+ zp′(z)φ

(
p(z)

) ≺ θ
(
q(z)

)
+ zq′(z)φ

(
q(z)

)
= h(z), (2.1)

then p(z) ≺ q(z) and q(z) is the best dominant.

We begin by proving the following

Theorem 2.2. Let α, β, γ ∈ R and β /= 0, and let 0 ≤ λ < 1, μ, ν ∈ R, μ/= p − 1, μ − ν − p < 1, and
γ(p − μ − 1)/β < 2. Suppose that q(z) ∈ A0 is univalent in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ
(
p − μ − 1

) − β

β
if

γ
(
p − μ − 1

)

β
≥ 1,

0 if
γ
(
p − μ − 1

)

β
≤ 1.

(2.2)
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If f(z) ∈ A(p) and

Δλ,μ,ν
z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

⎧
⎨

⎩α
Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ β
Δλ+2,μ+2,ν+2

z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

+ γ

⎫
⎬

⎭

≺ 1
p − μ − 1

{(
p − μ

)(
α + β

) − α +
[
γ
(
p − μ − 1

) − β
]
q(z) − βzq′(z)

}
,

(2.3)

then

Δλ,μ,ν
z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

≺ q(z) (2.4)

and q(z) is the best dominant.

Proof. Define the function p(z) by

p(z) =
Δλ,μ,ν

z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

(z ∈ U). (2.5)

Then p(z) is analytic in U with p(0) = 1. A simple computation using (2.5) gives

zp′(z)
p(z)

=
z
(
Δλ,μ,ν

z,p f(z)
)′

Δλ,μ,ν
z,p f(z)

−
z
(
Δλ+1,μ+1,ν+1

z,p f(z)
)′

Δλ+1,μ+1,ν+1
z,p f(z)

. (2.6)

By applying the identity (1.9) in (2.6), we obtain

Δλ+2,μ+2,ν+2
z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

=
1

p − μ − 1

{
p − μ

p(z)
− 1 − zp′(z)

p(z)

}
. (2.7)

Making use of (2.5) and (2.7), we have

⎧
⎨

⎩α
Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ β
Δλ+2,μ+2,ν+2

z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

+ γ

⎫
⎬

⎭
Δλ,μ,ν

z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

=
{

α

p(z)
+

β

p − μ − 1

(
p − μ

p(z)
− 1 − zp′(z)

p(z)

)
+ γ

}
p(z)

=
1

p − μ − 1
{(

p − μ
)(
α + β

) − α +
[
γ
(
p − μ − 1

) − β
]
p(z) − βzp′(z)

}
.

(2.8)
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In view of (2.8), the subordination (2.3) becomes

[
γ
(
p − μ − 1

) − β
]
p(z) − βzp′(z) ≺ [γ(p − μ − 1

) − β
]
q(z) − βzq′(z) (2.9)

and this can be written as (2.1), where

θ(w) =
[
γ
(
p − μ − 1

) − β
]
w, φ(w) = −β. (2.10)

Since β /= 0, we find from (2.10) that θ(w) and φ(w) are analytic in C with φ(w)/= 0. Let the
functions Q(z) and h(z) be defined by

Q(z) = zq′(z)φ
(
q(z)

)
= −βzq′(z),

h(z) = θ
(
q(z)

)
+Q(z) =

[
γ
(
p − μ − 1

) − β
]
q(z) − βzq′(z).

(2.11)

Then, by virtue of (2.2), we see that Q(z) is starlike and

Re
{
zh′(z)
Q(z)

}
= Re

{
β − γ

(
p − μ − 1

)

β
+
(
1 +

zq′′(z)
q′(z)

)}
> 0. (2.12)

Hence, by using Lemma 2.1, we conclude that p(z) ≺ q(z), which completes the proof of
Theorem 2.2.

Remark 2.3. If we put λ = μ in Theorem 2.2, then we get new subordination result for the
fractional derivative operator Ω(λ,p)

z due to Srivastava and Aouf [5, 6].

Theorem 2.4. Let α, β, γ, δ ∈ R and α, δ /= 0, and let 0 ≤ λ < 1, μ, ν ∈ R, μ/= p, μ − ν − p < 1, and
1 + δ(p − μ)(α + γ)/α > 0. Suppose that q(z) ∈ A0 is univalent in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎪⎪⎨

⎪⎪⎩

δ
(
μ − p

)(
α + γ

)

α
if

δ
(
p − μ

)(
α + γ

)

α
≤ 0,

0 if
δ
(
p − μ

)(
α + γ

)

α
≥ 0.

(2.13)

If f(z) ∈ A(p) and

⎧
⎪⎨

⎪⎩
α
Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ β

⎛

⎝ zp

Δλ,μ,ν
z,p f(z)

⎞

⎠
δ

+ γ

⎫
⎪⎬

⎪⎭

⎛

⎝Δλ,μ,ν
z,p f(z)
zp

⎞

⎠
δ

≺ α

δ
(
p − μ

)zq′(z) +
(
α + γ

)
q(z) + β.

(2.14)
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then

⎛

⎝Δλ,μ,ν
z,p f(z)
zp

⎞

⎠
δ

≺ q(z) (2.15)

and q(z) is the best dominant.

Proof. Define the function p(z) by

p(z) =

⎛

⎝Δλ,μ,ν
z,p f(z)
zp

⎞

⎠
δ

(z ∈ U). (2.16)

Then p(z) is analytic in U with p(0) = 1. By a simple computation, we find from (2.16) that

zp′(z)
p(z)

=
δz
(
Δλ,μ,ν

z,p f(z)
)′

Δλ,μ,ν
z,p f(z)

− pδ. (2.17)

By using the identity (1.9) in (2.17), we obtain

Δλ+1,μ+1,ν+1
z,p f(z)

Δλ,μ,ν
z,p f(z)

=
1

δ
(
p − μ

)
zp′(z)
p(z)

+ 1. (2.18)

Applying (2.16) and (2.18), we have

⎧
⎪⎨

⎪⎩
α
Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ β

⎛

⎝ zp

Δλ,μ,ν
z,p f(z)

⎞

⎠
δ

+ γ

⎫
⎪⎬

⎪⎭

⎛

⎝Δλ,μ,ν
z,p f(z)
zp

⎞

⎠
δ

=

{
α

(
1

δ
(
p − μ

)
zp′(z)
p(z)

+ 1

)
+

β

p(z)
+ γ

}
p(z)

=
α

δ
(
p − μ

)zp′(z) +
(
α + γ

)
p(z) + β.

(2.19)

In view of (2.19), the subordination (2.14) becomes

δ
(
p − μ

)(
α + γ

)
p(z) + αzp′(z) ≺ δ

(
p − μ

)(
α + γ

)
q(z) + αzq′(z) (2.20)

and this can be written as (2.1), where

θ(w) = δ
(
p − μ

)(
α + γ

)
w, φ(w) = α. (2.21)
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Since α/= 0, it follows from (2.21) that θ(w) and φ(w) are analytic in C with φ(w)/= 0. Let the
functions Q(z) and h(z) be defined by

Q(z) = zq′(z)φ
(
q(z)

)
= αzq′(z),

h(z) = θ
(
q(z)

)
+Q(z) = δ

(
p − μ

)(
α + γ

)
q(z) + αzq′(z).

(2.22)

Then, by virtue of (2.13), we see that Q(z) is starlike and

Re
{
zh′(z)
Q(z)

}
= Re

{
δ
(
p − μ

)(
α + γ

)

α
+
(
1 +

zq′′(z)
q′(z)

)}
> 0. (2.23)

Hence, by using Lemma 2.1, we conclude that p(z) ≺ q(z), which proves Theorem 2.4.

If we put λ = μ = 0 in Theorem 2.4, then we have the following.

Corollary 2.5. Let α, β, γ, δ ∈ R and α, δ /= 0, and let 1 + pδ(α + γ)/α > 0. Suppose that q(z) ∈ A0

is univalent in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎪⎪⎨

⎪⎪⎩

−pδ(α + γ
)

α
if

δ
(
α + γ

)

α
≤ 0,

0 if
δ
(
α + γ

)

α
≥ 0.

(2.24)

If f(z) ∈ A(p) and

{
α
zf ′(z)
f(z)

+ β

(
zp

f(z)

)δ

+ γ

}(
f(z)
zp

)δ

≺ α

pδ
zq′(z) +

(
α + γ

)
q(z) + β, (2.25)

then (f(z)/zp)δ ≺ q(z) and q(z) is the best dominant.

By putting δ = α in Corollary 2.5, we obtain the following.

Corollary 2.6. Let α, β, γ ∈ R and α/= 0, and let 1+p(α+γ) > 0. Suppose that q(z) ∈ A0 is univalent
in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎨

⎩
−p(α + γ

)
if α + γ ≤ 0,

0 if α + γ ≥ 0.
(2.26)

If f(z) ∈ A(p) and

{
α
zf ′(z)
f(z)

+ β

(
zp

f(z)

)α

+ γ

}(
f(z)
zp

)α

≺ zq′(z)
p

+
(
α + γ

)
q(z) + β, (2.27)

then (f(z)/zp)α ≺ q(z) and q(z) is the best dominant.
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By using Lemma 2.1, we obtain the following.

Theorem 2.7. Let α, β, γ ∈ R and β /= 0, and let 0 ≤ λ < 1, μ, ν ∈ R, μ/= 0, μ − ν − p < 1, and
1 + γ/β > 0. Suppose that q(z) ∈ A0 is univalent in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−γ
β

if
γ

β
≤ 0,

0 if
γ

β
≥ 0.

(2.28)

If f(z) ∈ A(p) and

⎧
⎨

⎩αβ

⎡

⎣(p − μ − 1
)Δλ+2,μ+2,ν+2

z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

− (p − μ
)Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ 1

⎤

⎦ + γ

⎫
⎬

⎭

·
⎛

⎝Δλ+1,μ+1,ν+1
z,p f(z)

Δλ,μ,ν
z,p f(z)

⎞

⎠
α

≺ βzq′(z) + γq(z),

(2.29)

then

⎛

⎝Δλ+1,μ+1,ν+1
z,p f(z)

Δλ,μ,ν
z,p f(z)

⎞

⎠
α

≺ q(z) (2.30)

and q(z) is the best dominant.

Proof. Define the function p(z) by

p(z) =

⎛

⎝Δλ+1,μ+1,ν+1
z,p f(z)

Δλ,μ,ν
z,p f(z)

⎞

⎠
α

(z ∈ U). (2.31)

Then p(z) is analytic in U with p(0) = 1. A simple computation using (1.9) and (2.31) gives

1
α

zp′(z)
p(z)

=
(
p − μ − 1

)Δλ+2,μ+2,ν+2
z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

− (p − μ
)Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ 1. (2.32)

By using (2.29), (2.31), and (2.32), we get

⎧
⎨

⎩αβ

⎡

⎣(p − μ − 1
)Δλ+2,μ+2,ν+2

z,p f(z)

Δλ+1,μ+1,ν+1
z,p f(z)

− (p − μ
)Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ 1

⎤

⎦ + γ

⎫
⎬

⎭

·
⎛

⎝Δλ+1,μ+1,ν+1
z,p f(z)

Δλ,μ,ν
z,p f(z)

⎞

⎠
α

= βzp′(z) + γp(z).

(2.33)
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And this can be written as (2.1)when θ(w) = γw and φ(w) = β. Note that φ(w)/= 0 and θ(w)
and φ(w) are analytic in C. Let the functions Q(z) and h(z) be defined by

Q(z) = zq′(z)φ
(
q(z)

)
= βzq′(z),

h(z) = θ
(
q(z)

)
+Q(z) = γq(z) + βzq′(z).

(2.34)

Then, by virtue of (2.28), we see that Q(z) is starlike and

Re
{
zh′(z)
Q(z)

}
= Re

{
γ

β
+
(
1 +

zq′′(z)
q′(z)

)}
> 0. (2.35)

Hence, by applying Lemma 2.1, we observe that p(z) ≺ q(z), which evidently proves
Theorem 2.7.

Finally, we prove

Theorem 2.8. Let α, β, γ, δ ∈ R and α, δ /= 0, and let 0 ≤ λ < 1, μ, ν ∈ R, μ/= p, p + 1 − μ + ν > 0
and 1 − δ(p − μ)(α + γ)/α > 0. Suppose that q(z) ∈ A0 be univalent in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ
(
p − μ

)(
α + γ

)

α
if

δ
(
p − μ

)(
α + γ

)

α
≥ 0,

0 if
δ
(
p − μ

)(
α + γ

)

α
≤ 0.

(2.36)

If f(z) ∈ A(p) and

⎧
⎪⎨

⎪⎩
α
Δλ+1,μ+1,ν+1

z,p f(z)

Δλ,μ,ν
z,p f(z)

+ β

⎛

⎝Δλ,μ,ν
z,p f(z)
zp

⎞

⎠
δ

+ γ

⎫
⎪⎬

⎪⎭

⎛

⎝ zp

Δλ,μ,ν
z,p f(z)

⎞

⎠
δ

≺ β +
(
α + γ

)
q(z) − α

δ
(
p − μ

)zq′(z),

(2.37)

then

⎛

⎝ zp

Δλ,μ,ν
z,p f(z)

⎞

⎠
δ

≺ q(z) (2.38)

and q(z) is the best dominant.

Proof. If we define the function p(z) by

p(z) =

⎛

⎝ zp

Δλ,μ,ν
z,p f(z)

⎞

⎠
δ

(z ∈ U), (2.39)
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then p(z) is analytic in U with p(0) = 1. Hence, by using the same techniques as detailed in
the proof of Theorem 2.2, we obtain the desired result.

By taking λ = μ = 0 in Theorem 2.8 and after a suitable change in the parameters, we
have the following.

Corollary 2.9. Let α ∈ R\{0} and pα < 1/2. Suppose that q(z) ∈ A0 is univalent in U and satisfies

Re
(
1 +

zq′′(z)
q′(z)

)
>

⎧
⎨

⎩
2pα if α > 0,

0 if α < 0.
(2.40)

If f(z) ∈ A(p) and

α

(
1 +

zf ′(z)
f(z)

)(
zp

f(z)

)α

≺ 2αq(z) − 1
p
zq′(z), (2.41)

then (zp/f(z))α ≺ q(z) and q(z) is the best dominant.

Acknowledgment

This work was supported by Daegu National University of Education Research Grant in
2008.

References

[1] H. M. Srivastava and R. G. Buschman, Theory and Applications of Convolution Integral Equations, vol. 79
ofMathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

[2] S. G. Samko, A. A. Kilbas, andO. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications,
Gordon and Breach, New York, NY, USA, 1993.

[3] R. K. Raina and H. M. Srivastava, “A certain subclass of analytic functions associated with operators
of fractional calculus,” Computers & Mathematics with Applications, vol. 32, no. 7, pp. 13–19, 1996.

[4] R. K. Raina and J. H. Choi, “On a subclass of analytic and multivalent functions associated with a
certain fractional calculus operator,” Indian Journal of Pure and Applied Mathematics, vol. 33, no. 1, pp.
55–62, 2002.

[5] H. M. Srivastava and M. K. Aouf, “A certain fractional derivative operator and its applications to a
new class of analytic and multivalent functions with negative coefficients. I,” Journal of Mathematical
Analysis and Applications, vol. 171, no. 1, pp. 1–13, 1992.

[6] H. M. Srivastava and M. K. Aouf, “A certain fractional derivative operator and its applications to a
new class of analytic and multivalent functions with negative coefficients. II,” Journal of Mathematical
Analysis and Applications, vol. 192, no. 3, pp. 673–688, 1995.

[7] S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Application, vol. 225 of Monographs
and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000.


