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We prove new fixed point and common fixed point theorems for generalized weak contractive
mappings of integral type in modular spaces. Our results extend and generalize the results of A.
Razani and R. Moradi (2009) and M. Beygmohammadi and A. Razani (2010).

1. Introduction

Let (X, d) be a metric space. A mapping T : X → X is a contraction if

d
(
T(x), T

(
y
)) ≤ kd(x, y), (1.1)

where 0 < k < 1. The Banach Contraction Mapping Principle appeared in explicit form in
Banach’s thesis in 1922 [1]. For its simplicity and usefulness, it has become a very popular tool
in solving existence problems in many branches of mathematical analysis. Banach contraction
principle has been extended in many different directions; see [2–6]. In 1997Alber andGuerre-
Delabriere [7] introduced the concept of weak contraction in Hilbert spaces, and Rhoades [8]
has showed that the result by Akber et al. is also valid in complete metric spaces A mapping
T : X → X is said to be weakly contractive if

d
(
T(x), T

(
y
)) ≤ d(x, y) − φ(d(x, y)), (1.2)
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where φ : [0,∞) → [0,∞) is continuous and nondecreasing function such that φ(t) = 0 if
and only if t = 0. If one takes φ(t) = (1 − k)t where 0 < k < 1, then (1.2) reduces to (1.1).
In 2002, Branciari [9] gave a fixed point result for a single mapping an analogue of Banach’s
contraction principle for an integral-type inequality, which is stated as follow.

Theorem 1.1. Let (X, d) be a complete metric space, α ∈ [0, 1), f : X → X a mapping such that for
each x, y ∈ X,

∫d(f(x),f(y))

0
ϕ(t)dt ≤ α

∫d(x,y)

0
ϕ(t)dt, (1.3)

where ϕ : �+ → �
+ is a Lebesgue integrable which is summable, nonnegative, and for all ε > 0,∫ε

0 ϕ(t)dt > 0. Then, f has a unique fixed point z ∈ X such that for each x ∈ X, limn→∞fnx = z.

Afterward, many authors extended this work to more general contractive conditions.
The works noted in [10–12] are some examples from this line of research.

The notion of modular spaces, as a generalize of metric spaces, was introduced
by Nakano [13] and redefined by Musielak and Orlicz [14]. A lot of mathematicians are
interested, fixed points of Modular spaces, for example [15–22]. In 2009, Razani and Moradi
[23] studied fixed point theorems for ρ-compatible maps of integral type in modular spaces.

Recently, Beygmohammadi and Razani [24] proved the existence for mapping defined
on a complete modular space satisfying contractive inequality of integral type.

In this paper, we study the existence of fixed point and common fixed point theorems
for ρ-compatible mapping satisfying a generalize weak contraction of integral type in mod-
ular spaces.

First, we start with a brief recollection of basic concepts and facts in modular spaces.

Definition 1.2. Let X be a vector space over �(or � ). A functional ρ : X → [0,∞] is called
a modular if for arbitrary f and g, elements of X satisfy the following conditions:

(1) ρ(f) = 0 if and only if f = 0;

(2) ρ(αf) = ρ(f) for all scalar αwith |α| = 1;

(3) ρ(αf + βg) ≤ ρ(f) + ρ(g), whenever α, β ≥ 0 and α + β = 1.If we replace (3) by

(4) ρ(αf + βg) ≤ αsρ(f) + βsρ(g), for α, β ≥ 0, αs + βs = 1 with an s ∈ (0, 1], then the
modular ρ is called s-convex modular, and if s = 1, ρ is called convex modular.

If ρ is modular in X, then the set defined by

Xρ =
{
x ∈ X : ρ(λx) −→ 0 as λ −→ 0

}
(1.4)

is called a modular space. Xρ is a vector subspace of X.

Definition 1.3. A modular ρ is said to satisfy the Δ2-condition if ρ(2fn) → 0 as n → ∞,
whenever ρ(fn) → 0 as n → ∞.

Definition 1.4. Let Xρ be a modular space. Then,

(1) the sequence (fn)n∈� in Xρ is said to be ρ-convergent to f ∈ Xρ if ρ(fn − f) → 0, as
n → ∞,
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(2) the sequence (fn)n∈� in Xρ is said to be ρ-Cauchy if ρ(fn − fm) → 0, as n,m → ∞,

(3) a subset C of Xρ is said to be ρ-closed if the ρ-limit of a ρ-convergent sequence of C
always belong to C,

(4) a subset C of Xρ is said to be ρ-complete if any ρ-Cauchy sequence in C is ρ-
convergent sequence and its is in C,

(5) a subset C of Xρ is said to be ρ-bounded if δρ(C) = sup {ρ(f − g); f, g ∈ C} < ∞.

Definition 1.5. Let C be a subset of Xρ and T : C → C an arbitrary mapping. T is called
a ρ-contraction if for each f, g ∈ Xρ there exists k < 1 such that

ρ
(
T
(
f
) − T(g)) ≤ kρ(f − g). (1.5)

Definition 1.6. Let Xρ be a modular space, where ρ satisfies the Δ2-condition. Two self-map-
pings T and f of Xρ are called ρ-compatible if ρ(Tfxn − fTxn) → 0 as n → ∞, whenever
{xn}n∈� is a sequence in Xρ such that fxn → z and Txn → z for some point z ∈ Xρ.

2. A Common Fixed Point Theorem for ρ-Compatible Generalized
Weak Contraction Maps of Integral Type

Theorem 2.1. Let Xρ be a ρ-complete modular space, where ρ satisfies the Δ2-condition. Let c, l ∈
�
+ , c > l and T, f : Xρ → Xρ are two ρ-compatible mappings such that T(Xρ) ⊆ f(Xρ) and

∫ρ(c(Tx−Ty))

0
ϕ(t)dt ≤

∫ρ(l(fx−fy))

0
ϕ(t)dt − φ

(∫ρ(l(fx−fy))

0
ϕ(t)dt

)

, (2.1)

for all x, y ∈ Xρ, where ϕ : [0,∞) → [0,∞) is a Lebesgue integrable which is summable,
nonnegative, and for all ε > 0,

∫ε
0 ϕ(t)dt > 0 and φ : [0,∞) → [0,∞) is lower semicontinuous

function with φ(t) > 0 for all t > 0 and φ(t) = 0 if and only if t = 0. If one of T or f is continuous,
then there exists a unique common fixed point of T and f .

Proof. Let x ∈ Xρ and generate inductively the sequence {Txn}n∈� as follow: Txn = fxn+1.
First, we prove that the sequence {ρ(c(Txn − Txn−1))} converges to 0. Since,

∫ρ(c(Txn−Txn−1))

0
ϕ(t)dt ≤

∫ρ(l(fxn−fxn−1))

0
ϕ(t)dt − φ

(∫ρ(l(fxn−fxn−1))

0
ϕ(t)dt

)

≤
∫ρ(l(fxn−fxn−1))

0
ϕ(t)dt

≤
∫ρ(l(Txn−1−Txn−2))

0
ϕ(t)dt

<

∫ρ(c(Txn−1−Txn−2))

0
ϕ(t)dt.

(2.2)
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This means that the sequence {∫ρ(c(Txn−Txn−1))0 } is decreasing and bounded below.
Hence, there exists r ≥ 0 such that

lim
n→∞

∫ρ(c(Txn−Txn−1))

0
ϕ(t)dt = r. (2.3)

If r > 0, then limn→∞
∫ρ(c(Txn−Txn−1))
0 ϕ(t)dt = r > 0. Taking n → ∞ in the inequality (2.2)which

is a contradiction, thus r = 0. This implies that

ρ(c(Txn − Txn−1)) −→ 0 as n −→ ∞. (2.4)

Next, we prove that the sequence {Txn}n∈� is ρ-Cauchy. Suppose {cTxn}n∈� is not ρ-
Cauchy, then there exists ε > 0 and sequence of integers {mk}, {nk} with mk > nk ≥ k such
that

ρ(c(Txmk − Txnk )) ≥ ε for k = 1, 2, 3, . . . (2.5)

We can assume that

ρ(c(Txmk−1 − Txnk )) < ε. (2.6)

Letmk be the smallest number exceeding nk for which (2.5) holds, and

θk =
{
m ∈ � | ∃nk ∈ �; ρ(c(Txm − Txnk )) ≥ ε, m > nk ≥ k}. (2.7)

Since θk ⊂ � and clearly θk /= ∅, by well ordering principle, the minimum element of θk is
denoted bymk and obviously (2.6) holds. Now, let α ∈ �+ be such that l/c + 1/α = 1, then we
get

∫ε

0
ϕ(t)dt ≤

∫ρ(c(Txmk−Txnk ))

0
ϕ(t)dt

≤
∫ρ(l(fxmk−fxnk ))

0
ϕ(t)dt − φ

(∫ρ(l(fxmk−fxnk ))

0
ϕ(t)dt

)

≤
∫ρ(l(fxmk−fxnk ))

0
ϕ(t)dt

≤
∫ρ(l(Txmk−1−Txnk−1))

0
ϕ(t)dt,

(2.8)
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ρ(l(Txmk−1 − Txnk−1)) = ρ(l(Txmk−1 − Txnk + Txnk − Txnk−1))

= ρ
(
l

c
c(Txmk−1 − Txnk ) +

1
α
αl(Txnk − Txnk−1)

)

≤ ρ(c(Txmk−1 − Txnk )) + ρ(αl(Txnk − Txnk−1))
< ε + ρ(αl(Txnk − Txnk−1)).

(2.9)

Using the Δ2-condition and (2.4), we obtain

lim
n→∞

ρ(αl(Txnk − Txnk−1)) = 0. (2.10)

It follows that

lim
k→∞

∫ρ(l(Txmk−1−Txnk−1))

0
ϕ(t)dt <

∫ ε

0
ϕ(t)dt. (2.11)

From (2.8) and (2.11), we also have

∫ ε

0
ϕ(t)dt ≤

∫ρ(l(Txmk−1−Txnk−1))

0
ϕ(t)dt

<

∫ ε

0
ϕ(t)dt,

(2.12)

which is a contradiction. Hence, {cTxn}n∈� is ρ-Cauchy and by the Δ2-condition, {Txn}n∈�
is ρ-Cauchy. Since Xρ is ρ-complete, there exists a point u ∈ Xρ such that ρ(Txn − u) → 0 as
n → ∞. If T is continuous, then T2xn → Tu and Tfxn → Tu as n → ∞. Since ρ(c(fTxn −
Tfxn)) → 0 as n → ∞, by ρ-compatible, fTxn → Tu as n → ∞. Next, we prove that u is
a unique fixed point of T . Indeed,

∫ρ(c(T2xn−Txn))

0
ϕ(t)dt =

∫ρ(c(T(Txn)−Txn))

0
ϕ(t)dt

≤
∫ρ(l(fTxn−fxn))

0
ϕ(t)dt − φ

(∫ρ(l(fTxn−fxn))

0
ϕ(t)dt

)

≤
∫ρ(l(fTxn−fxn))

0
ϕ(t)dt.

(2.13)

Taking n → ∞ in the inequality (2.13), we have

∫ρ(c(Tu−u))

0
ϕ(t)dt ≤

∫ρ(l(Tu−u))

0
ϕ(t)dt, (2.14)
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which implies that ρ(c(Tu − u)) = 0 and Tu = u. Since T(Xρ) ⊆ f(Xρ), there exists u1 such
that u = Tu = fu1. The inequality,

∫ρ(c(T2xn−Tu1))

0
ϕ(t)dt ≤

∫ρ(l(fTxn−fu1))

0
ϕ(t)dt − φ

(∫ρ(l(fTxn−fu1))

0
ϕ(t)dt

)

≤
∫ρ(l(fTxn−fu1))

0
ϕ(t)dt

(2.15)

as n → ∞, yields

∫ρ(c(Tu−Tu1))

0
ϕ(t)dt ≤

∫ρ(l(Tu−fu1))

0
ϕ(t)dt (2.16)

and, thus,

∫ρ(c(u−Tu1))

0
ϕ(t)dt ≤

∫ρ(l(u−fu1))

0
ϕ(t)dt

≤
∫ρ(l(u−u))

0
ϕ(t)dt

= 0,

(2.17)

which implies that, u = Tu1 = fu1 and also fu = fTu1 = Tfu1 = Tu = u (see [25]). Hence,
fu = Tu = u. Suppose that there exists w ∈ Xρ such that w = Tw = fw and w/=u, we have
∫ρ(c(w−u))
0 ϕ(t)dt > 0 and

∫ρ(c(w−u))

0
ϕ(t)dt =

∫ρ(c(Tw−Tu))

0
ϕ(t)dt

≤
∫ρ(l(fw−fu))

0
ϕ(t)dt − φ

(∫ρ(l(fw−fu))

0
ϕ(t)dt

)

<

∫ρ(l(fw−fu))

0
ϕ(t)dt

<

∫ρ(c(w−u))

0
ϕ(t)dt,

(2.18)

which is a contradiction. Hence, u = w and the proof is complete.

In fact, if take φ(t) = (1 − k)t where 0 < k < 1 and take φ(t) = t − ψ(t), respectively,
where ψ : �+ → �+ is a nondecreasing and right continuous function with ψ(t) < t for all
t > 0, we obtain following corollaries.
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Corollary 2.2 (see [23]). LetXρ be a ρ-completemodular space, where ρ satisfies theΔ2-condition.
Suppose c, l ∈ �+ , c > l and T, h : Xρ → Xρ are two ρ-compatible mappings such that T(Xρ) ⊆
h(Xρ) and

∫ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ k

∫ρ(l(hx−hy))

0
ϕ(t)dt, (2.19)

for some k ∈ (0, 1), where ϕ : �+ → �+ is a Lebesgue integrable which is summable, nonnegative, and
for all ε > 0,

∫ε
0 ϕ(t)dt > 0. If one of h or T is continuous, then there exists a unique common fixed point

of h and T .

Corollary 2.3 (see [23]). LetXρ be a ρ-completemodular space, where ρ satisfies theΔ2-condition.
Suppose c, l ∈ �+ , c > l and T, h : Xρ → Xρ are two ρ-compatible mappings such that T(Xρ) ⊆
h(Xρ) and

∫ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ ψ

(∫ρ(l(hx−hy))

0
ϕ(t)dt

)

, (2.20)

where ϕ : �+ → �+ is a Lebesgue integrable which is summable, nonnegative, and for all ε > 0,∫ε
0 ϕ(t)dt > 0 and ψ : �+ → �+ is a nondecreasing and right continuous function with ψ(t) < t for
all t > 0. If one of h or T is continuous, then there exists a unique common fixed point of h and T .

3. A Fixed Point Theorem for Generalized Weak Contraction
Mapping of Integral Type

Theorem 3.1. Let Xρ be a ρ-complete modular space, where ρ satisfies the Δ2-condition. Let c, l ∈
�+ , c > l and T : Xρ → Xρ be a mapping such that for each x, y ∈ Xρ,

∫ρ(c(Tx−Ty))

0
ϕ(t)dt ≤

∫ρ(l(x−y))

0
ϕ(t)dt − φ

(∫ρ(l(x−y))

0
ϕ(t)dt

)

, (3.1)

where ϕ : [0,∞) → [0,∞) is a Lebesgue integrable which is summable, nonnegative, and for all ε > 0,∫ε
0 ϕ(t)dt > 0 and φ : [0,∞) → [0,∞) is lower semicontinuous function with φ(t) > 0 for all t > 0
and φ(t) = 0 if and only if t = 0. Then, T has a unique fixed point.

Proof. First, we prove that the sequence {ρ(c(Tnx − Tn−1x))} converges to 0. Since,

∫ρ(c(Tnx−Tn−1x))

0
ϕ(t)dt ≤

∫ρ(l(Tn−1x−Tn−2x))

0
ϕ(t)dt − φ

(∫ρ(l(Tn−1x−Tn−2x))

0
ϕ(t)dt

)

≤
∫ρ(l(Tn−1x−Tn−2x))

0
ϕ(t)dt

<

∫ρ(c(Tn−1x−Tn−2x))

0
ϕ(t)dt,

(3.2)
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it follows that the sequence {∫ρ(c(Tnx−Tn−1x))0 } is decreasing and bounded below. Hence, there
exists r ≥ 0 such that

lim
n→∞

∫ρ(c(Tnx−Tn−1x))

0
ϕ(t)dt = r. (3.3)

If r > 0, then limn→∞
∫ρ(c(Tnx−Tn−1x))
0 ϕ(t)dt = r > 0, taking n → ∞ in the inequality (3.2)which

is a contradiction, thus r = 0. So, we have

ρ
(
c
(
Tnx − Tn−1x

))
−→ 0 as n −→ ∞. (3.4)

Next, we prove that the sequence {Tn(x)}n∈� is ρ-Cauchy. Suppose {cTn(x)}n∈� is not ρ-
Cauchy, there exists ε > 0 and sequence of integers {mk}, {nk}with mk > nk ≥ k such that

ρ(c(Tmkx − Tnkx)) ≥ ε for k = 1, 2, 3, . . . . (3.5)

We can assume that

ρ
(
c
(
Tmk−1x − Tnkx

))
< ε. (3.6)

Letmk be the smallest number exceeding nk for which (3.5) holds, and

θk =
{
m ∈ � | ∃nk ∈ �; ρ(c(Tmx − Tnkx)) ≥ ε, m > nk ≥ k}. (3.7)

Since θk ⊂ � and clearly θk /= ∅, by well ordering principle, the minimum element of θk is
denoted bymk and obviously (3.6) holds. Now, let α ∈ �+ be such that l/c + 1/α = 1, then we
get

∫ ε

0
ϕ(t)dt ≤

∫ρ(c(Tmk x−Tnk x))

0
ϕ(t)dt

≤
∫ρ(l(Tmk−1x−Tnk−1x))

0
ϕ(t)dt − φ

(∫ρ(l(Tmk−1x−Tnk−1x))

0
ϕ(t)dt

)

≤
∫ρ(l(Tmk−1x−Tnk−1x))

0
ϕ(t)dt,

, (3.8)

ρ
(
l
(
Tmk−1x − Tnk−1x

))
= ρ

(
l
(
Tmk−1x − Tnkx + Tnkx − Tnk−1x

))

= ρ
(
l

c
c
(
Tmk−1x − Tnkx

)
+
1
α
αl
(
Tnkx − Tnk−1x

))

≤ ρ
(
c
(
Tmk−1x − Tnkx

))
+ ρ

(
αl
(
Tnkx − Tnk−1x

))

< ε + ρ
(
αl
(
Tnkx − Tnk−1x

))
.

(3.9)
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Using the Δ2-condition and (3.4), we obtain

lim
k→∞

ρ
(
αl
(
Tnkx − Tnk−1x)) = 0, (3.10)

lim
k→∞

∫ρ(l(Tmk−1x−Tnk−1x))
0 ϕ(t)dt <

∫ε
0 ϕ(t)dt. (3.11)

From (3.8) and (3.11), we have

∫ ε

0
ϕ(t)dt ≤

∫ρ(l(Tmk−1x−Tnk−1x))

0
ϕ(t)dt

<

∫ ε

0
ϕ(t)dt,

(3.12)

which is a contradiction. Hence, {cTn(x)}n∈� is ρ-Cauchy and again by the Δ2-condition,
{Tn(x)}n∈� is ρ-Cauchy. Since Xρ is ρ-complete, there exists a point u ∈ Xρ such that ρ(Tnx −
u) → 0 as n → ∞. Next, we prove that u is a unique fixed point of T . Indeed,

ρ
(c
2
(u − Tu)

)
= ρ

(c
2

(
u − Tn+1x + Tn+1x − Tu

))

≤ ρ
(
c
(
u − Tn+1x

))
+ ρ

(
c
(
Tn+1x − Tu

))
,

(3.13)

∫ρ(c(Tn+1x−Tu))

0
ϕ(t)dt ≤

∫ρ(l(Tnx−u))

0
ϕ(t)dt − φ

(∫ρ(l(Tnx−u))

0
ϕ(t)dt

)

≤
∫ρ(l(Tnx−u))

0
ϕ(t)dt.

(3.14)

Since ρ(Tnx − u) → 0 as n → ∞, we obtain

lim
n→∞

∫ρ(c(Tn+1x−Tu))

0
ϕ(t)dt ≤ 0, (3.15)

which implies that

ρ
(
c
(
Tn+1x − Tu

))
−→ 0 as n −→ ∞. (3.16)

So, we have

ρ
(
c
(
u − Tn+1x

))
+ ρ

(
c
(
Tn+1x − Tu

))
−→ 0 as n −→ ∞. (3.17)
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Thus ρ(c/2(u − Tu)) = 0 and Tu = u. Suppose that there exists w ∈ Xρ such that Tw = w and

w/=u, we have
∫ρ(c(w−u))
0 ϕ(t)dt > 0 and

∫ρ(c(w−u))

0
ϕ(t)dt =

∫ρ(c(Tw−Tu))

0
ϕ(t)dt

≤
∫ρ(l(w−u))

0
ϕ(t)dt − φ

(∫ρ(l(w−u))

0
ϕ(t)dt

)

<

∫ρ(l(w−u))

0
ϕ(t)dt

<

∫ρ(c(w−u))

0
ϕ(t)dt,

(3.18)

which is a contradiction. Hence, u = w and the proof is complete.

Corollary 3.2. Let Xρ be a ρ-complete modular space, where ρ satisfies the Δ2-condition. Let f :
Xρ → Xρ be a mapping such that there exists an λ ∈ (0, 1) and c, l ∈ �+ where l < c and for each
x, y ∈ Xρ,

∫ρ(c(fx−fy))

0
ϕ(t)dt ≤ λ

∫ρ(l(x−y))

0
ϕ(t)dt (3.19)

where ϕ : [0,∞) → [0,∞) is a Lebesgue integrable which is summable, nonnegative, and for all ε > 0,∫ε
o
ϕ(t)dt > o. Then, T has a unique fixed point in Xρ.

Corollary 3.3 (see [24]). LetXρ be a ρ-complete modular space where ρ satisfies theΔ2-condition.
Assume thatψ : �+ → [0,∞) is an increasing and upper semicontinuous function satisfying ψ(t) < t
for all t > 0. Let ϕ : [0,∞) → [0,∞) be a Lebesgue integrable which is summable, nonnegative, and
for all ε > 0,

∫ε
0 ϕ(t)dt > 0 and let f : Xρ → Xρ be a mapping such that there are c, l ∈ �+ where

l < c,

∫ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ ψ

(∫ρ(l(x−y))

0
ϕ(t)dt

)

, (3.20)

for each x, y ∈ Xρ. Then, T has a unique fixed point in Xρ.
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7–22, Birkhäuser, Basel, Switzerland, 1997.

[8] B. E. Rhoades, “Some theorems on weakly contractive maps,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 47, no. 4, pp. 2683–2693, 2001.

[9] A. Branciari, “A fixed point theorem for mappings satisfying a general contractive condition of
integral type,” International Journal of Mathematics and Mathematical Sciences, vol. 29, no. 9, pp. 531–
536, 2002.

[10] B. E. Rhoades, “Two fixed-point theorems for mappings satisfying a general contractive condition of
integral type,” International Journal of Mathematics andMathematical Sciences, vol. 2003, no. 63, pp. 4007–
4013, 2003.

[11] W. Sintunavart and P. Kumam, “Gregus-type common fixed point theorems for tangential multival-
ued mappings of integral type in metric spaces,” International Journal of Mathematics and Mathematical
Sciences, vol. 2011, Article ID 923458, 12 pages, 2011.

[12] W. Sintunavarat and P. Kumam, “Gregus type fixed points for a tangential multi-valued mappings
satisfying contractive conditions of integral type,” Journal of Inequalities and Applications. In Press.

[13] H. Nakano,Modulared Semi-Ordered Linear Spaces, Tokyo Mathematical Book Series, Maruzen Co. Ltd,
Tokyo, Japan, 1950.

[14] J. Musielak and W. Orlicz, “On modular spaces,” Studia Mathematica, vol. 18, pp. 49–65, 1959.
[15] T. Dominguez Benavides, M. A. Khamsi, and S. Samadi, “Uniformly Lipschitzian mappings in

modular function spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 46, no. 2, pp. 267–
278, 2001.

[16] M. A. Khamsi, “Quasicontraction mappings in modular spaces without Δ2-condition,” Fixed Point
Theory and Applications, vol. 2008, Article ID 916187, 6 pages, 2008.

[17] M. A. Khamsi, W. M. Kozłowski, and S. Reich, “Fixed point theory in modular function spaces,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 14, no. 11, pp. 935–953, 1990.

[18] P. Kumam, “On nonsquare and Jordan-von Neumann constants of modular spaces,” Southeast Asian
Bulletin of Mathematics, vol. 30, no. 1, pp. 69–77, 2006.

[19] P. Kumam, “On uniform Opial condition, uniform Kadec-Klee property in modular spaces and
application to fixed point theory,” Journal of Interdisciplinary Mathematics, vol. 8, no. 3, pp. 377–385,
2005.

[20] P. Kumam, “Fixed point theorems for nonexpansive mappings in modular spaces,” Archivum Mathe-
maticum, vol. 40, no. 4, pp. 345–353, 2004.

[21] P. Kumam, “Some geometrical properties and fixed point theorems in modular spaces,” in Interna-
tional Conference on Fixed Point Theory and Applications, pp. 173–188, Yokohama Publishers, Yokohama,
Japan, 2004.

[22] A. Razani, E. Nabizadeh, M. B. Mohamadi, and S. H. Pour, “Fixed points of nonlinear and asymptotic
contractions in the modular space,”Abstract and Applied Analysis, vol. 2007, Article ID 40575, 10 pages,
2007.

[23] A. Razani and R.Moradi, “Common fixed point theorems of integral type inmodular spaces,” Bulletin
of the Iranian Mathematical Society, vol. 35, no. 2, pp. 11–24, 2009.



12 International Journal of Mathematics and Mathematical Sciences

[24] M. Beygmohammadi and A. Razani, “Two fixed-point theorems for mappings satisfying a general
contractive condition of integral type in the modular space,” International Journal of Mathematics and
Mathematical Sciences, vol. 2010, Article ID 317107, 10 pages, 2010.

[25] H. Kaneko and S. Sessa, “Fixed point theorems for compatible multi-valued and single-valued map-
pings,” International Journal of Mathematics and Mathematical Sciences, vol. 12, no. 2, pp. 257–262,
1989.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


