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Abstract. We discuss the reflection of thermoelastic plane waves at a solid half-space
nearby a vacuum. We use the generalized thermoelastic waves to study the effects of one or
two thermal relaxation times on the reflection plane harmonic waves. The study considered
the thermal and the elastic waves of small amplitudes in a homogeneous, isotropic, and
thermally conducting elastic solid. The expressions for the reflection coefficients, which
are the ratio of the amplitudes of the reflected waves to the amplitude of the incident waves
are obtained. It has been shown, analytically, that the elastic waves are modified due to
the thermal effect. The reflection coefficients of a shear wave that incident from within the
solid on its boundary, which depend on the thermoelastic coupling factor and included
the thermal relaxation times, have been found in the general case. The numerical values
of reflection coefficients against the angle of incidence for different values of thermal
relaxation times have been calculated and the results are given in the form of graphs.
Some special cases of reflection have also been discussed, for example, in the absence of
thermal effect our results reduce to the ordinary pure elastic case.

Keywords and phrases. Generalized thermoelastic waves, reflection phenomena, thermal
relaxation times.
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1. Introduction. Since the early 1960’s there has been an increased usage of com-
posite materials in a variety of commercial, aerospace, and military structural con-
figurations involving extreme temperature environments. Therefore, during the past
three decades, wide spread attention has been given to thermoelasticity theories which
admit a finite speed for the propagation of thermal signals. In contrast to the con-
ventional theories based on parabolic-type heat equation, these theories involve a
hyperbolic-type heat equation and are referred to as generalized theories. Various au-
thors have formulated these generalized theories on different grounds. For example,
Lord and Shulman [11] have developed a theory based on a modified heat conduc-
tion law which involves heat flux rate. This thermoelastic theory is including the finite
velocity of thermal wave by correcting the Fourier thermal conduction law by intro-
ducing one relaxation time of thermoelastic process. Green and Lindsay [8] formu-
lated a more rigorous theory by including a temperature rate among the constitutive
variables; they are considered the finite velocity of the thermal wave by correcting
the energy equation and Duhamel-Neumann relation, by introducing two relaxation
times of the thermal process. These theories are considered to be more realistic than
the conventional theories in dealing with problems involving high heat fluxes and/or

http://ijmms.hindawi.com
http://www.hindawi.com


530 A. N. ABD-ALLA AND A. A. S. AL-DAWY

small time intervals, like those occurring in laser units and energy channels. Various
problems characterizing these two theories are investigated, and some interesting
phenomena have been revealed. These nonclassical theories are often regarded as
the generalized dynamic theory of thermoelasticity. Brief reviews of this topic have
been reported by Chandrasekharaiah [4]. The phenomenon of reflection of pure elastic
waves may be found in many references [1, 2, 5, 6, 10, 13]. Also an extensive literature
on the development of the interaction of two fields, namely the thermal field and the
elastic field, and the phenomenon of reflection of elastic waves, is available in many
works such as [3, 9, 12].
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Figure 1.

The object of the present paper is to discuss the reflection of thermoelastic plane
waves at a solid half-space nearby a vacuum. Generalized thermoelastic waves is used
to study the effects of one or two thermal relaxation times on the reflection plane har-
monic waves. The study considered the thermal and elastic waves of small amplitude
in a homogeneous, isotropic, and thermally conducting elastic solid. The expressions
for the reflection coefficients, which are the ratios of the amplitudes of the reflected
waves to the amplitude of the incident wave are obtained. The thermal relaxation
times and the thermal effect on the reflection coefficients are studied by comparing
the results with their counterparts in the following cases:

(i) approximate expressions for reflection coefficients and
(ii) pure elastic case.

Finally, we find a numerical solution in the case of metal Aluminium, and present the
results graphically.

2. Formulation of the problem and fundamental equations. We assume that the
elastic medium is an isotropic, homogeneous, and undergoing with small temperature
variations, i.e., the whole body is at a constant temperature T0. The problem is to
investigate thermoelastic waves occupying the Cartesian space where a semi-infinite
elastic solid bounded by the plane z = 0 extends in the negative direction of x-axis. A
rotational wave propagating from infinity within the solid is assumed to be incident on
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the boundary z = 0, making an angle θ with the negative direction of z-axis Figure 1.
We also assume that the body is thermally conducting and the thermal wave velocity
is small in compared with the dilatational elastic wave velocity.
The equation of motion in the elastic medium in terms of the elastic displacement

in generalized thermoelasticity in its linearized form is given as

(λ+2µ)grad(div �→u)−µcurlcurl �→u−γ
(
gradT +t1

∂
∂t

gradT
)
= ρ

∂2 �→u
∂t2

. (2.1)

The modified heat conduction equation is

K∇2T = ρce

(
∂T
∂t
+t0

∂2T
∂t2

)
+T0γ

(
∂
∂t
(
div �→u)+t0δ

∂2

∂t2
(
div �→u)), (2.2)

where
∇2 = (∂2/∂x2)+(∂2/∂z2),
�→u denotes the displacement vector,
λ and µ are the Lamé constants,
T is the perturbed temperature over the constant temperature T0,
γ is equal to α0(3λ+2µ),
α0 is the thermal expansion coefficient,
K is the thermal conductivity,
ce is the specific heat per unit mass at constant strain, and
ρ is the density of the medium.

Moreover, the use of the relaxation times t1, t0 and Kronecker δ makes the above
fundamental equations of possible validity for the three different theories:

(i) Classical Dynamical Coupled theory (1956) (C-D), where t0 = t1 = 0, δ= 0,
(ii) Lord-Shulman theory (1967) (L-S), where t1 = 0, t0 > 0, δ= 1,
(iii) Green-Lindsay theory (1972) (G-L), where t1 � t0 � 0, δ= 0.
To separate the dilatational and rotational components of strain, we introduce the

elastic displacement potentials φ and ψ in the following relations:

ui =φi+eirsAs,r , i,r ,s = 1,2,3,
�→A =ψ �����→e2,

(2.3)

where �����→e2 is a unit vector in y-direction, the potential φ and the vector potentials
�→A

are Lame’s potentials, and eirs is the permutation symbol. Taking divergence of each
term of (2.1) and using (2.3), we get the equation for dilatation waves as

c21
(

∂2

∂x2
+ ∂2

∂z2

)
φ− γ

ρ

(
T +t1

∂T
∂t

)
= ∂2φ

∂t2
. (2.4)

Taking curl of each term in (2.1) and using some well-known vector identities, we get
in a similar way, the equation for shear waves as

c22
(

∂2

∂x2
+ ∂2

∂z2

)
ψ= ∂2ψ

∂t2
, (2.5)

with

c1 =
√

λ+2µ
ρ

, c2 =
√

µ
ρ
, (2.6)
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where c1 and c2 are the isothermal dilatational and shear elastic wave velocities which
sometimes called the velocities of P and SV waves. The vector �→u has y-component
assumed to be zero. We also assume that all the variables are functions of x- and z-
and independent of the y-coordinate.
The heat conduction equation (2.2), after using (2.3), becomes

K∇2T = ρce

(
∂T
∂t
+t0

∂2T
∂t2

)
+T0γ

(
∂
∂t
∇2φ+t0δ

∂2

∂t2
∇2φ

)
. (2.7)

It is obvious from (2.3), (2.4), (2.5), and (2.7) that the P -wave is affected due to the
presence of the thermal field, while the SV -wave remains unaffected.

3. Solution of the problem. For studying plane wave motion, assume that the wave
normal lies in the xz-plane and take solutions of the system of equations (2.4) through
(2.7) in the form [1]

(φ,T)= (φ1,T1)exp
[
i
(
k(x sinθ+zcosθ)−ωt

)]
,

ψ=ψ1 exp
[
i
(
l(x sinθ+zcosθ)−ωt

)]
,

(3.1)

where ω is the frequency, and k and l are of the dilatational and the rotational wave
numbers, respectively.
Substitution of the relevant equations of (3.1) in (2.4) and (2.7), gives a system of two

homogeneous equations. Then, we obtain the following system for the amplitudesφ1

and T1:

c

2
1

(
ω2

c21
−k2

)
−γ

ρ
τ1

−iT0γωτ∗0 k2
(−Kk2+iρceωτ0

)



φ1

T1


= [0]. (3.2)

This system has nontrivial solutions if only if the determinant of the factor matrix
vanishes. This yields

v4−(1+ε∗T −iχ∗
)
v2−iχ∗ = 0, (3.3)

where we have introduced the following notation:

v = ω
kc1

, χ = ωK
ρcec21

, εT = T0γ2

ρ2cec21
, χ∗ = χ

τ0
, ε∗T =

εTτ∗0 τ1
τ0

,

τ1 = 1−it1ω, τ0 = 1−it0ω, τ∗0 = 1−it0ωδ,
(3.4)

where εT is the usual thermoelastic coupling factor [12].
Since (3.3) is a quadratic in v2, there are dilatational waves travelling with two dif-

ferent velocities. Therefore, if a rotational wave falls on the boundary z = 0 from
the solid, we have one reflected rotational wave and two reflected dilatational waves,
assuming that the radiation into the vacuum is neglected. Accordingly, if the wave
normal of the incident rotational wave makes angle θ with the positive direction of
z-axis, and those of reflected dilatational waves make angles θ1,θ2 with the same
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direction, the displacement potentials φ and ψ may be taken in the forms

φ=A1 exp
[
i
(
k1(x sinθ1−zcosθ1)−wt

)]
+A2 exp

[
i
(
k2(x sinθ2−zcosθ2)−wt

)]
,

(3.5)

ψ= B1 exp
[
i
(
l(x sinθ+zcosθ)−wt

)]
+B2 exp

[
i
(
l(x sinθ−zcosθ)−wt

)]
.

(3.6)

The ratios of the amplitudes of the reflected waves to the amplitude of the incident
wave, namely B2/B1, A1/B1, and A2/B1 give the corresponding reflection coefficients.
Figure 1 shows the wave normal of the incident and reflected waves denoted by their
respective amplitudes. It may be noted that the angles θ,θ1,θ2 and the corresponding
wave numbers l,k1,k2 are connected by the relations

k1 sinθ1 = k2 sinθ2 = lsinθ, (3.7)

on the interface z = 0 of the mediums, relations (3.7) may also be written in order to
satisfy the boundary conditions given in Section 4 as

sinθ1
v1

= sinθ2
v2

= sinθ
ν1/2 , (3.8)

where

v1 = ω
k1c1

, v2 = ω
k2c1

, ν =
(
c2
c1

)2
, (3.9)

the squares of the former two are the roots of (3.3).

4. Boundary conditions. Since the boundary z = 0 is adjacent to the vacuum, it is
free from surface tractions. This boundary condition may be expressed as

Tzj = 0, (j = x,y,z) on z = 0. (4.1)

Here Tzj is the mechanical stress [12] given by

Tzj = µ
(
uz,j+uj,z

)+(λdiv �→u−γ
(
T +t1

∂T
∂t

))
δzj, (4.2)

where δzj = 1 or 0 according to whether j = z or j ≠ z. Writing in explicit forms, we
have the components of Tzj as

Tzx = µ
(
∂u
∂z
+ ∂w

∂x

)
, Tzy = 0, Tzz = (λ+2µ)∂w

∂z
+λ

∂u
∂x

−γ
(
T +t1

∂T
∂t

)
. (4.3)

We also assume that the boundary z = 0 is thermally insulated, so that there is no
variation of temperature on it. This means that

∂T
∂z

= 0 on z = 0. (4.4)
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5. Expressions for the reflection coefficients. For the boundary conditions ex-
pressed by (4.1), (4.2), and (4.4) and with the help of (3.5) and (3.6), after rearrange-
ment, we obtain, for SV -wave, the following relations:

X1 cos2θ+X2
ν
v2
1
sin2θ1+X3

ν
v2
2
sin2θ2+cos2θ = 0,

−X1 sin2θ+ X2

v2
1

(
1−2ν sin2θ1+ ε∗T v

2
1τ1

v2+iχ∗

)

+ X3

v2
2

(
1−2ν sin2θ2+ ε∗T v

2
2τ1

v2+iχ∗

)
+sin2θ = 0,

X2
ε∗T cosθ1

v1
(
v2+iχ∗

) +X3
ε∗T cosθ2

v2
(
v2+iχ∗

) = 0,

(5.1)

where

X1 = B2
B1

, X2 = A1

B1
, X3 = A2

B1
. (5.2)

The solutions of this system of equations for the reflection coefficient of rotational
waves X1 and the reflection coefficients of dilatational waves X2 and X3 are

X1 =−P1
Q

, X2 = P2
Q

, X3 =−P3
Q

, (5.3)

where

P1 = v2 cosθ2
[(
v2
1 +iχ∗

)(
ν cos2(θ+θ1)+(1−ν)cos2θ

)+ε∗T v
2
1 cos2θ

]
−v1 cosθ1

[(
v2
2 +iχ∗

)(
ν cos2(θ+θ2)+(1+ν)cos2θ

)+ε∗T v
2
2 cos2θ

]
,

(5.4)

P2 =−2v2
1v2

(
v2
1 +iχ∗

)
cosθ2 cos2θsin2θ, (5.5)

P3 =−2v2
2v1

(
v2
2 +iχ∗

)
cosθ1 cos2θsin2θ, (5.6)

and

Q= v2 cosθ2
[(
v2
1 +iχ∗

)(
ν cos2(θ−θ1)+(1−ν)cos2θ

)+ε∗T v
2
1 cos2θ

]
−v1 cosθ1

[(
v2
2 +iχ∗

)(
ν cos2(θ−θ2)+(1−ν)cos2θ

)+ε∗T v
2
2 cos2θ

]
.

(5.7)

The absolute values of the reflection coefficients X1, X2, and X3 for this general case
are plotted versus the angle of incidence θ for the three different cases:

(i) Green-Lindsay model, i.e., the variation of the second relaxation time while the
first one is fixed.

(ii) Lord-Shulmanmodel, i.e., the variation of the first relaxation time when neglect-
ing the second one.
(iii) Classical-Dynamical Coupled model when neglecting the two relaxation times

and remaining the thermal effect.
Equations (5.3) contain a number of particular cases which we now proceed to

examine.
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6. Special cases

6.1. Approximate expressions for reflection coefficients. For most elastic mate-
rials, it is known that ε∗T � 1 and χ∗ � 1. Therefore, retaining only the first degree
terms in ε∗T and χ∗, the roots of (3.3) are

v2
1 = 1+ε∗T , v2

2 =−iχ∗. (6.1)

Their square roots are given by

v1 = 1+ 1
2
ε∗T , v2 = i3/2χ∗(1/2). (6.2)

Substitution of these values in the expressions for X1, X2, and X3 given by (5.3) to-
gether with relations (5.4), (5.5), (5.6), and (5.7), and simplification after using relations
(3.5) and (3.6), give

X1 = m1

M
, X2 =−m2

M
, X3 = 0. (6.3)

In these relations

m1 = a1a2−b, m2 = 2cos2θsin2θ
(
1+ε∗T

)
, M = a1a2+b, (6.4)

where

a1 = 4ν1/2
[
1+ 1

2
ε∗T
]
, a2 =

[
1− 1

ν
(
1+ε∗T

)
sin2θ

]1/2
sin2θcosθ,

b = cos2 2θ−2ε∗T cos2θsin2θ+ε∗T cos2θ
[
1−iχ∗−i3/2χ∗(1/2)a2

]
.

(6.5)

Now, it is easy to see that in this case the incoming SV -wave is split into two waves at
the flat boundary, one reflected P -wave (dilatational wave) X1 and the second reflected
SV -wave X2. This is presented in Figure 11 for ε∗T = 0.01,0.02,0.03,0.4.

6.2. Pure elastic case. When the thermal effect is neglected, i.e., ε∗T = 0 and χ∗ = 0,
we get the pure elastic case. Therefore, we have v1 = 1, v2 = 0, θ1 =α, say, and θ2 = 0.
Then the expressions for X1 and X2 simplify to

X1 = ν1/2 cosαtan2 2θ−cosθ
ν1/2 cosαtan2 2θ+cosθ , X2 = 2tan2θcosθ

ν1/2 cosαtan2 2θ+cosθ . (6.6)

These equations are the same as those given by Brekhoviskikh [2] if slight changes
in notation are introduced there.

7. Numerical results and conclusions. With a view to illustrating the advantage of
this study, we consider now a numerical example. The results describe the variation for
reflection coefficients for an SV -wave with the various values of the angle of incidence.
For this purpose, metal Aluminium is taken as the thermoelastic material body for
which we have the physical constants at T0 = 27 ◦C as follows [7].

ρ = 2.70g/(cm)3, α0 = 0.23×10−4 cm/(cmdegC),

λ= 5.775×1011 dyne/(cm)2, K = 0.480cal/(gdegC),

µ = 2.646×1011 dyne/(cm)2, ce = 0.216cal/(gdegC),
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Figure 2. (The effect of the thermal relaxation times in G-L theory)
|X1|,|X2|,|X3| versus the angle of incidence θ.
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Figure 3. (The effect of the thermal relaxation times in G-L theory)
|X1|,|X2|,|X3| versus the angle of incidence θ.
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Figure 4. (The effect of the thermal relaxation times in G-L theory)
|X1|,|X2|,|X3| versus the angle of incidence θ.
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Figure 5. (The effect of the thermal relaxation times in G-L theory)
|X1|,|X2|,|X3| versus the angle of incidence θ.
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Figure 6. (The effect of the thermal coefficient ε in G-L theory)
|X1|,|X2|,|X3| versus the angle of incidence θ.
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Figure 7. (The effect of the thermal relaxation time in L-S theory)
|X1|,|X2|,|X3| versus the angle of incidence θ.
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Figure 8. (The effect of the thermal coefficient ε in L-S theory) |X1|,|X2|,|X3|
versus the angle of incidence θ.
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Figure 9. (The thermal effect in C-D theory) |X1|,|X2|,|X3| versus the angle
of incidence θ.
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Figure 10. (The thermal effect in the approximate case) |X1|,|X2| versus
the angle of incidence θ.

According to these values, when θ tends to π/2, we obtain, in the approximate case,

X1 �→−1, X2 �→ 0. (7.1)

Thus, this case is so-called the grazing incidence which has the incidence and re-
flected rotational waves cancel on the boundary, and there will be no dilatational wave.
From this, we infer the impossibility of existence of planewaves on the boundary z = 0.
This result is the same as that in pure elastic case [2].
Taking t0, t1 � 0(10−13 s), the corresponding dimensionless values of them are: τ0

which is of ordered 0(1) to 0(5), while τ1 which assume to be given by τ1 = nτ0
(n= 1,2,3,4). Now, it is easy to see from the graphs the following:

(i) Figures 2, 3, and 4 exhibit the variation of the angle of incidence with the re-
flection coefficients ratios for SV -wave under the consideration of the fixed ε = 0.04
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Figure 11. Pure elastic case. |X1|,|X2| versus the angle of incidence θ.

whereas τ0 = 1,5,10, respectively and τ1 = nτ0 (n = 1,2,3,4). Moreover, Figure 5
consider ε= 0.01,0.02,0.03,0.04 and τ0 = τ1 = 10 all of them for (G-L) model.

(ii) Figures 2, 3, and 4, display the increasing of the second relaxation time which
has a sensitive influence on the absolute values of the reflection coefficients X1,X3

while X2 is not affected.
(iii) Figures 5, 8, 9, and 10 show the variation of thermal effect ε on |X1|,|X2|, and

|X3| according to (G-L), (L-S), (C-D) models and the approximate case, respectively. It
is clear that ε has appreciated effect on |X1| and |X3| while |X2| is not affected. Also,
the influence of poison’s ratio ν can seen in Figure 11 which display the pure elastic
case.
(vi) Figure 7, shows that, in the (L-S) model, the absolute value of X1, X2, and X3

remarkably changes with the increasing of the relaxation time τ0.
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