A GENERALIZATION THEOREM COVERING MANY ABSOLUTE SUMMABILITY METHODS

W. T. SULAIMAN

(Received 27 April 1999)

ABSTRACT. A general theorem concerning many absolute summability methods is proved.
2000 Mathematics Subject Classification. 40F05, 40G05, 40D15, 40D25.

1. Introduction. Let $\sum a_{n}$ be given infinite series with the sequence of partial sums $\left(s_{n}\right)$. By σ_{n}^{δ} and μ_{n}^{δ} we denote nth Cesaro mean of order $\delta(\delta>-1)$ of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, \delta|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1}\left|\mu_{n}^{\delta}\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of real or complex numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \longrightarrow \infty \quad \text { as } n \longrightarrow \infty\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation:

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left(t_{n}\right)$ of the Riesz means of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [4]). The series $\sum a_{n}$ is said to be summable $\left|R, p_{n}\right|_{k}$, $k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$ (see [1]), if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all values of n (respectively, $k=1$), then both of $\left|R, p_{n}\right|_{k}$ and $\left|\bar{N}, p_{n}\right|_{k}$ is the same as $|C, 1|_{k}$ (respectively, $\left.\left|R, p_{n}\right|,\left|\bar{N}, p_{n}\right|\right)$ summability.

For $p_{n}=1 /(n+1)$, the summability $\left|\bar{N}, p_{n}\right|_{k}$ is equivalent to $|R, \log n, 1|_{k}$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|T_{n}-T_{n-1}\right|<\infty, \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \quad\left(T_{-1}=0\right) \tag{1.8}
\end{equation*}
$$

We write $p=\left\{p_{n}\right\}$ and

$$
\begin{equation*}
M=\left\{p: p_{n}>0 \text { and } \frac{p_{n+1}}{p_{n}} \leq \frac{p_{n+2}}{p_{n+1}} \leq 1, n=0,1, \ldots\right\} . \tag{1.9}
\end{equation*}
$$

It is known that for $p \in M$, equation (1.7) holds if and only if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n P_{n}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|<\infty . \tag{1.10}
\end{equation*}
$$

For $p \in M$, the series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$ (see [5]), if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n P_{n}^{k}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|^{k}<\infty . \tag{1.11}
\end{equation*}
$$

In the special case in which $p_{n}=A_{n}^{r-1}, r>-1$, where A_{n}^{r} is the coefficient of x^{n} in the power series of $(1-x)^{-r-1}$, for $|x|<1,\left|N, p_{n}\right|_{k}$ summability reduces to $|C, r|_{k}$ summability, and for $p_{n}=1 /(n+1),\left|N, p_{n}\right|_{k}$ is equivalent to $|N, 1 /(n+1)|_{k}$ summability. We assume that $\left(f_{n}\right),\left(g_{n}\right),\left(G_{n}\right)$, and $\left(H_{n}\right)$ are positive sequences.
2. Main result. We prove the following theorem.

Theorem 2.1. Let

$$
\begin{equation*}
Y_{n}=\frac{1}{F_{n-1} H_{n}} \sum_{v=1}^{n} v f_{n-v} x_{v} \epsilon_{v} \tag{2.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
F_{n}=\sum_{v=1}^{n} f_{v} \rightarrow \infty, \quad f \in M, \quad X_{n}=\frac{1}{G_{n}} \sum_{v=1}^{n} g_{v} x_{v} \tag{2.2}
\end{equation*}
$$

Suppose that $\left\{n G_{n} \epsilon_{n} / F_{n} g_{n} H_{n}\right\}$ is monotonic and

$$
\begin{gather*}
g_{n+1}=O\left(g_{n}\right), \tag{2.3}\\
\Delta g_{n}=O\left(\frac{g_{n+1}}{n}\right), \tag{2.4}\\
\Delta\left(\frac{g_{n} H_{n}}{n G_{n}}\right)=O\left(\frac{g_{n} H_{n}}{n G_{n} F_{n+1}}\right), \tag{2.5}\\
\sum_{n=v+1}^{m} \frac{f_{n-v}}{F_{n-1} H_{n}^{k}}=O\left(\frac{1}{H_{v}^{k}}\right) . \tag{2.6}
\end{gather*}
$$

Then necessary and sufficient conditions that $\sum\left|Y_{n}\right|^{k}<\infty$ whenever $\sum\left|X_{n}\right|^{k}<\infty$ are
(i) $\epsilon_{n}=O\left(F_{n} g_{n} H_{n} / n G_{n}\right)$,
(ii) $\Delta \epsilon_{n}=O\left(g_{n+1} H_{n} / n G_{n}\right)$.

3. Lemmas

Lemma 3.1 (see [2]). Let $k \geq 1$, and let $A=\left(a_{n v}\right)$ be an infinite matrix. In order that $A \in\left(\ell^{k} ; \ell^{k}\right)$ it is necessary that

$$
\begin{equation*}
a_{n v}=O(1) \quad(\text { all } n, v) \tag{3.1}
\end{equation*}
$$

Lemma 3.2 (see [6]). Let $p \in M$. Then for $0<r \leq 1$,

$$
\begin{equation*}
\sum_{n=v+1}^{\infty} \frac{p_{n-v-1}}{n^{r} P_{n-1}}=O\left(v^{-r}\right) \tag{3.2}
\end{equation*}
$$

Lemma 3.3. Suppose that $\epsilon_{n}=O\left(f_{n} g_{n}\right), f_{n}, g_{n} \geq 0,\left\{\epsilon_{n} / f_{n} g_{n}\right\}$ monotonic, $\triangle g_{n}=$ $O(1)$, and $\triangle f_{n}=O\left(f_{n} / g_{n+1}\right)$. Then $\triangle_{\epsilon_{n}}=O\left(f_{n}\right)$.

Proof. Let $k_{n}=\epsilon_{n} / f_{n} g_{n}=O(1)$. If (k_{n}) is nondecreasing, then

$$
\begin{align*}
\Delta \epsilon_{n} & =k_{n} f_{n} g_{n}-k_{n+1} f_{n+1} g_{n+1} \leq k_{n} f_{n} g_{n}-k_{n} f_{n+1} g_{n+1} \\
& =k_{n}\left(\triangle f_{n} g_{n}\right)=k_{n}\left(f_{n} \Delta g_{n}+g_{n+1} \Delta f_{n}\right), \tag{3.3}\\
\left|\Delta \epsilon_{n}\right| & =O\left(f_{n}\left|\Delta g_{n}\right|\right)+O\left(g_{n+1}\left|\Delta f_{n}\right|\right)=O\left(f_{n}\right)+O\left(f_{n}\right)=O\left(f_{n}\right) .
\end{align*}
$$

If (k_{n}) is nonincreasing, write $\nabla f_{n}=f_{n+1}-f_{n}$,

$$
\begin{align*}
\nabla \epsilon_{n} & =k_{n+1} f_{n+1} g_{n+1}-k_{n} f_{n} g_{n} \leq k_{n} \nabla\left(f_{n} g_{n}\right) \\
& =k_{n}\left(f_{n} \nabla g_{n}+g_{n+1} \nabla f_{n}\right), \\
\left|\triangle \epsilon_{n}\right| & =\left|\nabla \epsilon_{n}\right|=O\left(f_{n}\left|\nabla g_{n}\right|\right)+O\left(g_{n+1}\left|\nabla f_{n}\right|\right) \tag{3.4}\\
& =O\left(f_{n}\left|\nabla g_{n}\right|\right)+O\left(g_{n+1}\left|\Delta f_{n}\right|\right) \\
& =O\left(f_{n}\right)+O\left(f_{n}\right)=O\left(f_{n}\right) .
\end{align*}
$$

4. Proof of Theorem 2.1

Sufficiency. We have via Abel's transformation:

$$
\begin{align*}
Y_{n}= & \frac{1}{F_{n-1} H_{n}} \sum_{v=1}^{n} g_{v} x_{v}\left(v \frac{f_{n-v}}{g_{v}} \epsilon_{v}\right) \\
= & \frac{1}{F_{n-1} H_{n}}\left[\sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} g_{r} x_{r}\right) \triangle_{v}\left(\frac{f_{n-v}}{g_{v}} \epsilon_{v}\right)+\left(\sum_{r=1}^{n} g_{r} x_{r}\right) n \frac{f_{0}}{g_{n}} \epsilon_{n}\right] \\
= & \frac{1}{F_{n-1} H_{n}} \sum_{v=1}^{n-1} G_{v} X_{v}\left\{-\frac{f_{n-v}}{g_{v}} \epsilon_{v}+(v+1) \triangle g_{v}^{-1} f_{n-v} \epsilon_{v}+(v+1) g_{v+1}^{-1} \triangle_{v} f_{n-v} \epsilon_{v}\right. \tag{4.1}\\
& \left.\quad+(v+1) g_{v+1}^{-1} f_{n-v-1} \Delta \epsilon_{v}\right\}+\frac{n G_{n} X_{n} f_{0}}{F_{n-1} H_{n} g_{n}} \epsilon_{n} \\
= & Y_{n, 1}+Y_{n, 2}+Y_{n, 3}+Y_{n, 4}+Y_{n, 5} .
\end{align*}
$$

By Minkowski's inequality,

$$
\begin{equation*}
\sum_{n=1}^{m}\left|Y_{n}\right|^{k}=O(1) \sum_{n=1}^{m} \sum_{r=1}^{5}\left|Y_{n, r}\right|^{k} \tag{4.2}
\end{equation*}
$$

Applying Hölder's inequality,

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left|Y_{n, 1}\right|^{k}=\sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1} f_{n-v} \frac{G_{v}}{g_{v}} X_{v} \epsilon_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_{n}^{k}} \sum_{v=1}^{n-1} f_{n-v}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{f_{n-v}}{F_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{f_{n-v}}{F_{n-1} H_{n}^{k}} \\
& \leq O(1) \sum_{v=1}^{m} \frac{1}{H_{v}^{k}}\left(\frac{v}{F_{v-1}}\right)^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}, \\
& \sum_{n=2}^{m+1}\left|Y_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1}(v+1) G_{v} \triangle g_{v}^{-1} f_{n-v} X_{v} \epsilon_{v}\right|^{k} \\
& \leq O \text { (1) } \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_{n}^{k}} \sum_{v=1}^{n-1} v^{k} G_{v}^{k}\left|\Delta g_{v}^{-1}\right|^{k} f_{n-v}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{f_{n-v}}{F_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} v^{k} G_{v}^{k}\left|\triangle g_{v}^{-1}\right|^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right| \sum_{n=v+1}^{m+1} \frac{f_{n-v}}{F_{n-1} H_{n}^{k}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{v}{H_{v}}\right)^{k} G_{v}^{k} \frac{\left|\triangle g_{v}\right|^{k}}{g_{v}^{k} g_{v+1}^{k}}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \\
& \leq O(1) \sum_{v=1}^{m} \frac{1}{H_{v}^{k}}\left(\frac{v}{F_{v-1}}\right)^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \text {, } \\
& \sum_{n=2}^{m+1}\left|Y_{n, 3}\right|^{k}=\sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1} v g_{v+1}^{-1} G_{v} \triangle_{v} f_{n-v} X_{v} \epsilon_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}} \sum_{v=1}^{n-1} v^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k}\left|\triangle_{v} f_{n-v}\right|\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1}\left|\Delta f_{n-v}\right|\right\}^{k-1} \\
& \leq O(1) \sum_{v-1}^{m} v^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{\triangle_{v} f_{n-v}}{F_{n-1}^{k} H_{n}^{k}} \\
& \leq O(1) \sum_{v=1}^{m} \frac{1}{H_{v}^{k}}\left(\frac{v}{F_{v-1}}\right)^{k}\left(\frac{G_{v}}{g_{v}}\right)^{k}\left|X_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \text {, }
\end{aligned}
$$

$$
\begin{align*}
\sum_{n=2}^{m+1}\left|Y_{n, 4}\right|^{k} & =\sum_{n=2}^{m+1} \frac{1}{F_{n-1}^{k} H_{n}^{k}}\left|\sum_{v=1}^{n-1} v g_{v+1}^{-1} f_{n-v-1} G_{v} X_{v} \Delta \epsilon_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{F_{n-1} H_{n}^{k}} \sum_{v=1}^{n-1} v^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k} f_{n-v-1}\left|X_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{f_{n-v-1}}{F_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} v^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k}\left|X_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{f_{n-v-1}}{F_{n-1} H_{n}^{k}} \\
& \leq O(1) \sum_{v=1}^{m}\left(\frac{v}{H_{v}}\right)^{k}\left(\frac{G_{v}}{g_{v+1}}\right)^{k}\left|X_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k}, \\
\sum_{n=1}^{m}\left|Y_{n, 5}\right|^{k} & =\sum_{n=1}^{m}\left|\frac{n G_{n} X_{n} f_{0} \epsilon_{n}}{F_{n-1} H_{n} g_{n}}\right|^{k} \\
& \leq O(1) \sum_{n=1}^{m}\left(\frac{n}{F_{n-1}}\right)^{k}\left(\frac{G_{n}}{g_{n}}\right)^{k} \frac{1}{H_{n}^{k}}\left|X_{n}\right|^{k}\left|\epsilon_{n}\right|^{k} . \tag{4.3}
\end{align*}
$$

Sufficiency of (i) and (ii) follows. Necessity of (i): using the result of Bor in [2], the transformation from $\left(X_{n}\right)$ into $\left(Y_{n}\right)$ maps ℓ^{k} into ℓ^{k} and hence the diagonal elements of this transformation are bounded (by Lemma 3.1) and so (i) is necessary. Necessity of (ii): this follows from Lemma 3.3 and necessity of (i) by taking

$$
\begin{equation*}
f_{n} \equiv \frac{g_{n} H_{n}}{n G_{n}}, \quad g_{n} \equiv F_{n} \text { using (2.3). } \tag{4.4}
\end{equation*}
$$

This completes the proof of the theorem.
remarks. It may be mentioned that on putting
(1) $f_{n}=p_{n}$ and $H_{n}=n^{1 / k}$, we obtain $\left|N, p_{n}\right|_{k}$ summability of $\sum a_{n} \epsilon_{n}$.
(2) $g_{n}=Q_{n-1}$ and $G_{n}=Q_{n-1}\left(Q_{n} / q_{n}\right)^{1 / k}$, we obtain $\left|\bar{N}, q_{n}\right|_{k}$ summability of $\sum a_{n}$.
(3) $g_{n}=Q_{n-1}$ and $G_{n}=n^{1 / k-1}\left(Q_{n} Q_{n-1} / q_{n}\right)$, we obtain $\left|R, q_{n}\right|_{k}$ summability of $\sum a_{n}$.

5. Applications

Theorem 5.1. Let $p \in M,\left\{\left(n \epsilon_{n} / P_{n}\right)\left(Q_{n} / n q_{n}\right)^{1 / k}\right\}$ is monotonic,

$$
\begin{equation*}
\Delta\left(\frac{1}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right)=O\left(\frac{1}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k} \frac{1}{P_{n+1}}\right), \quad n q_{n}=O\left(Q_{n}\right) \tag{5.1}
\end{equation*}
$$

Then necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $\left|N, p_{n}\right|_{k}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, q_{n}\right|_{k}, k \geq 1$, are

$$
\begin{equation*}
\epsilon_{n}=O\left\{\frac{P_{n}}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right\}, \quad \Delta \epsilon_{n}=O\left\{\frac{1}{n}\left(\frac{n q_{n}}{Q_{n}}\right)^{1 / k}\right\} \tag{5.2}
\end{equation*}
$$

TheOrem 5.2. Let $p \in M,\left\{Q_{n} \epsilon_{n} / P_{n} q_{n}\right\}$ is monotonic,

$$
\begin{equation*}
\Delta\left(\frac{q_{n}}{Q_{n}}\right)=O\left(\frac{q_{n}}{Q_{n} P_{n+1}}\right), \quad n q_{n}=O\left(Q_{n}\right) \tag{5.3}
\end{equation*}
$$

Then necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $\left|N, p_{n}\right|_{k}$ whenever $\sum a_{n}$ is summable $\left|R, q_{n}\right|_{k}, k \geq 1$ are

$$
\begin{equation*}
\epsilon_{n}=O\left(\frac{P_{n} q_{n}}{Q_{n}}\right), \quad \Delta \epsilon_{n}=O\left(\frac{q_{n}}{Q_{n}}\right) . \tag{5.4}
\end{equation*}
$$

Corollary 5.3. Necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $|C, \alpha|_{K}, 0<\alpha \leq 1$ whenever $\sum a_{n}$ is summable $|C, 1|_{k}, k \geq 1$, are

$$
\begin{equation*}
\epsilon_{n}=O\left(n^{\alpha-1}\right), \quad \triangle \epsilon_{n}=O\left(n^{-1}\right) \tag{5.5}
\end{equation*}
$$

provided $\left\{n^{1-\alpha} \epsilon_{n}\right\}$ is monotonic.
Corollary 5.4. Necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $|N, 1 /(n+1)|_{k}$ whenever $\sum a_{n}$ is summable $|C, 1|_{k}, k \geq 1$, are

$$
\begin{equation*}
\epsilon_{n}=O\left(\frac{\log n}{n}\right), \quad \triangle \epsilon_{n}=O\left(n^{-1}\right) \tag{5.6}
\end{equation*}
$$

provided $\left\{n \epsilon_{n} / \log n\right\}$ is monotonic.
Corollary 5.5. Necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $|N, 1 /(n+1)|_{k}$ whenever $\sum a_{n}$ is summable $|R, \log n, 1|_{k}, k \geq 1$, are

$$
\begin{equation*}
\epsilon_{n}=O\left\{\frac{(\log n)^{1-1 / k}}{n}\right\}, \quad \Delta \epsilon_{n}=O\left\{\frac{1}{n(\log n)^{1 / k}}\right\} \tag{5.7}
\end{equation*}
$$

provided $\left\{n(\log n)^{1 / k-1} \epsilon_{n}\right\}$ is monotonic.
Corollary 5.6. Necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $|C, \alpha|_{k}, 0<\alpha \leq 1$ whenever $\sum a_{n}$ is summable $|R, \log n, 1|_{k}, k \geq 1$, are:

$$
\begin{equation*}
\epsilon_{n}=O\left\{\frac{n^{\alpha-1}}{(\log n)^{1 / k}}\right\}, \quad \Delta \epsilon_{n}=O\left\{\frac{1}{n(\log n)^{1 / k}}\right\}, \tag{5.8}
\end{equation*}
$$

provided $\left\{n^{1-\alpha}(\log n)^{1 / k} \epsilon_{n}\right\}$ is monotonic.

References

[1] H. Bor, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Proc. Amer. Math. Soc. 94 (1985), no. 3, 419-422. MR 86j:40010.
[2] , On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1009-1012. MR 92c:40006. Zbl 743.40007.
[3] G. Das, Tauberian theorems for absolute Nörlund summability, Proc. London Math. Soc. (3) 19 (1969), 357-384. MR 39\#1850. Zbl 183.32603.
[4] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949. MR 11,25a. Zbl 032.05801.
[5] W. T. Sulaiman, Notes on two summability methods, Pure Appl. Math. Sci. 31 (1990), no. 1-2, 59-69. MR 91m:40010. Zbl 713.40003.
[6] , Relations on some summability methods, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1139-1145. MR 93j:40007. Zbl 788.40005.

[^0]
[^0]: W. T. Sulaiman: Department of Mathematics, College of Science, University of Qatar, Qatar

