SOME RESULTS ON COINCIDENCE AND FIXED POINT THEOREMS FOR GENERALIZED CONTRACTION TYPE MAPPINGS

D. K. GANGULY and D. BANDYOPADHYAY

(Received 24 April 1996 and in revised form 1 October 1996)

Abstract

Some coincidence and fixed point theorems are proved for certain generalized contraction type single-valued and set-valued compatible mappings.

2000 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. Jungck [1] generalized the Banach contraction principle using the commuting map concept, which is extended by Sessa [4] giving weakly commuting map concept; this again modified in [2] by compatibility condition. Several authors [3, 5, 6] discussed various results on coincidence and fixed point theorem for compatible single-valued and multi-valued maps. Here we develop some coincidence and fixed point theorems for compatible single-valued and multi-valued maps satisfying some generalized contraction type condition. Henceforth, we denote by \mathbb{N} and \mathbb{R}_{+}, the set of naturals and nonnegative reals, respectively, and $\omega=\mathbb{N} \cup\{0\}$ and (X, d), a metric space, unless otherwise stated.

2. Preliminaries

Definition 2.1 (see [3]). Two mappings $f, g: X \rightarrow X$ are compatible if and only if $d\left(f g x_{n}, g f x_{n}\right) \rightarrow 0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $f x_{n} \rightarrow t, g x_{n} \rightarrow t$, $t \in X$.

Let $C(X)=$ class of closed subsets of $X, \mathrm{CB}(X)=$ class of closed bounded subsets of $X, \operatorname{co}(K)=$ convex hull of $K \subset X$. The Hausdorff metric H on $\mathrm{CB}(X)$ is defined as $H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{X \in B} D(x, A)\right\}$, for all $A, B \in \mathrm{CB}(X)$, where $D(x, A)=$ $\inf _{y \in A} d(x, y)$.

DEFINITION 2.2 (see [3]). The maps $f: X \rightarrow X$ and $T: X \rightarrow \mathrm{CB}(X)$ are compatible if and only if $f T x \in \mathrm{CB}(X)$ for all $x \in X$ and $H\left(f T x_{n}, T f x_{n}\right) \rightarrow 0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $T x_{n} \rightarrow M \in \mathrm{CB}(X), f x_{n} \rightarrow t \in M$, where H is the Hausdorff metric on X.

We now recall the following lemmas.
Lemma 2.3 (see [7]). Let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a nondecreasing upper semi-continuous (u.s.c.) function. Then $h(t)<t$ if and only if $h^{n}(t) \rightarrow 0$ for each $t>0$ where h^{n} denotes the composition of h with itself n times.

Lemma 2.4 (see [3]). Let $T: X \rightarrow \mathrm{CB}(X)$ and $f: X \rightarrow X$ be compatible. If $f z \in T z$ for some $z \in X$, then $f T z=T f z$.

3. Coincidence and fixed point theorems for single-valued maps

Theorem 3.1. Let X be any nonempty set and (Y, d) be a complete metric space. Let $f, g, T: X \rightarrow Y$ satisfy
(i) $f(X), g(X) \subseteq T(X)$;
(ii) $T(X)$ is closed in Y;
(iii) for all $x, y \in X$,
$d(f x, g y) \leq \varphi[\max \{d(T x, T y), d(T x, f x), d(T x, g y), d(T y, f x), d(T y, g y)\}]$,
where $h(t)=\varphi[\max \{t, t, a t, b t, t\}]<t$, for each $t>0, a, b \in\{0,1,2\}$ with $a+b=2$ and $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nondecreasing u.s.c function. Then f, g, T have a coincidence point in X.
Further if
(iv) f or g is injective, then the coincidence point is unique in X.

Proof. Choose any $x_{0} \in X$. From (i), we define an iteration $y_{2 n}=f x_{2 n}=T x_{2 n+1}$, $y_{2 n+1}=g x_{2 n+1}=T x_{2 n+2}$. Let $d_{n}=d\left(T x_{n}, T x_{n+1}\right)$. Then from (iii), we have

$$
\begin{align*}
d_{2 n+1}= & d\left(T x_{2 n+1}, T x_{2 n+2}\right)=d\left(y_{2 n}, y_{2 n+1}\right)=d\left(f x_{2 n}, g x_{2 n+1}\right) \\
\leq & \varphi\left[\operatorname { m a x } \left\{d\left(T x_{2 n}, T x_{2 n+1}\right), d\left(T x_{2 n}, f x_{2 n}\right),\right.\right. \\
& \left.\left.d\left(T x_{2 n}, g x_{2 n+1}\right), d\left(T x_{2 n+1}, f x_{2 n}\right), d\left(T x_{2 n+1}, g x_{2 n+1}\right)\right\}\right] \tag{3.2}\\
\leq & \varphi\left[\max \left\{d_{2 n}, d_{2 n},\left(d_{2 n}+d_{2 n+1}\right), 0, d_{2 n}\right\}\right] .
\end{align*}
$$

If $d_{2 n+1}>d_{2 n}$ then contradiction arises; so taking $d_{2 n+1} \leq d_{2 n}$, we have $d_{2 n+1} \leq$ $h\left(d_{2 n}\right)$. Similarly, $d_{2 n+2} \leq d_{2 n+1}, d_{2 n+2} \leq h\left(d_{2 n+1}\right)$. Hence $d_{n+1} \leq d_{n}$ and $d_{n} \leq h\left(d_{n-1}\right) \leq$ $\cdots \leq h^{n}\left(d_{0}\right)$, for all $n \in \omega$.

This yields, by Lemma 2.3, $\lim _{n} d_{n}=0=\lim _{n} d\left(y_{n}, y_{n+1}\right)$. Now, the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence in $f(X)$, which can be proved using the same technique as used in [6, Theorem 2.1] so from (ii), $\exists u \in X \ni \lim _{n} y_{n}=T u$, that is, $\lim _{n} T x_{n}=T u$ and $\lim _{n} f x_{2 n}=T u=\lim _{n} g x_{2 n+1}$. Suppose that $f u \neq T u \neq g u$. Then

$$
\begin{align*}
d(f u, T u) \leq & d\left(f u, g x_{2 n+1}\right)+d\left(g x_{2 n+1}, T u\right) \\
\leq & \varphi\left[\operatorname { m a x } \left\{d\left(T u, T x_{2 n+1}\right), d(T u, f u), d\left(T u, g x_{2 n+1}\right), d\left(T x_{2 n+1}, f u\right),\right.\right. \\
& \left.\left.d\left(T x_{2 n+1}, g x_{2 n+1}\right)\right\}\right]+d\left(g x_{2 n+1}, T u\right) \Rightarrow d(f u, T u) \\
\leq & \varphi[\max \{0, d(T u, f u), 0, d(T u, f u), 0\}], \tag{3.3}
\end{align*}
$$

as $n \rightarrow \infty$; hence $d(f u, T u)<d(f u, T u)$ which is absurd. Hence $f u=T u$. Similarly, $g u=T u$. Thus, $f u=T u=g u$ and uniqueness of u follows from (iii) and (iv).

Lemma 3.2. Let $f, g: X \rightarrow X$ be compatible. If $f z=g z$ for some $z \in X$, then $f g z=g f z$.
Proof. The proof is similar to that of Kaneko and Sessa [3].
Theorem 3.3. Let (X, d, δ) be a bimetric space such that X is complete with respect to δ. Let $f, g, T: X \rightarrow X$ satisfy conditions (i)-(iii) of Theorem 3.1 with respect to d, and
(v) (f, T) and (g, T) are compatible pairs;
(vi) $\delta(x, y) \leq k(d(x, y))$ for all $x, y \in X$,
where $k: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous with $k(0)=0$. Then f, g, T have a unique common fixed point in X.

Proof. By Theorem 3.1, $\left\{T x_{n}\right\}$ is Cauchy with respect to d and hence from (vi) it is Cauchy with respect to δ. Since X is complete with respect to δ, from Theorem 3.1(ii), there exists $z \in X \ni f z=T z=g z$. Thus, by Lemma 3.2 and (v), $T f z=f T z$ and $g T z=T g z$. So $T T z=T f z=f T z=f f z=f g z=g f z=g g z=g T z=T g z$. Now, from Theorem 3.1(iii) it is easy to show that $f z=g f z$. Thus, $f z=g f z=T f z=$ $f f z$ is a common fixed point of f, T and g in X. The uniqueness part follows from Theorem 3.1(iii).

Corollary 3.4. Let (X, d) be a complete metric space $f, g, T: X \rightarrow X$ satisfying (i)-(iv) of Theorem 3.1 and (v) of Theorem 3.3. Then f, g, and T have a unique common fixed point in X.

Corollary 3.5. Let (X, d) be a complete metric space and let \mathfrak{I} be a family of self maps of X. If there is a map T in \mathfrak{I} such that for each pair f, g in \mathfrak{I} satisfying (i)-(iv) of Theorem 3.1 and (v) of Theorem 3.3, then each member of \mathfrak{I} has a unique fixed point in X which is a unique common fixed point of the family \mathfrak{J}.

Theorem 3.6. Let (X, d) be a complete metric space. Then $f, g, T: X \rightarrow X$ satisfying Theorem 3.1(iii) have a unique common fixed point if and only if there is $u \in X$ such that $f u=g u=T u$ and $f^{2} u=g^{2} u=T^{2} u$.

Proof. The necessary part is trivial. To prove the sufficient part, let there be a $u \in X \ni$ (a) $f u=g u=T u$, (b) $f^{2} u=g^{2} u=T^{2} u$. Let $y=f u=g u=T u$. Then from Theorem 3.1(iii) and (b), we can show that $y=f y=T y=g y$, that is, y is a common fixed point of f, g, T in X. Further, from (iii) of Theorem 3.1, the uniqueness of y follows at once.

Theorem 3.7. Let X be a set and Y a Banach space. Let $f, g: X \rightarrow Y$ be such that
(i) $\operatorname{co}(f(X)) \subset g(X)$;
(ii) $g(X)$ is closed in Y;
(iii) $\|f x-f y\| \leq \varphi[\max \{\|g x-g y\|,\|g x-f x\|,\|g y-f y\|\}]$ for all $x, y \in X$ where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nondecreasing u.s.c. function with $\varphi(q t)<t, 1 \leq q \leq 2$. Then there is a $u \in X$ such that $f u=g u$. Further, if f or g is injective, then u is unique.

Proof. Choose $x \in X$. From (i) of Theorem 3.7, we define $\left\{x_{n}\right\}$ in X as $f x_{n}=g x_{n+1}$, for all $n \in \omega$. Writing $d_{n}=\left\|f x_{n}-f x_{n+1}\right\|$ and using (iii) of Theorem 3.7, we get

$$
\begin{equation*}
d_{n}<d_{n-1}, \quad d_{n} \leq \varphi\left(d_{n-1}\right) \leq \cdots \leq \varphi^{n}\left(d_{0}\right), \quad \forall n \in \omega . \tag{3.4}
\end{equation*}
$$

Now, for each $p \in \mathbb{N}$,

$$
\begin{align*}
\left\|f x_{n}-f x_{n+p}\right\| & \leq \sum_{i=1}^{p-1}\left\|f x_{n+i}-f x_{n+1+i}\right\| \tag{3.5}\\
& \leq \sum_{i=0}^{p-1} \varphi^{n+i}\left(d_{0}\right)=\varphi^{n}\left(d_{0}\right) \cdot\left\{\frac{\varphi^{p}\left(d_{0}\right)-1}{\varphi\left(d_{0}\right)-1}\right\} \rightarrow 0
\end{align*}
$$

as $n \rightarrow \infty$ by Lemma 2.3 implies $\left\{f x_{n}\right\}$ is Cauchy in Y and by assumption, $\lim _{n} f x_{n}$ exists finitely in Y. From (i), define $g y_{n}=a f x_{n}+(1-a) f x_{n+1}, 0 \leq a \leq 1$ in $g(X)$. We have

$$
\begin{align*}
\left\|f y_{n}-g y_{n}\right\| \leq & =a\left\|f x_{n}-f y_{n}\right\|+(1-a)\left\|f x_{n+1}-f y_{n}\right\| \\
\leq & a \varphi\left[\max \left\{\left\|g x_{n}-g y_{n}\right\|,\left\|g x_{n}-f x_{n}\right\|,\left\|g y_{n}-f y_{n}\right\|\right\}\right] \\
& +(1-a) \varphi\left[\max \left\{\left\|g x_{n+1}-g y_{n}\right\|,\left\|g x_{n+1}-f x_{n+1}\right\|,\left\|g y_{n}-f y_{n}\right\|\right\}\right] . \tag{3.6}
\end{align*}
$$

Also,

$$
\begin{align*}
\left\|g x_{n}-g y_{n}\right\| & \leq\left\|f x_{n-1} f x_{n}\right\|+(1-a)\left\|f x_{n-1}-f x_{n+1}\right\| \\
& \leq \varphi^{n-1}\left(d_{0}\right)+(1-a) \varphi^{n}\left(d_{0}\right) \leq(2-a) \varphi^{n-1}\left(d_{0}\right) \quad\left(\text { using } \varphi\left(d_{0}\right)<d_{0}\right), \\
\left\|g x_{n+1}-g y_{n}\right\| & =(1-a)\left\|f x_{n}-f x_{n+1}\right\| \leq(1-a) \varphi^{n}\left(d_{0}\right) . \tag{3.7}
\end{align*}
$$

Thus, from (3.4) and (3.7), (3.6) reduces to

$$
\begin{align*}
&\left\|f y_{n}-g y_{n}\right\| \leq a \varphi\left[\max \left\{(2-a) \varphi^{n-1}\left(d_{0}\right), \varphi^{n-1}\left(d_{0}\right),\left\|f y_{n}-g y_{n}\right\|\right\}\right] \\
&+(1-a) \varphi\left[\max \left\{(1-a) \varphi^{n}\left(d_{0}\right), \varphi^{n}\left(d_{0}\right),\left\|f y_{n}-g y_{n}\right\|\right\}\right] \\
& \leq a \varphi\left[\max \left\{(2-a) \varphi^{n-1}\left(d_{0}\right),\left\|f y_{n}-g y_{n}\right\|\right\}\right] \\
&+(1-a) \varphi\left[\max \left\{(2-a) \varphi^{n-1}\left(d_{0}\right),\left\|f y_{n}-g y_{n}\right\|\right\}\right] \tag{3.8}\\
& \quad \text { as } \varphi\left(d_{0}\right)<d_{0}, 1 \leq 2-a \leq 2 \\
& \leq \varphi\left[\max \left\{(2-a) \varphi^{n-1}\left(d_{0}\right),\left\|f y_{n}-g y_{n}\right\|\right\}\right] \\
& \leq \varphi\left[(2-a) \varphi^{n-1}\left(d_{0}\right)\right]<\varphi^{n-1}\left(d_{0}\right),
\end{align*}
$$

otherwise, if $\left\|f y_{n}-g y_{n}\right\|$ is maximum then a contradiction arises.
Now, for any $p \in \mathbb{N}$, writing $K_{p}=\left(\varphi^{p}\left(d_{0}\right)-1\right) /\left(\varphi\left(d_{0}\right)-1\right)$ we get

$$
\begin{align*}
\left\|g y_{n}-g y_{n+p}\right\| & \leq a\left\|f x_{n}-f x_{n+p}\right\|+(1-a)\left\|f x_{n+1}-f x_{n+1+p}\right\| \\
& \leq\left[a \varphi^{n}\left(d_{0}\right)+(1-a) \varphi^{n-1}\left(d_{0}\right)\right] K_{p} \rightarrow 0 \quad \text { as } n \rightarrow \infty \Longrightarrow\left\{g y_{n}\right\} \tag{3.9}
\end{align*}
$$

is Cauchy in $g(X) \subset Y$, and from (ii) of Theorem 3.7 there exists $u \in X \ni \lim _{n} g y_{n}=$ $g u$. So, from (3.4), (3.7), and (3.8) we have, $\left\|f x_{n}-f y_{n}\right\| \leq\left\|f x_{n}-g x_{n}\right\|+\| g x_{n}-$ $g y_{n}\|+\| g y_{n}-f y_{n} \| \rightarrow 0$ as $n \rightarrow \infty$. Hence, $\lim _{n} f x_{n}=\lim _{n} f y_{n}=\lim _{n} g y_{n}=$ $\lim _{n} g x_{n}=g u$.

Now, let $f u \neq g u$. Then from (iii) of Theorem 3.7, we have $\left\|f u-f x_{n}\right\| \leq$ $\varphi\left[\max \left\{\left\|g u-g x_{n}\right\|,\|g u-f u\|,\left\|g x_{n}-f x_{n}\right\|\right\}\right]$; taking limit as $n \rightarrow \infty$, we have $\|f u-g u\| \leq \varphi[\max \{0,\|f u-g u\|, 0\}]<\|f u-g u\|$ which is a contradiction. Hence $f u=g u$. The second part follows from (iii) of Theorem 3.7 and injectiveness of f or g.

4. Coincidence point for multivalued mappings

Theorem 4.1. Let X be a Banach space; and let $S, T: X \rightarrow \mathrm{CB}(X)$ and $f: X \rightarrow X$ be such that
(i) $S(X) U T(X) \subseteq f(X) \in C(X)$,
(ii) for all $x, y \in X, H(S x, T y) \leq \varphi\{\|f x-f y\|, D(f x, S x), D(f y, T y)$, $D(f x, T y), D(f y, S x)\}$ where $\varphi: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}_{+}$is u.s.c. and nondecreasing in each coordinate variable with $\gamma(t)=\max [\varphi(t, t, t, a t, b t): a+b=2, a, b \in$ $\{0,1,2\}] \leq q t, 0 \leq q<1, t>0$. Then f, S and T have a coincidence point in X.

Proof. Choose $a \in(0,1)$ such that $q^{1-a}<1$. Let $x_{0} \in X$. Form (i), we define a sequence $\left\{x_{n}\right\}$ in X as $f x_{2 n+1} \in S x_{2 n}, f x_{2 n+2} \in T x_{2 n+1}$ such that

$$
\begin{align*}
& \left\|f x_{2 n+1}-f x_{2 n+2}\right\|<q^{-a} H\left(S x_{2 n}, T x_{2 n+1}\right), \\
& \left\|f x_{2 n+2}-f x_{2 n+3}\right\|<q^{-a} H\left(T x_{2 n+1}, S x_{2 n+2}\right), \tag{4.1}
\end{align*}
$$

for all $n \in \omega$, writing $d_{n}=\left\|f x_{n}-f x_{n+1}\right\|$, we have from (ii) by routine calculations that $d_{2 n+1} \leq d_{2 n}$ and $d_{2 n+1} \leq q^{1-a} d_{2 n}$. Similarly, $d_{2 n+2} \leq d_{2 n+1}$ and $d_{2 n+2} \leq$ $q^{1-a} d_{2 n+1}$. Thus, combining these we can write

$$
\begin{equation*}
d_{n+1} \leq d_{n}, \quad d_{n} \leq q^{1-a} d_{n-1} \leq \cdots \leq q^{(1-a) n} d_{0}, \quad \forall n \in \omega, 0 \leq q^{1-a}<1 . \tag{4.2}
\end{equation*}
$$

This shows that $\left\{f x_{n}\right\}$ is Cauchy in $f(X)$ and from (i) of Theorem 4.1, there exists $z \in X \ni \lim f x_{n}=f z$,

$$
\begin{gather*}
D(f z, S z) \leq\left\|f z-f x_{2 n+2}\right\|+D\left(f x_{2 n+2}, S z\right) \leq\left\|f z-f x_{2 n+2}\right\|+H\left(S z, T x_{2 n+1}\right) \\
\leq \varphi\left\{\left\|f z-f x_{2 n+1}\right\|, D(f z, S z), D\left(f x_{2 n+1}, T x_{2 n+1}\right), D\left(f z . T x_{2 n+1}\right),\right. \\
\left.D\left(f x_{2 n+1}, S z\right)\right\}+\left\|f z-f x_{2 n+2}\right\| \tag{4.3}\\
\leq \varphi\left\{\left\|f z-f x_{2 n+1}\right\|, D(f z, S z),\left\|f x_{2 n+1}-f x_{2 n+2}\right\|,\left\|f z-f x_{2 n+2}\right\|,\right. \\
\left.\quad\left(\left\|f x_{2 n+1}-f z\right\|+D(f z, S z)\right)\right\}+\left\|f z-f x_{2 n+2}\right\| .
\end{gather*}
$$

As $n \rightarrow \infty$, we have $D(f z, S z) \leq \varphi\{0, D(f z, S z), 0,0, D(f z, S z)\} \leq \varphi\{t, t, t, t, t\} \leq q t$ (where $t=D(f z, S z)$) which implies that $f z \in \overline{S z}=S z$. Similarly $f z \in T z$.

Hence z is a coincidence point of f, S and T in X.

In [3, Theorem 2] the continuity of the involved maps are taken; but in Theorem 4.1 instead of the continuity condition of the maps we take only $f(X) \in C(X)$ for the existence of a coincidence point; to support this we give the following example.

Example 4.2. Let $X=[0,1]$. Define $S, T: X \rightarrow \mathrm{CB}(X)$ and $f: X \rightarrow X$ as follows:

$$
S x=\left\{\begin{array}{ll}
\{0\}, & 0 \leq x \leq \frac{1}{2}, \tag{4.4}\\
\left\{\frac{1}{4}\right\}, & \frac{1}{2}<x \leq 1,
\end{array} \quad T x=\left\{\begin{array}{ll}
\{0\}, & 0 \leq x \leq \frac{1}{2}, \\
\left\{\frac{1}{4}\right\}, & \frac{1}{2}<x \leq 1,
\end{array} \quad f x= \begin{cases}0, & 0 \leq x \leq \frac{1}{2}, \\
\frac{1}{4}, & \frac{1}{2}<x<1, \\
\frac{2}{3}, & x=1 .\end{cases}\right.\right.
$$

Then $S X=\{0,1 / 4\}=T X, f X=\{0,1 / 4,2 / 3\} \in C(X) ; S, T$, and f are discontinuous. Let $\varphi: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}_{+}$be given by $\varphi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=\sqrt{t_{1}} / 2, t_{i}>0$; then $\gamma(t)=\sqrt{t_{1}} / 2$. Clearly S, T, f and φ, γ satisfy all the conditions of Theorem 4.1 with $q=1 / 2$ and $0=f 0 \in S 0=T 0$, that is, 0 is a coincidence point of S, T, and f.

Theorem 4.3. Let X be a Banach space and $f: X \rightarrow X, S, T: X \rightarrow C(X)$ satisfy (i)-(ii) of Theorem 4.1 and (iii) (f, S) and (f, T) are compatible pairs. Then there is a point $z \in X$ such that $f z \in S z \cap T z$. Suppose that $\left\{z_{n}=f^{n} z\right\}$ is a sequence of iterate in X for z and $\left\{S_{n}\right\},\left\{T_{n}\right\}$ are sequences of multifunctions on X where $S_{n} z=S f^{n-1} z$,

$$
\begin{equation*}
T_{n} z=T f^{n-1} z, \quad f^{n} z \in S_{n} z \cap T_{n} z, \quad \forall n \in \mathbb{N} . \tag{4.5}
\end{equation*}
$$

If $z_{n} \rightarrow z$ and $\left\{S_{n}\right\},\left\{T_{n}\right\}$ converge, respectively, to S and T on X pointwise, then z is a common fixed point of S and T.

Proof. From Theorem 4.1, there is $z \in X \ni f z \in S z \cap T z$. Again from (ii) of Theorem 4.1, it is easy to show that $S z=T z$. Again, from (iii) of Theorem 4.3 and Lemma 2.4, we have $f z \in S z=T z \Rightarrow f^{2} z \in f S z=S f z, f^{2} z \in f T z=T f z$, and $S f z=T f z$. Continuing this process, we get $S_{n} z=S f^{n-1} z=T f^{n-1} z=T_{n} z$ where $z_{n}=f^{n} z \in S f^{n-1} z=T f^{n-1} z$. By hypothesis, $S_{n} z \rightarrow S z$ and $T_{n} z \rightarrow T z$. Then

$$
\begin{align*}
D(z, S z) & \leq\left\|z-z_{n}\right\|+D\left(z_{n}, S z\right) \\
& \leq\left\|z-z_{n}\right\|+H\left(S_{n} z, S z\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { which implies that } z \in \overline{S z}=S z . \tag{4.6}
\end{align*}
$$

As $S z=T z$, hence z is a common fixed point of S and T in X.
Acknowledgement. The authors convey their gratitudes to the referee for his valuable suggestions.

References

[1] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), no. 4, 261-263. MR 53\#4031. Zbl 321.54025.
[2] , Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. MR 87m:54122. Zbl 613.54029.
[3] H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and singlevalued mappings, Int. J. Math. Math. Sci. 12 (1989), no. 2, 257-262. MR 90i:54097. Zbl 671.54023.
[4] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 149-153. MR 85f:54107. Zbl 523.54030.
[5] S. Sessa, B. E. Rhoades, and M. S. Khan, On common fixed points of compatible mappings in metric and Banach spaces, Int. J. Math. Math. Sci. 11 (1988), no. 2, 375-392. MR 89k:54111. Zbl 669.54023.
[6] S. L. Singh, K. S. Ha, and Y. J. Cho, Coincidence and fixed points of nonlinear hybrid contractions, Int. J. Math. Math. Sci. 12 (1989), no. 2, 247-256. MR 90g:54042. Zbl 669.54024.
[7] S. P. Singh and B. A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16 (1977), no. 1, 49-53. MR 55\#11234. Zbl 351.54040.
D. K. Ganguly and D. Bandyopadhyay: Department of Pure Mathematics, University of Calcutta, 35, B.C. Road, Calcutta-700019, India

