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ON BLOCKERS IN BOUNDED POSETS
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Abstract. Antichains of a finite bounded poset are assigned antichains playing a role
analogous to that played by blockers in the Boolean lattice of all subsets of a finite set.
Some properties of lattices of generalized blockers are discussed.
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1. Introduction. Blocking sets for finite families of finite sets are important objects

of discrete mathematics (see [5, Chapter 8] and [3]).

A setH is called a blocking set for a nonempty family � = {G1, . . . ,Gm} of nonempty

subsets of a finite set if for each k∈ {1, . . . ,m} we have |H∩Gk| ≥ 1. The blocker of �

is the family of all inclusion-wise minimal blocking sets for �.

A family of subsets of a finite set is called a clutter (or a Sperner family) if no set

from it contains another. If the family is empty or if it consists of only one subset,

{∅}, then the corresponding clutter is called trivial.

The concepts of blocker map and complementary map on clutters [1] made it pos-

sible to clarify the relationship between specific families of sets, arising from the

matroid theory, and maps on them. The blocker map, that assigns the blocker to a

clutter, is defined on all clutters, including trivial clutters.

The following property [2, 6] is basic: for a clutter �, the blocker of its blocker

coincides with �.

We show that the concepts of blocking set and blocker can be extended when pass-

ing from discussing clutters, considered as antichains of the Boolean lattice of all sub-

sets of a finite set, to exploring antichains of arbitrary finite bounded posets (a poset

P is called bounded if it has a unique minimal element, denoted 0̂P , and a unique

maximal element, denoted 1̂P ).

In Section 2, the notion of intersecter plays a role analogous to that played by the

notion of blocking set in the Boolean lattice of all subsets of a finite set. In Section 3,

we explore the structure of subposets of intersecters in Cartesian products of posets.

In Section 4, some properties of the blocker map and complementary map are shortly

discussed. In Section 5, the structure of lattices of generalized blockers is reviewed.

2. Intersecters and complementers. We refer the reader to [7, Chapter 3] for basic

information and terminology in the theory of posets.

For a posetQ,Qa denotes its atom set; minQ and max Q denote the sets of all min-

imal elements and all maximal elements of Q, respectively; IQ(X) and FQ(X) denote

the order ideal and order filter ofQ generated by a subset X ⊆Q, respectively. If x, y
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are elements ofQ and x <y (or x ≤y), then we write x <Q y (or x ≤Q y). In a similar

way, we denote by ∨Q the operation of join in a join-semilattice Q, and we denote by

∧Q the operation of meet in a meet-semilattice Q. We use × to denote the operation

of Cartesian product of posets.

For a finite family � of finite sets, its conventional blocker is denoted by �(�).
Throughout P stands for a finite bounded poset with |P |> 1. We start with extend-

ing the concept of blocking set.

Definition 2.1. Let A be a subset of P .

• If A ≠∅ and A ≠ {0̂P}, then an element b ∈ P is an intersecter for A in P if for

every a∈A−{0̂P}, we have

∣∣IP (b)∩IP (a)∩Pa
∣∣≥ 1. (2.1)

• If A= {0̂P} then A has no intersecters in P .

• If A=∅ then every element of P is an intersecter for A in P .

• Every non-intersecter for A in P is a complementer for A in P .

Let � denote a finite Boolean lattice. IfA is a nonempty subset of the poset �−{0̂�},
then an element b ∈� is an intersecter for A in � if and only if I�(b)∩�a is a blocking

set for the family {I�(a)∩�a : a∈A}.
We denote by I(P,A) and C(P,A) the sets of all intersecters and all complementers

for A in P , respectively. We consider the sets I(P,A) and C(P,A) as subposets of the

poset P . For a one-element set {a} we write I(P,a) instead of I(P,{a}) and C(P,a)
instead of C(P,{a}).

We have the partition I(P,A) ∪̇ C(P,A)= P . For a nonempty subsetA⊆ P−{0̂P}, the

subposets of all its intersecters and complementers are nonempty; indeed, we have

I(P,A)
 1̂P and C(P,A)
 0̂P . It follows from Definition 2.1 that for such a subset A,

we have

I(P,A)= I(P,minA), C(P,A)= C(P,minA), (2.2)

therefore, in most cases, we may restrict ourselves to considering intersecters and

complementers for antichains; further,

I(P,A)=
⋂

a∈A
I(P,a), C(P,A)=

⋃

a∈A
C(P,a). (2.3)

For all antichains (including the empty antichain) A1, A2 of P with FP (A1)⊆ FP (A2),
we have

I
(
P,A1

)⊇ I
(
P,A2

)
, C

(
P,A1

)⊆ C
(
P,A2

)
. (2.4)

Clearly, the subposet I(P,a) of all intersecters for an elementa∈ P is the order filter

FP (IP (a)∩Pa), hence, in view of (2.3), equality (2.5) in the following lemma holds.

Lemma 2.2. Let A be a nonempty subset of P−{0̂P}. The subposet of all intersecters

for A in P is determined by the following equivalent equalities:

I(P,A)=
⋂

a∈A
FP
(
IP (a)∩Pa), (2.5)
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I(P,A)=
⋃

E∈�({IP (a)∩Pa:a∈A})

⋂

e∈E
FP (e). (2.6)

Proof. To prove (2.6), note that the inclusion

I(P,A)⊇
⋃

E∈�({IP (a)∩Pa:a∈A})

⋂

e∈E
FP (e) (2.7)

follows from the definition of intersecters.

We are left with proving the inclusion

I(P,A)⊆
⋃

E∈�({IP (a)∩Pa:a∈A})

⋂

e∈E
FP (e). (2.8)

Assume that it does not hold, and consider such an intersecter b for A that b �∈⋃
E∈�({IP (a)∩Pa:a∈A})

⋂
e∈E FP (e). In this case, the inclusion b ∈⋂e∈E FP (e) holds not for

all sets E from the family �({IP (a)∩Pa : a∈A}), hence there exists such an element

a ∈ A that |IP (b)∩ IP (a)∩Pa| = 0. Therefore b is not an intersecter for A, but this

contradicts our choice of b. Hence, (2.6) holds.

Thus, for every subset A of the poset P , the subposet of all intersecters for A in P is

an order filter of P , that is, I(P,A)= FP (min I(P,A)). As a consequence, the subposet

C(P,A) of all complementers for A in P is the order ideal IP (maxC(P,A)).
If A is a subset of the poset P then we call the antichain min I(P,A) the blocker of A

in P . We call elements of the blocker min I(P,A) minimal intersecters for A in P , and

we call elements of the antichain maxC(P,A) maximal complementers for A in P .

The images of intersecters under suitable order-preserving maps are also inter-

secters.

Proposition 2.3. Let P1 and P2 be disjoint finite bounded posets with |P1|,|P2|> 1.

Let ψ : P1 → P2 be an order-preserving map such that

ψ
(
0̂P1

)= 0̂P2 , ψ
(
x1
)
>P2 0̂P2 , ∀x1 >P1 0̂P1 . (2.9)

For every subset A1 of P1

ψ
(
I
(
P1,A1

))⊆ I
(
P2,ψ

(
A1
))
. (2.10)

Proof. There is nothing to prove for A1 =∅⊂ P and A1 = {0̂P1}. So suppose that

A1 ≠∅⊂ P andA1 ≠ {0̂P1}. Let b1 be an intersecter forA1. According to Definition 2.1,

for all a1 ∈ A1, a1 >P1 0̂P1 , we have |IP1(b1)∩ IP1(a1)∩P1
a| ≥ 1, and in view of (2.9),

for every atom z1 ∈ IP1(b1)∩IP1(a1)∩P1
a we have the inclusion

IP2

(
ψ
(
z1
))∩P2

a ⊆ IP2

(
ψ
(
a1
))∩P2

a, (2.11)

the left-hand part of which is nonempty. Hence, for all a2 ∈ψ(A1) the inclusion b1 ∈
I(P,A1) implies that

∣∣IP2

(
ψ
(
b1
))∩IP2

(
ψ
(
a1
))∩P2

a
∣∣≥ 1. (2.12)

This means that ψ(b1)∈ I(P2,ψ(A1)) and completes the proof.
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3. Intersecters in Cartesian products of posets. In this section, we study the struc-

ture of subposets of intersecters in Cartesian products of two finite posets.

Proposition 3.1. Let P1 and P2 be disjoint finite bounded posets with |P1|,|P2|> 2.

Let Q denote the poset

(
P1−

{
0̂P1 , 1̂P1

})×(P2−
{
0̂P2 , 1̂P2

})∪̇{0̂Q, 1̂Q
}
, (3.1)

where 0̂Q and 1̂Q are the adjoint new least and greatest elements. Let A be a nonempty

subset of the poset Q−{0̂Q, 1̂Q}, and let A�P1 and A�P2 denote the subsets {a1 ∈ P1 :

(a1;a2)∈A} and {a2 ∈ P2 : (a1;a2)∈A}, respectively.

(i) If min I(P1,A�P1)= {1̂P1} or min I(P2,A�P2)= {1̂P2}, then

I(Q,A)=min I(Q,A)= {1̂Q
}
. (3.2)

(ii) If min I(P1,A�P1)≠ {1̂P1} and min I(P2,A�P2)≠ {1̂P2}, then

I(Q,A)= (I(P1,A�P1

)−{1̂P1

})×(I(P2,A�P2

)−{1̂P2

})∪̇{1̂Q
}
, (3.3)

and min I(Q,A)=min I(P1,A�P1)×min I(P2,A�P2).

Proof. The atom setQa of the posetQ is P1
a×P2

a, therefore, by (2.5), the subposet

of intersecters for A in Q is

I(Q,A)=
⋂

(a1;a2)∈A
FQ
((

IP1

(
a1
)×IP2

(
a2
))∩(P1

a×P2
a))

= (I(P1,A�P1

)−{1̂P1

})×(I(P2,A�P2

)−{1̂P2

})∪̇{1̂Q
}
,

(3.4)

and the statement follows.

Proposition 3.2. Let P1 and P2 be disjoint finite bounded posets with |P1|,|P2|> 1.

Let Q denote the poset P1×P2, and let A be a nonempty subset of the poset Q−{0̂Q}.
Then

I(Q,A)=
⋂

(a1;a2)∈A

((
P1× I

(
P2,a2

))∪(I(P1,a1
)×P2

))
. (3.5)

Proof. Since the atom set Qa of the poset Q is ({0̂1}×P2
a)∪̇(P1

a×{0̂2}), we have,

according to equality (2.5),

I(Q,A)=
⋂

(a1;a2)∈A
FQ
((

IP1

(
a1
)×IP2

(
a2
))∩(({0̂1

}×P2
a)∪̇(P1

a×{0̂2
})))

=
⋂

(a1;a2)∈A
FQ
(({

0̂1
}×(IP2

(
a2
)∩P2

a))∪̇((IP1

(
a1
)∩P1

a)×{0̂2
}))
,

(3.6)

and the statement follows.

4. Blocker map and complementary map. Let �(P) denote the distributive lattice

of all order filters (partially ordered by inclusion) of P , and let A(P) denote the lattice
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of all antichains of P . For antichains A1,A2 ∈ A(P), we set

A1 ≤A(P) A2 iff FP
(
A1
)⊆ FP

(
A2
)
; (4.1)

in other words, we make use of the isomorphism �(P)→ A(P): F �minF . We call the

least element 0̂A(P) =∅⊂ P and greatest element 1̂A(P) = {0̂P} of the lattice A(P) the

trivial antichains of P . They are counterparts of trivial clutters.

Recall (cf. [4]) that for A1,A2 ∈ A(P),

A1∨A(P)A2 =min
(
A1∪A2

)
, A1∧A(P)A2 =min

(
FP
(
A1
)∩FP

(
A2
))
. (4.2)

Let b : A(P)→ A(P) be the blocker map on A(P); by definition,

b :A � �→min I(P,A). (4.3)

In particular, for every a∈ P , a>P 0̂P , we have b({a})= IP (a)∩Pa. We also have

b(∅⊂ P)= {0̂P
}
, b

({
0̂P
})=∅⊂ P. (4.4)

For a one-element antichain {a}, we write b(a) instead of b({a}).
If A is a nontrivial antichain of P then Lemma 2.2 implicitly states the following

equalities in A(P):

b(A)=
∧

a∈A

∨

e∈b(a)

{e} =
∨

E∈�({b(a):a∈A})

∧

e∈E
{e}. (4.5)

Let B(P) denote the image of A(P) under the blocker map. The set B(P) is equipped,

by definition, with the partial order induced by the partial order on A(P). For a blocker

B ∈ B(P), the subposet b−1(B)= {A∈ A(P) : b(A)= B} is the preimage of B under the

blocker map.

The following lemma is a reformulation of (2.4).

Lemma 4.1. If A1,A2 ∈ A(P) and A1 ≤A(P) A2 then b(A1)≥B(P) b(A2).

Definition 2.1 implies the following reciprocity property for intersecters: for every

antichain A of P , we have

A⊆ I
(
P,b(A)

)
. (4.6)

In the theory of blocking sets the following fact is basic.

Proposition 4.2 (see [2, 6]). For any clutter �, �(�(�))= �.

This statement may be generalized in the following way.

Theorem 4.3. The restriction map b|B(P) is an involution, that is, for each blocker

B ∈ B(P), b(b(B))= B.

Proof. There is nothing to prove for the trivial blockers B = 0̂B(P) = ∅ ⊂ P and

B = 1̂B(P) = {0̂P}. So suppose that B is nontrivial. Choose an arbitrary antichain A′ ∈
b−1 (B). With regard to reciprocity property for intersecters, every element of A′ is an

intersecter for the antichain B = b(A′). In other words, for each element a′ ∈ A′ we
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have the inclusion a′ ∈ I(P,B)=⋂b∈B FP (b(b)). Taking this inclusion into account, we

assign to the antichain A′ the antichain

A=min
⋂

b∈B
FP
(
b(b)

)∈ b−1(B), (4.7)

which is the blocker of B, by (2.5). Then b(A) = B, b(B) = A, and the theorem

follows.

By Lemma 2.2, a nontrivial antichain A of P , considered as an element of A(P),
is a fixed point of the blocker map on A(P) if and only if A = ∧a∈A ∨e∈b(a) {e} or,

equivalently, A=∨E∈�({b(a):a∈A})∧e∈E {e}. We study the structure of a preimage of the

blocker map.

Theorem 4.4. For each blocker B ∈ B(P), its preimage b−1(B) is a join-subsemilattice

of the lattice A(P).

Proof. There is nothing to prove for a trivial blocker B, so suppose that B is non-

trivial. Choose two antichains A1,A2 ∈ b−1(B). According to (4.5), we have the follow-

ing equalities in the lattice A(P):

B = b
(
A1
)=

∧

a1∈A1

∨

e∈b(a1)

{e} = b
(
A2
)=

∧

a2∈A2

∨

e∈b(a2)

{e}. (4.8)

Therefore

B =
∧

a∈A1∨A(P)A2

∨

e∈b(a)

{e} = b
(
A1∨A(P)A2

)
. (4.9)

Hence A1∨A(P)A2 ∈ b−1(B).

The greatest element of b−1(B) is b(B).
Let c : A(P)→ A(P) be the complementary map on A(P); by definition,

c :A � �→maxC(P,A). (4.10)

In particular, we have c(∅⊂ P)=∅⊂ P and c({0̂P})= {1̂P}.
Let C(P) denote the image of A(P) under the complementary map. The set C(P)

is equipped, by definition, with the partial order induced by the partial order on the

distributive lattice of order ideals of P : for C1,C2 ∈ C(P), we set C1 ≤C(P) C2 if and

only if IP (C1)⊆ IP (C2).

5. Lattice of blockers. In this section, we study the structure of the poset of block-

ers in P .

Lemma 5.1. The poset B(P) of blockers in P is a meet-subsemilattice of the lattice

A(P).

Proof. We have to prove that for all B1,B2 ∈ B(P), it holds B1 ∧A(P) B2 ∈ B(P).
There is nothing to prove when one of the blockers B1, B2 is trivial. Suppose that both

B1 and B2 are nontrivial. With the help of Theorem 4.3, we write

B1∧A(P) B2 = b
(
b
(
B1
))∧A(P) b

(
b
(
B2
))
. (5.1)
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According to (4.5), we have the following equalities in A(P):

B1∧A(P) B2 =

 ∧

a1∈b(B1)

∨

e∈b(a1)

{e}

∧A(P)


 ∧

a2∈b(B2)

∨

e∈b(a2)

{e}



=
∧

a∈b(B1)∨A(P)b(B2)

∨

e∈b(a)

{e} = b
(
b
(
B1
)∨A(P) b

(
B2
))∈ B(P).

(5.2)

Lemma 5.2. The meet-semilattice B(P) is self-dual.

Proof. Let B1,B2 ∈ B(P). If B1 ≤B(P) B2 then B1 ≤A(P) B2, and we see that b(B1)≥B(P)

b(B2), by Lemma 4.1.

Conversely, the relation b(B1) ≥B(P) b(B2) implies the relation B1 = b(b(B1)) ≤B(P)

B2 = b(b(B2)), in view of Theorem 4.3 and Lemma 4.1.

Because the restriction map b|B(P) is bijective, we see that it is an anti-automorphism

of B(P).

We now summarize the information of this section.

Theorem 5.3. The poset B(P) is a lattice with the least element 0̂B(P) =∅⊂ P and

greatest element 1̂B(P) = {0̂P}. The unique atom of B(P) is b(Pa), and the unique co-

atom of B(P) is Pa. Moreover,

(i) the poset B(P) is a meet-subsemilattice of the lattice A(P),
(ii) the lattice B(P) is self-dual,

(iii) in the lattice B(P) the operations of meet and join are determined as follows: for

B1,B2 ∈ B(P),

B1∧B(P) B2 = B1∧A(P) B2, (5.3)

B1∨B(P) B2 = b
(
b
(
B1
)∧A(P) b

(
B2
))
. (5.4)

Proof. The only missing step is to prove (5.4), but the equality B1 ∨B(P) B2 =
b(b(B1)∧B(P) b(B2)) immediately follows from the self-duality of the lattice B(P), in

view of the existence of its anti-automorphism b|B(P). With the help of equality (5.3),

we obtain (5.4).

We call the lattice B(P) the lattice of blockers in the poset P . It follows immediately

from the definition of the complementary map that its restriction c|B(P) : B(P)→ C(P),
B� c(B), is an isomorphism of B(P) into the lattice C(P).
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