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Abstract. We are concerned with the existence of solution for the Dirichlet problem
−�pu = f(x,u)+h(x) in Ω, u = 0 on ∂Ω, when f(x,u) lies in some sense between
the first and the second eigenvalues of the p-Laplacian �p . Extensions to more general
operators which are (p−1)-homogeneous at infinity are also considered.
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1. Introduction. In this paper, we are concerned with the existence of solution to

the following quasilinear elliptic problem:

−�pu= f(x,u)+h(x) in Ω,

u= 0 on ∂Ω.
(1.1)

Here Ω is a smooth bounded domain of RN , N ≥ 1, ∆p denotes the p-Laplacian ∆pu=
div(|∇u|p−2∇u), 1< p <∞, h belongs to W−1,p′(Ω) with p′ the Hölder conjugate of

p and f is a Caratheodory function from Ω×R to R such that

λ1 ≤�≡ liminf
s→±∞

f(x,s)
|s|p−2s

≤ limsup
s→±∞

f(x,s)
|s|p−2s

< λ2 a.e. in Ω, (1.2)

where λ1 (resp., λ2) is the first (resp., the second) eigenvalue of the problem

−∆pu= λ|u|p−2u in Ω,

u= 0 on ∂Ω.
(1.3)

Problems of this sort have been extensively studied in the 70s and 80s in the semi-

linear case p = 2. In the quasilinear case p ≠ 2, (1.1) was investigated for N = 1 in [6]

and for N ≥ 1 in [3]. In this latter work nonresonance is studied at the left of λ1.

One of the difficulties to deal with the partial differential equation case N ≥ 1 is the

lack of knowledge of the spectrum of the p-Laplacian in that case. The basic properties

of λ1 were established in [2], while a variational characterization of λ2 was derived

recently in [4]. This variational characterization of λ2 allows the study of its (strict)

monotonicity dependence with respect to a weight. This is the property which is used

in our approach to (1.1). The asymmetry in our assumption (1.2) between λ1 and λ2

also comes from that property. In fact it remains an open question whether the last

strict inequality in (1.2) can be replaced by ≤
�≡

.
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In Section 3 we extend our existence result to more general operators. We consider

A(u)= f(x,u)+h(x) in Ω,

u= 0 on ∂Ω,
(1.4)

where A = −∑N
i=1(∂/∂xi)Ai(x,u,∇u) verifies a (p−1)-homogeneity condition at in-

finity. Such operators were studied by Anane [1] in the variational case. Here we use

degree theory for mappings of type (S)+ as developed by Browder [7] and Berkowits

and Mustonen [5]. No variational structure is consequently needed.

2. A result for the p-Laplacian. We seek a weak solution of (1.1), that is,

find u∈W 1,p
0 (Ω) such that ∀v ∈W 1,p

0 (Ω) :∫
Ω

∣∣∇u∣∣p−2∇u.∇vdx =
∫
Ω
f(x,u)vdx+〈h,v〉,

(2.1)

where 〈·,·〉 denotes the duality product between W−1,p′(Ω) and W 1,p
0 (Ω). We assume

that f satisfies

max
|s|≤R

∣∣f(x,s)∣∣∈ Lp′(Ω), ∀R > 0, (2.2)

λ1 ≤�≡ l(x)≤ k(x) < λ2 a.e. in Ω, (2.3)

where

l(x)= liminf
s→±∞

f(x,s)
|s|p−2s

, k(x)= limsup
s→±∞

f(x,s)
|s|p−2s

. (2.4)

The first inequality in (2.3) must be understood as “less or equal almost everywhere

together with strict inequality on a set of positive measure.” We also assume that some

uniformity holds in the inequalities in (2.3):

∀ε > 0, ∃η(ε) > 0 : λ1−ε ≤ f(x,s)|s|p−2s
, ∀|s| ≥ η(ε), a.e. in Ω,

∀ε > 0, ∃η(ε) > 0 :
f(x,s)
|s|p−2s

≤ λ2+ε, ∀|s| ≥ η(ε), a.e. in Ω.
(2.5)

Remark 2.1. It is clear that (2.2) and (2.5) imply the growth condition

∣∣f(x,s)∣∣≤ a|s|p−1+b(x) ∀s ∈R, a.e. in Ω, (2.6)

where a> 0 and b(·)∈ Lp′(Ω).

Remark 2.2. Equations (2.2) and (2.5) also imply

∀ε > 0, ∃bε ∈ Lp′(Ω) such that∣∣s∣∣p(λ1−ε
)−bε(x)≤ sf (x,s)≤ ∣∣s∣∣p(λ2+ε

)+bε(x),
∀s ∈R, a.e. in Ω.

(2.7)
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Theorem 2.3. Suppose that f satisfies (2.2), (2.3), and (2.5). Then for any h ∈
W−1,p′(Ω), problem (2.1) admits a solution u in W 1,p

0 (Ω).

Proof. We denote by (Tt)t∈[0,1] the family of operators from W 1,p
0 (Ω) to W 1,p

0 (Ω)
defined by

Tt(u)=
(−∆p)−1[(1−t)α|u|p−2u+tf (·,u)+th(·)], (2.8)

where α is some fixed number with λ1 <α< λ2.

To prove Theorem 2.3, we first establish the following estimate:

∃R > 0 such that ∀t ∈ [0,1], ∀u∈ ∂B(O,R) such that
[
I−Tt

]
(u) �= 0, (2.9)

where B(O,R) denotes the ball of center O and radius R in W 1,p
0 (Ω).

To prove (2.9) we assume by contradiction that

∀n> 0, ∃tn ∈ [0,1],∃un ∈W 1,p
0 (Ω) with

∥∥un∥∥1,p =n such that Ttn
(
un
)=un,

(2.10)

where ‖·‖1,p denotes the norm in W 1,p
0 (Ω).

Let wn = un/n. We can extract from (wn) a subsequence, still denoted by (wn),
which converges weakly in W 1,p

0 (Ω), strongly in Lp(Ω) and a.e. in Ω to w ∈W 1,p
0 (Ω).

We can also suppose that tn converges to t ∈ [0,1]. To reach a contradiction, we use

the following lemmas which give various information on wn and w.

Lemma 2.4. The sequence gn defined by

gn = f
(
x,nwn

)
np−1

(2.11)

is bounded in Lp′(Ω), and consequently, for a subsequence, gn converges weakly to

some g in Lp′(Ω).

Proof. This is an immediate consequence of (2.6).

Lemma 2.5. w �≡ 0.

Proof. Since wn verifies,

∫
Ω

∣∣∇wn
∣∣p dx = (1−tn)α

∫
Ω

∣∣wn
∣∣p dx

+tn
[∫

Ω
gn(x)wn(x)dx+ 1

np−1
〈h,wn〉

]
,

(2.12)

we deduce from Lemma 2.4 that

1= (1−t)α
∫
Ω

∣∣w∣∣p dx+t
∫
Ω
g(x)w(x)dx, (2.13)

which clearly implies the conclusion of Lemma 2.5.

Lemma 2.6. g = 0 a.e. in Ω\A, where A= {x ∈Ω :w(x)≠ 0}.
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Proof. By (2.6), we have

∣∣gn(x)∣∣≤ a∣∣wn
∣∣p−1+ b(x)

np−1
a.e. in Ω, (2.14)

and so ∥∥gn∥∥Lp′ (Ω\A) ≤ a∥∥wn
∥∥p/p′
Lp(Ω\A)+

1
np−1

‖b‖Lp′ (Ω\A), (2.15)

which implies

lim
n→+∞

∥∥gn∥∥Lp′ (Ω\A) = 0. (2.16)

Set D = {x ∈Ω\A : g(x)≠ 0}. By Lemma 2.4 we have, for φ(x)= sign[g(x)]χD(x)∈
Lp(D)

lim
n→+∞

∫
D
gn(x)φ(x)dx =

∫
D
|g(x)|dx, (2.17)

and consequently by (2.16), ∫
D

∣∣g(x)∣∣dx = 0, (2.18)

which implies meas(D)= 0, that is, the conclusion of Lemma 2.6.

Lemma 2.7. Set

g̃(x)=




g(x)∣∣w(x)∣∣p−2w(x)
on A,

β on Ω\A,
(2.19)

where β is a fixed number with λ1 < β< λ2. We have

λ1 ≤�≡ g̃(x) < λ2 a.e. in Ω. (2.20)

Proof. Set

Bl =
{
x ∈A :w(x)g(x) < l(x)

∣∣w(x)∣∣p},
Bk =

{
x ∈A :w(x)g(x) > k(x)

∣∣w(x)∣∣p}. (2.21)

We first prove that meas(Bl)= 0 and meas(Bk)= 0.

By (2.7), we have that ∀ε ≥ 0,∃bε ∈ Lp′(Ω) such that

−bε(x)
np

+
∣∣wn(x)

∣∣p[l(x)−ε]

≤wn(x)gn(x)≤ bε(x)np
+
∣∣wn(x)

∣∣p[k(x)+ε] a.e. in Ω.
(2.22)

The first inequality gives

− 1
np

∫
Bl
bε(x)dx+

∫
Bl

∣∣wn(x)
∣∣p[l(x)−ε]dx ≤

∫
Bl
wn(x)gn(x)dx. (2.23)

Letting first x→∞, then ε→ 0, we deduce
∫
Bl

[
w(x)g(x)−

∣∣w(x)∣∣pl(x)]dx ≥ 0, (2.24)
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which implies meas(Bl)= 0. Similarly one gets meas(Bk)= 0. We thus have

l(x)≤ g̃(x)≤ k(x) a.e. in A. (2.25)

Since

λ1 < g̃(x)= β < λ2 a.e. in Ω\A, (2.26)

we obtain the conclusion of the lemma.

Lemma 2.8. w is a solution of

−∆pw =m|w|p−2w in Ω,

w = 0 on ∂Ω,
(2.27)

where m(x)= (1−t)α+tg̃(x).

Proof. We first prove that w is a solution of

−∆pw = (1−t)α|w|p−2w+tg in Ω,

w = 0 on ∂Ω.
(2.28)

We recall that wn satisfies

−∆pwn =
(
1−tn

)
α
∣∣wn

∣∣p−2wn+tn
[
gn+ 1

np−1
h
]

in Ω,

wn = 0 on ∂Ω.
(2.29)

Since (−∆p)(wn) is bounded in W−1,p′(Ω), there exists a subsequence, still denoted

by (wn), and a distribution T ∈W−1,p′(Ω), such that (−∆p)(wn) converges weakly to

T in W−1,p′(Ω); in particular

lim
n→+∞

〈−∆pwn,w
〉= 〈T ,w〉. (2.30)

We also have

〈−∆pwn,wn−w
〉= (1−tn)α

∫
Ω

∣∣wn
∣∣p−2wn

(
wn−w

)
dx

+tn
[∫

Ω
gn(x)

(
wn−w

)
dx+ 1

np−1

〈
h,wn−w

〉]
,

(2.31)

which implies

lim
n→+∞

〈−∆pwn,wn−w
〉= 0, (2.32)

and therefore

lim
n→+∞

〈−∆pwn,wn
〉= 〈T ,w〉. (2.33)

Since (−∆p) is an operator of type (M), we deduce

T =−∆pw. (2.34)
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Going to the limit in (2.29) then yields (2.28). But by Lemma 2.6, we have

(1−t)α|w|p−2w+tg =m|w|p−2w a.e. in Ω. (2.35)

So w is a solution of (2.27).

We denote by λ1(Ω,r (x)) (resp., λ2(Ω,r (x))) the first (resp., the second) eigenvalue

in the problem with weight

−∆pu= λr(x)|u|p−2u in Ω,

u= 0 on ∂Ω.
(2.36)

By Lemma 2.7 and the fact that λ1 <α< λ2, we have

λ1 ≤�≡ m(x) < λ2 a.e. in Ω. (2.37)

It follows, by the strict monotonicity property of the second eigenvalue with respect

to the weight (cf. [4]), that

1= λ2
(
Ω,λ2

)
< λ2(Ω,m). (2.38)

It also follows by the strict monotonicity of the first eigenvalue with respect to the

weight (cf. [8]), that

λ1(Ω,m) < λ1
(
Ω,λ1

)= 1. (2.39)

Consequently,

λ1(Ω,m) < 1< λ2(Ω,m). (2.40)

But by Lemmas 2.5 and 2.8, 1 is an eigenvalue of (−∆p) for the weight m. This con-

tradicts the definition of the second eigenvalue λ2(Ω,m). We have thus proved that

the estimate (2.9) holds.

We can now conclude by a standard degree argument. Indeed Tt is clearly completely

continuous, since (∆p)−1 is continuous from W−1,p′(Ω) to W 1,p
0 (Ω). Therefore,

deg
(
I−T0,B(O,R),O

)= deg
(
I−T1,B(O,R),O

)
. (2.41)

Since T0 is odd, we have, by Borsuk theorem, that deg(I−T0,B(O,R),O) is an odd inte-

ger and so nonzero. It then follows that there exists u∈ B(O,R) such that T1(u)=u,

which proves Theorem 2.3.

3. Generalization. Theorem 2.3 will now be extended to the case of nonhomoge-

neous operators. We consider the problem

A(u)= f(x,u)+h(x) in Ω,

u= 0 on ∂Ω,
(3.1)

where

A(u)=−
N∑
i=1

∂
∂xi

Ai
(
x,u(x),∇u(x)). (3.2)
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The method used in Section 2 for (−∆p) can be adapted under suitable assump-

tions on A. We basically assume that A is a Leray-Lions operator which is (p− 1)-
homogeneous at infinity. Our precise assumptions are the following:

Each Ai(x,s,ξ) is a Carathéodory function, (3.3)

N∑
i=1

[
Ai
(
x,s,ξ

)−Ai(x,s,ξ′)](ξi−ξ′i)> 0, for a.e. x ∈Ω, all s ∈R, all ξ �= ξ′ ∈RN,

(3.4)

∃K ∈ Lp′(Ω),∃c(t) a function defined on R+ with lim
t→+∞

c(t)= 0 such that

∣∣∣Ai(x,ts,tξ)−tp−1
∣∣ξ∣∣p−2ξi

∣∣∣≤ tp−1c(t)
[∣∣ξ∣∣p−1+|s|p−1+K(x)

]
,

for a.e. x ∈Ω, all s ∈R, all ξ ∈RN, all t ∈R+.

(3.5)

We will be able to solve (3.1) when f(x,s) lies at infinity between the first and the

second eigenvalues of the p-Laplacian (−∆p), in the sense of (1.2).

Remark 3.1. Equation (3.5) is a hypothesis which means that A is asymptotically

homogeneous to (−∆p). An example of an operator which verifies (3.3), (3.4), and (3.5)

is the following regularized version of the p-Laplacian:

A=−∆p,ε =−div
[(
ε+|∇u|2)(p−2)/2∇u

]
(3.6)

with ε > 0.

Remark 3.2. Equations (3.3), (3.4), and (3.5) imply the following usual growth and

coercivity conditions:

∃c4 > 0, ∃K4 ∈ Lp′(Ω) such that
∣∣∣Ai(x,s,ξ)∣∣∣≤ c4

(∣∣ξ∣∣p−1+|s|p−1+K4(x)
)
,

a.e. x ∈Ω, ∀s ∈R, ξ ∈RN, for i= 1, . . . ,N,
(3.7)

∃c5>0, c′5>0, K5∈L1(Ω) such that
N∑
i=1

Ai
(
x,s,ξ

)
ξi≥c5

∣∣ξ∣∣p−c′5|s|p−K5(x),

a.e. x ∈Ω, ∀s ∈R, ξ ∈RN.
(3.8)

Indeed (3.7) follows immediately from (3.5). To verify (3.8), one observes that by (3.5)

one has, for each t > 0,

Ai
(
x,ts,tξ

)
ξi−tp−1

∣∣ξ∣∣p−2ξ2
i ≥−tp−1c(t)

∣∣ξi∣∣[∣∣ξ∣∣p−1+|s|p−1+K(x)
]
, (3.9)

and so

N∑
i=1

Ai
(
x,ts,tξ

)
ξi ≥ tp−1

∣∣ξ∣∣p
[

1−Nc(t)
(

1+ 2
p

)]
− 1
p′
tp−1

∣∣c(t)∣∣N(|s|p+∣∣K(x)∣∣p′).
(3.10)

Choosing t sufficiently large yields (3.8).
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Remark 3.3. Equations (3.3) and (3.5) imply that A is well defined, continuous, and

bounded from W 1,p
0 (Ω) to W−1,p′(Ω). Equations (3.3), (3.4), and (3.5) also imply that

A is of type (S)+. This latter fact can be proved along similar lines as in the argument

given by Berkovits and Mustonen in [5].

We are now ready to state the following theorem.

Theorem 3.4. Assume (2.2), (2.3), (2.5), (3.3), (3.4), and (3.5). Then for any h ∈
W−1,p′(Ω), there exists a weak solution u∈W 1,p

0 (Ω) of (3.1), that is,

∫
Ω

N∑
i=1

Ai
(
x,u(x),∇u(x)) ∂v

∂xi
dx =

∫
Ω
f(x,u)vdx+〈h,v〉, ∀v ∈W 1,p

0 (Ω). (3.11)

Proof. The proof is rather similar to that of Theorem 2.3, and we will only detail

below those points which really involve the operator A.

Let (St)t∈[0,1] be the family of operators from W 1,p
0 (Ω) to W−1,p′(Ω) defined by

St(u)= tA(u)−(1−t)
(
∆pu

)−t[f(x,u)+h(x)]−(1−t)α|u|p−2u, (3.12)

for some fixed number α with λ1 < α < λ2. Since the operator A is of type (S)+, St
is also of type (S)+. By the degree theory for mappings of type (S)+, as developed

in Browder [7] and Berkowits and Mustonen [5], to solve (3.1) it suffices to prove the

following estimate:

∃R > 0 such that ∀t ∈ [0,1], ∀u∈ ∂B(OR) such that St(u) �= 0. (3.13)

To prove (3.13), we assume by contradiction that

∀n∈N, ∃tn ∈ [0,1],∃un ∈W 1,p
0 (Ω) with ‖un‖1,p =n, such that Stn

(
un
)= 0.

(3.14)

Letwn =un/n. We can extract from (wn) a subsequence, still denoted by (wn), which

converges weakly in W 1,p
0 (Ω), strongly in Lp(Ω) and a.e. in Ω to w ∈W 1,p

0 (Ω). We can

also suppose that tn converges to t ∈ [0,1].
In the same manner as in the proof of Theorem 2.3, to obtain a contradiction, we

use Lemmas 2.4, 2.6, and 2.7 (which do not involve the operator A) together with the

following two lemmas.

Lemma 3.5. w �≡ 0.

Proof. By (3.14) we have

〈
tnA

(
un
)

np−1
−(1−tn)∆pwn,wn

�
= (1−tn)α

∫
Ω

∣∣wn
∣∣p dx

+tn
[∫

Ω
gn(x)wn(x)dx+ 1

np−1

〈
h,wn

〉]
.

(3.15)
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Since
∣∣∣∣∣
〈
tnA

(
un
)

np−1
−tn

(−∆pwn
)
,wn

�∣∣∣∣∣

≤n1−p
∫
Ω

N∑
i=1

∣∣∣∣Ai(x,un,n∇wn
)−np−1

∣∣∇wn
∣∣p−2 ∂wn

∂xi

∣∣∣∣·
∣∣∣∣∂wn

∂xi

∣∣∣∣dx,
(3.16)

using (3.5) and the fact that ‖wn‖1,p = 1, we obtain

∣∣∣∣∣
〈
tnA

(
un
)

np−1
−tn

(−∆pwn
)
,wn

�∣∣∣∣∣
≤ c(n)

[∥∥∇wn
∥∥p/p′
Lp(Ω)+

∥∥wn
∥∥p/p′
Lp(Ω)+‖K‖Lp′ (Ω)

]∥∥wn
∥∥

1,p
n→+∞
�������������������������������������������������������������������������������������������������������������������→ 0.

(3.17)

Therefore

1= (1−t)α
∫
Ω
|w|p dx+t

∫
Ω
g(x)w(x)dx, (3.18)

which clearly implies w �≡ 0.

Lemma 3.6. w is a solution of

−∆pw =m|w|p−2w in Ω,

w = 0 on ∂Ω,
(3.19)

where m(x)= ((1−t)α+tg̃(x)) and g̃ is defined in Lemma 2.7.

Proof. We first show that w is a solution of

−∆pw = (1−t)α|w|p−2w+tg in Ω,

w = 0 on ∂Ω.
(3.20)

Since (−∆p)(wn) is bounded in W−1,p′(Ω), there exists a subsequence, still denoted

by (wn), and a distribution T ∈W−1,p′(Ω), such that (−∆p)(wn) converges weakly to

T in W−1,p′(Ω). In particular

lim
n→+∞

〈−∆pwn,w
〉= 〈T ,w〉. (3.21)

We also have

〈−∆pwn,wn−w
〉= (1−tn)α

∫
Ω

∣∣wn
∣∣p−2wn

(
wn−w

)
dx

+tn
[∫

Ω
gn(x)

(
wn−w

)
dx+ 1

np−1

〈
h,wn−w

〉]

−
〈
tn
[
A
(
un
)

np−1
+∆pwn

]
,wn−w

〉
,

(3.22)
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and since, by (3.5),

∣∣∣∣∣
〈
tn
[
A
(
un
)

np−1
+∆pwn

]
,wn−w

〉∣∣∣∣∣
≤ c(n)

[∥∥∇wn
∥∥p/p′
Lp(Ω)+

∥∥wn
∥∥p/p′
Lp(Ω)+‖K‖Lp′ (Ω)

]∥∥wn−w
∥∥

1,p
n→+∞
�������������������������������������������������������������������������������������������������������������������→ 0,

(3.23)

we deduce

lim
n→+∞

〈−∆pwn,wn−w
〉= 0. (3.24)

The rest of the proof of Lemma 3.6 uses the fact that (−∆p) is of type (M) and is

similar to the proof of Lemma 2.8.
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