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ABSTRACT. We are concerned with the existence of solution for the Dirichlet problem
-Apu = f(x,u) +h(x) in Q, u = 0 on 0Q, when f(x,u) lies in some sense between
the first and the second eigenvalues of the p-Laplacian A,. Extensions to more general
operators which are (p — 1)-homogeneous at infinity are also considered.
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1. Introduction. In this paper, we are concerned with the existence of solution to
the following quasilinear elliptic problem:

-Apu = f(x,u)+h(x) inQ,

(1.1)
u=0 onoQ.

Here Q is a smooth bounded domain of RN, N > 1, A, denotes the p-Laplacian A,u =
div(]Vu|P=2vu), 1 < p < o, h belongs to W17 (Q) with p’ the Holder conjugate of
p and f is a Caratheodory function from Q xR to R such that

Ay iliminff(x‘s) slimsupf(X'S)

<A ae.inQ (1.2)
s=ze [s[P2s T oot |s|p2s TP ’

where A; (resp., A») is the first (resp., the second) eigenvalue of the problem

-Apu=Alul’P?u inQ,
(1.3)
u=0 onodQ.

Problems of this sort have been extensively studied in the 70s and 80s in the semi-
linear case p = 2. In the quasilinear case p * 2, (1.1) was investigated for N = 1 in [6]
and for N > 1 in [3]. In this latter work nonresonance is studied at the left of A;.

One of the difficulties to deal with the partial differential equation case N > 1 is the
lack of knowledge of the spectrum of the p-Laplacian in that case. The basic properties
of A; were established in [2], while a variational characterization of A» was derived
recently in [4]. This variational characterization of A, allows the study of its (strict)
monotonicity dependence with respect to a weight. This is the property which is used
in our approach to (1.1). The asymmetry in our assumption (1.2) between A; and A»
also comes from that property. In fact it remains an open question whether the last
strict inequality in (1.2) can be replaced by §
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In Section 3 we extend our existence result to more general operators. We consider

A(u) = f(x,u)+h(x) inQ,

(1.4)
u=0 onoQ,

where A = — 211'\]:1 (0/0xi)Ai(x,u,Vu) verifies a (p —1)-homogeneity condition at in-
finity. Such operators were studied by Anane [1] in the variational case. Here we use
degree theory for mappings of type (S). as developed by Browder [7] and Berkowits
and Mustonen [5]. No variational structure is consequently needed.

2. A result for the p-Laplacian. We seek a weak solution of (1.1), that is,

find u € Wy* (Q) such that Vv e W;”(Q):

) 2.1)
J |[Vul|?” Vu.Vvdx=J fx,w)vdx+{(h,v),
0 0

where (-, -) denotes the duality product between w17 (Q) and Wol””(Q). We assume
that f satisfies

I‘n‘a§|f(x,s) | eLP' (Q), VR>O0, (2.2)
A ? l(x) <k(x) <A, ae.inQ, (2.3)
where
f(x,s) f(x,s)

k(x) = limsup (2.4)

l(x) = liminf —, .
() s—io |g|P-2g s—to |S|P2S

The first inequality in (2.3) must be understood as “less or equal almost everywhere
together with strict inequality on a set of positive measure.” We also assume that some

uniformity holds in the inequalities in (2.3):

Ve>0, 3dAn(e) >0:A;—¢< Ifs(li’c—,j; V|s| =n(e), a.e.inQ,
(2.5)
Ve>0, dAn(e)>0: f(x:s) <Ar+¢, VIs|=zn(e), ae.inQ.
[s|P=2s
REMARK 2.1. It is clear that (2.2) and (2.5) imply the growth condition
|f(x,8)| <als|P"'+b(x) VseR, ae.inQ, (2.6)
where a > 0 and b(-) € L7 (Q).
REMARK 2.2. Equations (2.2) and (2.5) also imply
Ve>0, 3b,<cL? (Q) such that
[s]P (A1 =€) —be(x) <sf(x,s) < |s|P (A2 +&) +be(x), 2.7)

VseR, a.e.in Q.
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THEOREM 2.3. Suppose that f satisfies (2.2), (2.3), and (2.5). Then for any h €
W1 (Q), problem (2.1) admits a solution u in W, ().

PROOF. We denote by (T;);ef01 the family of operators from Wy (Q) to Wy” (Q)
defined by
Ty(w) = (= Ap) '[A - alulP2u+tf(-,u) +th(-)], (2.8)

where « is some fixed number with A; < x < A,.
To prove Theorem 2.3, we first establish the following estimate:

3R > 0 such that Vt € [0,1], Vu € 0B(O,R) such that [I-T;](u) # 0, (2.9)

where B(O,R) denotes the ball of center O and radius R in W(}’p Q).
To prove (2.9) we assume by contradiction that

vn>0, 3t,€[0,1],Iu, € Wy" (Q) with |[tnll, , = n such that Ty, (un) = un,
(2.10)
where | - ||1,, denotes the norm in Wol””(Q).

Let wy, = u,/n. We can extract from (w,) a subsequence, still denoted by (w,,),
which converges weakly in W, (Q), strongly in L? (Q) and a.e. in Q to w € W, 7 (Q).
We can also suppose that t,, converges to t € [0,1]. To reach a contradiction, we use
the following lemmas which give various information on w, and w.

LEMMA 2.4. The sequence g, defined by

S (x,nwy)

e (2.11)

In =
is bounded in LY’ (Q), and consequently, for a subsequence, gn converges weakly to
some g in LV’ (Q).

PROOF. This is an immediate consequence of (2.6). O
LEMMA 2.5. w £ 0.

PROOF. Since w, verifies,

J | Vw, |” dx = (1—tn)(xJ |wy |P dx
0 )

(2.12)
+ tn[Jan(x)wn(x) ax + n:—l (h,wn)},
we deduce from Lemma 2.4 that
1:(17t)(xL2|w|’”dx+tJ'Qg(x)w(x)dx, (2.13)
which clearly implies the conclusion of Lemma 2.5. O

LEMMA 2.6. g=0a.e. in Q\ A, where A= {x € Q:w(x) #=0}.
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PROOF. By (2.6), we have

| gn(x)] sa{wn|pfl+% a.e.in Q, (2.14)
and so
lgnllus @ay = allwnl o + 5 1Bl @y (2.15)
which implies
im |gnll;p" 04 =0- (2.16)

Set D = {x € Q\A:g(x) + 0}. By Lemma 2.4 we have, for ¢(x) = sign[g(x)]xp(x) €
LP (D)

Jim I In(x)Pp(x)dx = I lg(x)ldx, (2.17)
and consequently by (2.16),
J lg(x)|dx =0, (2.18)
D
which implies meas(D) = 0, that is, the conclusion of Lemma 2.6. O
LEMMA 2.7. Set
g()i)z onaA,
P
Gx) =1 W[ wx) (2.19)
B on Q\A,

where B is a fixed number with A1 < B < Ap. We have

Al ig(x) <A aeinQ. (2.20)

PROOEF. Set

B = {xeA w(x)g(x) <Lx)|wx)|” }
(2.21)
Bk:{xeA:w(x)g(x)>k(x)|w(x){’”}.

We first prove that meas(B;) = 0 and meas(By) =0
By (2.7), we have that Ve > 0,3b, € L? (Q) such that

bé(x) + | wn () |P[L(x) — €]

(2.22)

<wp(xX)gn(x) < +|wn(x) |P[k(x)+€] ae.inQ.

be(x)
nr
The first inequality gives
—ij bg(x)dx+J |wn (x) | [1(x) — €] dx sj Wy (X)gn (x) dx. (2.23)
nr By B By

Letting first x — o, then € — 0, we deduce

JB [w(x)g(x) - |w(x)|"Lx) | dx = 0, (2.24)
1
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which implies meas(B;) = 0. Similarly one gets meas(By) = 0. We thus have

l(x)<g(x)<k(x) a.e.inA. (2.25)

Since
Al <g(x)=B<Ax ae.inQ\A, (2.26)
we obtain the conclusion of the lemma. O

LEMMA 2.8. w is a solution of

-Apyw =mlw|P?w inQ,

(2.27)
w=0 onoQ,
where m(x) = (1-t)x+tg(x).
PROOF. We first prove that w is a solution of
-Apw = (1-tHx|lw|P?w+tg inQ,
(2.28)
w=0 onoQ.
We recall that w,, satisfies
Apwy = (1—t P2 t Lyl ino
—Apwn = (I=tw)afwn | “wn+ta| gn+ o Sgh| 0 Q, (2.29)

w, =0 onoQ.
Since (-A,)(wy) is bounded in W-LP'(Q), there exists a subsequence, still denoted
by (wy), and a distribution T € w-LP'(Q), such that (=Ap) (wy) converges weakly to
T in W=L7"(Q); in particular
nlirpm(—prn,w) =(T,w). (2.30)

We also have

(= Apwn,wy—w) = (1_t")(xL2 |wp |P 2w (W —w) dx

1 (2.31)
+tn[L2gn(x)(wn—w)dx+npl(h,wn—w)},
which implies
nlir{lm(—prn,wn—w) =0, (2.32)
and therefore
nlil}lm(prwn,wn) =(T,w). (2.33)

Since (—-Aj) is an operator of type (M), we deduce

T=-Apw. (2.34)
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Going to the limit in (2.29) then yields (2.28). But by Lemma 2.6, we have
(1-tHalw|P?w+tg=m|w|’?w ae.in Q. (2.35)

So w is a solution of (2.27). O

We denote by A1 (Q,7(x)) (resp., A2 (Q,7(x))) the first (resp., the second) eigenvalue
in the problem with weight

~Apu=Ar(x)|ul’*u inQ,

(2.36)
u=0 onodQ.
By Lemma 2.7 and the fact that A; < & < Ap, we have
A im(x) <Ap; a.e.in Q. (2.37)

It follows, by the strict monotonicity property of the second eigenvalue with respect
to the weight (cf. [4]), that

1=22(Q,A2) < A2(Q,m). (2.38)

It also follows by the strict monotonicity of the first eigenvalue with respect to the
weight (cf. [8]), that
A1(Q,m) <A1 (Q,A1) =1. (2.39)

Consequently,
A (Q,m) <1< A2(Q,m). (2.40)

But by Lemmas 2.5 and 2.8, 1 is an eigenvalue of (-A,) for the weight m. This con-
tradicts the definition of the second eigenvalue A, (Q, ). We have thus proved that
the estimate (2.9) holds.

We can now conclude by a standard degree argument. Indeed T; is clearly completely
continuous, since (A,[,)*1 is continuous from W-17"(Q) to W(}"’(Q). Therefore,

deg (I - Ty, B(O,R),0) = deg (I-Ti,B(O,R),0). (2.41)

Since Ty is odd, we have, by Borsuk theorem, that deg(I — Ty,B(O,R),0) is an odd inte-
ger and so nonzero. It then follows that there exists u € B(O,R) such that T; (1) = u,
which proves Theorem 2.3. O

3. Generalization. Theorem 2.3 will now be extended to the case of nonhomoge-
neous operators. We consider the problem

A(u) = f(x,u)+h(x) inQ,

(3.1
u=0 onoQ,
where
Nod
Aw) = - > ——Ai(x,u(x), Vu(x)). (3.2)

0x;

i=1 t
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The method used in Section 2 for (-A,) can be adapted under suitable assump-
tions on A. We basically assume that A is a Leray-Lions operator which is (p —1)-
homogeneous at infinity. Our precise assumptions are the following:

Each A;(x,s, &) is a Carathéodory function, (3.3)

M=

,..
I
—

[Ai(x,s,g)—Ai(x,s,E')](Ei—Ei) >0, forae.xeQ, allseR, allE+& RN,

(3.4)
3K € L7 (Q),3c(t) a function defined on R* with tlim c(t) =0 such that
-+
| Ai(x, s,08) —tP L [E[P 728 | <7 L[ [E]7 T +1sIP T 4K (0 |, (3.5)

forae.xeQ, allseR,all EeRY, allt eR™.
We will be able to solve (3.1) when f(x,s) lies at infinity between the first and the
second eigenvalues of the p-Laplacian (—-A,), in the sense of (1.2).

REMARK 3.1. Equation (3.5) is a hypothesis which means that A is asymptotically
homogeneous to (—A,). An example of an operator which verifies (3.3), (3.4), and (3.5)
is the following regularized version of the p-Laplacian:

A=—Dpe=—div[(e+|Vu®)" " vu] (3.6)

with € > 0.

REMARK 3.2. Equations (3.3), (3.4), and (3.5) imply the following usual growth and
coercivity conditions:

Jey > 0, AK4 € L' (Q) such that ‘Ai(x,s,g)’ < c4(|§|”71+ \sl”*1+K4(x)),
3.7)
ae.xeQ, VseR, EeRN, fori=1,...,N,

N
3¢5 >0, ¢4 >0, KseL'(Q) such that > A;(x,s,E)E=cs5|E|" —cs5lsP —Ks(x), (3.8
i1 )

ae.xeQ, VseR, EeRN.

Indeed (3.7) follows immediately from (3.5). To verify (3.8), one observes that by (3.5)
one has, for each t > 0,

Ai(x ts tE)E—tP | E[P TP = 7 e & [ 1B + s K (0], 3.9)

and so

N

> Ai(x,ts, tE)E = tPHE|" [1—Nc(t)(1+}29)} —%t’”’l lc(t) |N(|s|7"+ |K(x) {’”,).

i=1
(3.10)
Choosing t sufficiently large yields (3.8).
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REMARK 3.3. Equations (3.3) and (3.5) imply that A is well defined, continuous, and
bounded from Wol’p(Q) to W—LP'(Q). Equations (3.3), (3.4), and (3.5) also imply that
A is of type (S).. This latter fact can be proved along similar lines as in the argument
given by Berkovits and Mustonen in [5].

We are now ready to state the following theorem.

THEOREM 3.4. Assume (2.2), (2.3), (2.5), (3.3), (3.4), and (3.5). Then for any h €
W-1P'(Q), there exists a weak solution w € Wy'* (Q) of (3.1), that is,

ov
axi

N
JQZAi(x,u(x),Vu(x)) dx:JQf(x,u)vdx+(h,v), v ew,?(Q). (3.11)
i-1

PROOF. The proof is rather similar to that of Theorem 2.3, and we will only detail
below those points which really involve the operator A.
Let (St)te[0,1] be the family of operators from W&””(Q) to W17 (Q) defined by

Se(u) = tA(u) — (1 -t)(Apu) —t[f(x,u) + h(x)] - (1 - D) x|ulP?u, (3.12)

for some fixed number & with A; < & < A;. Since the operator A is of type (S)., St
is also of type (S).. By the degree theory for mappings of type (S)., as developed
in Browder [7] and Berkowits and Mustonen [5], to solve (3.1) it suffices to prove the
following estimate:

3R > 0 such that Vt €[0,1], Vu € 0B(OR) such that S;(u) # 0. (3.13)
To prove (3.13), we assume by contradiction that

vneN, It, €[0,1]1,3u, € W(}””(Q) with [unll1,p = 1, such that S;, (un) = 0.

(3.14)

Let w;, = u,/n. We can extract from (w, ) a subsequence, still denoted by (w,), which

converges weakly in Wol"”(Q), strongly in L7 (Q) and a.e.in Q to w € Wol’p (©). We can
also suppose that t,, converges to t € [0,1].

In the same manner as in the proof of Theorem 2.3, to obtain a contradiction, we

use Lemmas 2.4, 2.6, and 2.7 (which do not involve the operator A) together with the

following two lemmas. O

LEMMA 3.5. w # 0.

PROOF. By (3.14) we have

thAluy,
<%_ (1_tn)prn,wn> = (1—tn)D(JQ |wn|’”dx
(3.15)
1

np-1

+tn[L)gn(x)wn(x)dx+ (h,wn)].



ON A NONRESONANCE CONDITION ... 633

Since
thA(u
'< nnp( ln) tn(prn),wn>‘
(3.16)
N
< n]""J DA (x, un, nVwy) —nP! |an|p_2 dwn own dx,
Qizl aXi axi
using (3.5) and the fact that [[wy|l1,, = 1, we obtain
thAlu
(tAlte) - ) )|
(3.17)
Iy’ v’ —+
< e[ [1Vwnllfe, + lwal 75y + 1K 5 |0l , 0.
Therefore
1=(1—t)ch |w|”dx+tJ gx)w(x)dx, (3.18)
Q Q
which clearly implies w # 0. O
LEMMA 3.6. w is a solution of
-Apw=mlw|P 2w inQ,
(3.19)
w=0 onoQ,
where m(x) = ((1 -t)x+tg(x)) and g is defined in Lemma 2.7.
PROOF. We first show that w is a solution of
-Apw=(1-tHlw|P?w+tg inQ,

(3.20)

w=0 onoQ.
Since (-Ap)(wy) is bounded in W-LP'(Q), there exists a subsequence, still denoted
by (wy), and a distribution T € W~-1#" (Q), such that (=Ap) (wy) converges weakly to
T in W-L7"(Q). In particular
nlilll (—Apwyn,w) =(T,w). (3.21)
We also have

(= Apwp,wp—w) = (1 —tn)(xjQ |wp |P 2w (wn —w) dx

1
np-1

- <tn [A;:j) + prn] W — w>,

+tn[L2gn(x)(wn—w)dx+ (h,wn—w)} (3.22)
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and since, by (3.5),

A(un)
‘ <t"[nﬁ7; +prn],wn—w> ‘
Nn—+co

Ip' /v’
<c(n) [van”fn?m +[[wnl7ola) + 1K (Q)] lwn=wll, , ——0,

(3.23)

we deduce
lim (-Apwpn, wyp—w) =0. (3.24)

Nn—+c0o

The rest of the proof of Lemma 3.6 uses the fact that (-A,) is of type (M) and is
similar to the proof of Lemma 2.8. O
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