# ON *n*-FOLD IMPLICATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

# YOUNG BAE JUN

(Received 7 August 2000)

ABSTRACT. We introduce the notion of n-fold implicative filters and n-fold implicative lattice implication algebras. We give characterizations of n-fold implicative filters and n-fold implicative lattice implication algebras. Finally, we construct an extension property for n-fold implicative filter.

2000 Mathematics Subject Classification. 03G10, 06B10.

х

**1. Introduction.** In order to research the logical system whose propositional value is given in a lattice, Xu [2] proposed the concept of lattice implication algebras, and discussed some of their properties. Xu and Qin [3] introduced the notions of filter and implicative filter in a lattice implication algebra, and investigated their properties. The author of this paper [1] gave an equivalent condition of a filter, and provided some equivalent conditions for a filter to be an implicative filter in a lattice implication algebra. In this paper, we discuss the foldness of implicative filters in lattice implication algebras.

## 2. Preliminaries

**DEFINITION 2.1** (see [2]). By a *lattice implication algebra* we mean a bounded lattice  $(L, \lor, \land, 0, 1)$  with order-reversing involution " $\prime$ " and a binary operation " $\rightarrow$ " satisfying the following axioms:

$$x \longrightarrow (y \longrightarrow z) = y \longrightarrow (x \longrightarrow z), \tag{2.1}$$

$$\longrightarrow x = 1, \tag{2.2}$$

$$x \longrightarrow y = y' \longrightarrow x', \tag{2.3}$$

$$x \to y = y \to x = 1 \Longrightarrow x = y, \tag{2.4}$$

$$(x \to y) \to y = (y \to x) \to x,$$
 (2.5)

$$(x \lor y) \longrightarrow z = (x \longrightarrow z) \land (y \longrightarrow z), \tag{2.6}$$

$$(x \wedge y) \longrightarrow z = (x \longrightarrow z) \lor (y \longrightarrow z), \tag{2.7}$$

for all  $x, y, z \in L$ .

**EXAMPLE 2.2** (see [3]). Let  $L := \{0, a, b, c, 1\}$ . Define the partially-ordered relation on L as 0 < a < b < c < 1, and define

$$x \wedge y := \min\{x, y\}, \qquad x \vee y := \max\{x, y\}, \tag{2.8}$$

## TABLE 2.1.

| x | x' | → | 0 | а | b | С | 1 |
|---|----|---|---|---|---|---|---|
| 0 | 1  | 0 | 1 | 1 | 1 | 1 | 1 |
| а | С  | а | С | 1 | 1 | 1 | 1 |
| b | b  | b | b | С | 1 | 1 | 1 |
| С | а  | С | a | а | С | 1 | 1 |
| 1 | 0  | 1 | 0 | а | b | С | 1 |

for all  $x, y \in L$  and " $\prime$ " and " $\rightarrow$ " as in Table 2.1. Then  $(L, \lor, \land, \prime, \rightarrow)$  is a lattice implication algebra.

In what follows, the binary operation " $\rightarrow$ " will be denoted by juxtaposition. We can define a partial ordering " $\leq$ " on a lattice implication algebra *L* by  $x \leq y$  if and only if xy = 1.

In a lattice implication algebra *L*, the following hold (see [2]):

$$0x = 1, \quad 1x = x, \quad x1 = 1,$$
 (2.9)

$$xy \le (yz)(xz), \tag{2.10}$$

$$x \le y$$
 implies  $yz \le xz, zx \le zy$ . (2.11)

In what follows, *L* will denote a lattice implication algebra, unless otherwise specified.

**DEFINITION 2.3** (see [3]). A subset *F* of *L* is called a *filter* of *L* if it satisfies for all  $x, y \in L$  the following:

$$1 \in F, \tag{2.12}$$

$$x \in F, xy \in F \text{ imply } y \in F.$$
 (2.13)

**DEFINITION 2.4** (see [3]). A subset F of L is called an *implicative filter* of L if it satisfies (2.12) and

$$x(yz) \in F, xy \in F \text{ imply } xz \in F, \quad \forall x, y, z \in L.$$
 (2.14)

**PROPOSITION 2.5** (see [1, Proposition 3.2]). Every filter F of L has the property

$$x \le y, x \in F \text{ imply } y \in F.$$
 (2.15)

**3.** *n***-fold implicative filters.** For any elements *x* and *y* of *L* and any positive integer *n*, let  $x^n y$  denote  $x(\cdots(x(xy))\cdots)$  in which *x* occurs *n* times, and  $x^0 y = y$ .

**DEFINITION 3.1.** Let n be a positive integer. A subset F of L is called an *n*-fold implicative filter of L, if it satisfies (2.12) and

$$x^{n}(yz) \in F, x^{n}y \in F \text{ imply } x^{n}z \in F, \quad \forall x, y, z \in L.$$
 (3.1)

Note that the 1-fold implicative filter is an implicative filter.



FIGURE 3.1.

| TABLE 5.1. | TABLE 3. | 1. |
|------------|----------|----|
|------------|----------|----|

| x   | x' |  |     | 0 | а | b | С | d | 1 |
|-----|----|--|-----|---|---|---|---|---|---|
| 0   | 1  |  | 0   | 1 | 1 | 1 | 1 | 1 | 1 |
| а   | С  |  | а   | С | 1 | b | С | b | 1 |
| b   | d  |  | b   | d | а | 1 | b | а | 1 |
| С   | а  |  | С   | а | а | 1 | 1 | а | 1 |
| d   | b  |  | d   | b | 1 | 1 | b | 1 | 1 |
| 1   | 0  |  | 1   | 0 | а | b | С | d | 1 |
| (a) |    |  | (b) |   |   |   |   |   |   |

**EXAMPLE 3.2.** Let  $L := \{0, a, b, c, d, 1\}$  be a set with Figure 3.1 as a partial ordering. Define a unary operation "r" and a binary operation denoted by juxtaposition on L as in Tables 3.1a and 3.1b, respectively.

Define  $\lor$ - and  $\land$ -operations on *L* as follows:

$$x \lor y := (xy)y, \quad x \land y := ((x'y')y')', \quad \forall x, y \in L.$$
(3.2)

Then *L* is a lattice implication algebra. It is easy to check that  $F := \{b, c, 1\}$  is an *n*-fold implicative filter of *L*.

**THEOREM 3.3.** Every *n*-fold implicative filter of *L* is a filter of *L*.

**PROOF.** Let *F* be an *n*-fold implicative filter of *L*. Taking x = 1 in (3.1) and using (2.9), we conclude that  $yz \in F$  and  $y \in F$  imply  $z \in F$ , that is, (2.13) holds. Hence *F* is a filter of *L*.

The converse of Theorem 3.3 is not true. For example, let *L* be a lattice implication algebra in Example 3.2. Then {1} is a filter of *L*, but {1} is not a 1-fold implicative filter of *L* because  $d^1(bc) = db = 1$  and  $d^1b = 1$ , but  $d^1c = b \neq 1$ .

We give conditions for a filter to be an n-fold implicative filter.

**THEOREM 3.4.** Let *F* be a filter of *L*. Then the following statements are equivalent:

- (i) *F* is an *n*-fold implicative filter of *L*.
- (ii)  $x^{n+1}y \in F$  implies  $x^n y \in F$ .
- (iii)  $x^n(yz) \in F$  implies  $(x^ny)(x^nz) \in F$ .

#### YOUNG BAE JUN

**PROOF.** (i) $\Rightarrow$ (ii). Assume that *F* is an *n*-fold implicative filter of *L* and let  $x, y \in L$  be such that  $x^{n+1}y \in F$ . Then  $x^n(xy) \in F$ , and since  $x^nx = 1 \in F$ , it follows from (3.1) that  $x^ny \in F$ .

(ii)⇒(iii). Suppose (ii) holds and let  $x, y, z \in L$  be such that  $x^n(yz) \in F$ . Since  $x^n(yz) \le x^n((x^ny)(x^nz))$ , we have

$$x^{n+1}(x^{n-1}((x^ny)z)) = x^n(x^n((x^ny)z)) = x^n((x^ny)(x^nz)) \in F.$$
 (3.3)

It follows from (ii) that  $x^{n+1}(x^{n-2}((x^ny)z)) = x^n(x^{n-1}((x^ny)z)) \in F$ . Using (ii) again, we get

$$x^{n+1}(x^{n-3}((x^ny)z)) = x^n(x^{n-2}((x^ny)z)) \in F.$$
(3.4)

Repeating this process, we conclude that  $(x^n y)(x^n z) = x^n((x^n y)z) \in F$ .

(iii) $\Rightarrow$ (i). Let  $x, y, z \in L$  be such that  $x^n(yz) \in F$  and  $x^n y \in F$ . It follows from (iii) that  $(x^n y)(x^n z) \in F$  and  $x^n y \in F$ , so from (2.13), we have  $x^n z \in F$ . Hence F is an n-fold implicative filter of L.

**DEFINITION 3.5.** Let *n* be a positive integer. A lattice implication algebra *L* is said to be *n*-fold implicative if it satisfies the equality  $x^{n+1}y = x^ny$  for all  $x, y \in L$ .

**COROLLARY 3.6.** In an *n*-fold implicative lattice implication algebra, the notion of filters and *n*-fold implicative filters coincide.

We give a characterization of an n-fold implicative lattice implication algebra.

**THEOREM 3.7.** A lattice implication algebra L is n-fold implicative if and only if the filter  $\{1\}$  of L is n-fold implicative.

**PROOF.** Necessity is by Corollary 3.6. Assume that the filter {1} of *L* is *n*-fold implicative. Noticing that  $x^n((xy)y) = 1$ , and applying Theorem 3.4, we have

$$(x^{n+1}y)(x^ny) = (x^n(xy))(x^ny) = 1.$$
(3.5)

On the other hand, it is clear that  $(x^n y)(x^{n+1}y) = 1$ . Hence  $x^{n+1}y = x^n y$ , as desired.

The following is a characterization of an n-fold implicative filter.

**THEOREM 3.8.** A nonempty subset F of L is an n-fold implicative filter of L if and only if it satisfies (2.12) and

$$x(y^{n+1}z) \in F, x \in F \text{ imply } y^n z \in F, \quad \forall x, y, z \in L.$$
 (3.6)

**PROOF.** Suppose that *F* is an *n*-fold implicative filter of *L* and let  $x, y, z \in L$  be such that  $x(y^{n+1}z) \in F$  and  $x \in F$ . Since *F* is a filter of *L* (see Theorem 3.3), it follows that  $y^{n+1}z \in F$ . Using Theorem 3.4, we know that  $y^nz \in F$ .

Conversely, assume that *F* satisfies (2.12) and (3.6). Let  $x, y \in L$  be such that  $xy \in F$  and  $x \in F$ . Then  $x(1^{n+1}y) = xy \in F$  and  $x \in F$ . Thus, by (3.6), we have  $y = 1^n y \in F$ . Hence *F* is a filter of *L*. Now, if  $x^{n+1}y \in F$  for all  $x, y \in L$ , then  $1(x^{n+1}y) = x^{n+1}y \in F$  and  $1 \in F$ . It follows from (3.6) that  $x^n y \in F$ . Hence *F* is an *n*-fold implicative filter of *L* by Theorem 3.4. This completes the proof.

698

699

**THEOREM 3.9** (extension property for *n*-fold implicative filters). Let *F* and *G* be filters of *L* such that  $F \subseteq G$ . If *F* is *n*-fold implicative, then so is *G*.

**PROOF.** Let  $x, y \in L$  be such that  $x^{n+1}y \in G$ . Since  $x^{n+1}((x^{n+1}y)y) = 1 \in F$ , it follows from (2.1) and Theorem 3.4(ii) that

$$(x^{n+1}y)(x^ny) = x^n((x^{n+1}y)y) \in F \subseteq G,$$
(3.7)

so that  $x^n y \in G$  since *G* is a filter. Using Theorem 3.4, we conclude that *G* is an *n*-fold implicative filter of *L*.

Using Theorems 3.7 and 3.9, we have the following theorem.

**THEOREM 3.10.** *A lattice implication algebra is n-fold implicative if and only if every filter is n-fold implicative.* 

### References

- Y. B. Jun, Implicative filters of lattice implication algebras, Bull. Korean Math. Soc. 34 (1997), no. 2, 193–198. MR 98g:03142. Zbl 876.03035.
- Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. (1993), no. 1, 20–27. Zbl 784.03035.
- Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), no. 2, 251–260. MR 94b:06016. Zbl 787.06009.

Young Bae Jun: department of Mathematics Education, Gyeongsang National University, Jinju $660\mathchar`201$ , Korea

E-mail address: ybjun@nongae.gsnu.ac.kr