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Abstract. We consider a class of control systems governed by the neutral functional dif-
ferential equation with unbounded delay and study the approximate controllability of the
system. An example is given to illustrate the result.
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1. Introduction. Let � be an abstract phase space. Consider the following nonlinear

control equation:

d
dt
{
x(t)+F(t,xt)}=Ax(t)+G(t,xt)+Bv(t), 0< t < T, x0 =ϕ ∈Ω, (1.1)

where F,G : [0,T ]×�→ X are continuous functions, A is the infinitesimal generator

of an analytic semigroup S(·) of bounded linear operators on a Banach space X, the

state function x(t), 0≤ t ≤ T , takes values in X, and the control function v(·) is given

in L2(0,T : V), which is a Banach space of admissible control functions, with V as a

Banach space. Also, B is a bounded linear operator from L2(0,T : V) into L2(0,T :X).
The theory of functional differential equations with unbounded delay has been stud-

ied by many authors. Hale and Kato [1] have established the local existence and contin-

uation of solutions for retarded equations with infinite delay with initial values in an

abstract phase space. Henríquez [2] proved the existence of solutions and the periodic

solutions of a class of partial functional differential equations. Recently, Hernández

and Henríquez [3] have studied the existence problem for partial neutral functional

differential equations with initial values in phase space.

In this paper, we study the approximate controllability of system (1.1) by using

the results of Hernández and Henríquez [3]. Similar results on controllability and

approximate controllability of linear and nonlinear control systems have been studied

in [5, 6, 8].

To study the nonlinear system (1.1), we assume that the histories xt : (−∞,0]→X,

xt(θ) := x(t+θ), belong to some abstract phase space �, that is, a phase space defined

axiomatically. Here, � is a linear space of functions mapping (−∞,0] into X endowed

with a seminorm ‖·‖� and � satisfies the following axioms (see [1]):

(A1) If x : (−∞,σ+a)→X, a> 0, is continuous on [σ ,σ+a), σ is fixed, and xσ ∈�,

then for every t ∈ [σ ,σ +a) the following conditions hold:

(i) xt is in �,

(ii) ‖x(t)‖ ≤H‖xt‖�,
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(iii) ‖xt‖� ≤K(t−σ)sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t−σ)‖xσ‖�, where H ≥ 0 is a

constant; K,M : [0,∞)→ [0,∞), K is continuous and M is locally bounded,

and H, K, and M are independent of x(·).
(A2) For the function x(·) in (A1), xt is a �-valued continuous function on [σ ,σ+a).
(A3) The space � is complete.

Denote by �̂ the quotient Banach space �/‖·‖� and if ϕ ∈�, we write ϕ̂ for the

coset determined by ϕ. Examples of phase space satisfying the above axioms can be

found in [3, 4].

2. Preliminaries. Let the norm of the space X be denoted by ‖·‖ and for the other

spaces we use ‖·‖L2(0,T :X), ‖·‖L2(0,T :V), ‖·‖∞, and so on.

We assume the following hypotheses:

(H1) −A is the infinitesimal generator of an analytic semigroup S(·) of bounded

linear operator on X, where the semigroup S(t) is uniformly bounded, ‖S(t)‖ ≤M for

some constant M ≥ 1 and for every t ≥ 0, and 0∈ ρ(A).
(H2) There exist constants β∈(0,1) and L1≥0, such that the function F : [0,T ]×�→

X is Xβ-valued and satisfies the Lipschitz condition

∥∥(−A)βF(t,ψ1
)−(−A)βF(s,ψ2

)∥∥≤ L1
{|t−s|+∥∥ψ1−ψ2

∥∥
�

}
, (2.1)

for every 0≤ s, t ≤ T , and ψ1,ψ2 ∈�, and

µ = 1−L1

∥∥(−A)−β∥∥·‖K‖∞ (2.2)

is positive.

(H3) The nonlinear operator G : [0,T ]×�→X satisfies the Lipschitz condition

∥∥G(s,ψ1
)−G(s,ψ2

)∥∥≤ L2
{∥∥ψ1−ψ2

∥∥
�

}
, (2.3)

for every 0≤ s ≤ T , and ψ1,ψ2 ∈�,

(H4) Let ϕ ∈� be a function such that ϕ(0)∈D(A) and F([0,T )×�)⊆D(A), a.e.

t ∈ [0,T ) and

Λ(t)=
∫ t

0
(−A)S(t−s)F(s,xs)ds (2.4)

is differentiable a.e. on [0,T ), that is, Λ(t)∈D(A).
(H5) The operator B is a bounded linear operator from L2(0,T : V) to L2(0,T :X).
Under the above hypotheses it is well known [3] that for each u∈ L2(0,T :X) there

exists a unique mild solution

xt(u)= S(t)
{
φ(0)+F(0,φ)}−F(t,xt(u))−

∫ t
0
AS(t−s)F(s,xs(u))ds

+
∫ t

0
S(t−s)G(s,xs(u))ds+

∫ t
0
S(t−s)u(s)ds.

(2.5)

The solution mapping W from L2(0,T :X) to C(0,T :X) can be defined by

W(u)(t)= xt(u)(·). (2.6)
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We also define the continuous linear operator Φ from L2(0,T :X) to X by

Φp =
∫ T

0
S(T −s)p(s)ds, for p ∈ L2(0,T :X). (2.7)

Definition 2.1. Let the reachable set of the system (1.1) at time T be

KT(G)=
{
xT (Bv); v ∈ L2(0,T : V)

}
, (2.8)

where xt(Bv) is a mild solution which satisfies (2.5) with u= Bv .

Definition 2.2. The system (1.1) is said to be approximate controllable on the

interval [0,T ] if KT(G)=X, that is, for every ε > 0 and ξ ∈D(A) there exists a control

v ∈ L2(0,T : V) such that

∣∣∣∣ξ−S(t){φ(0)+F(0,φ)}+F(T ,xT (Bv))

+
∫ T

0
AS(t−s)F(s,xs(Bv))ds−Φ{G(s,xs(Bv))−Bv(s)}

∣∣∣∣< ε,
(2.9)

where xt(Bv) is a solution of (1.1) associated with the nonlinear term G and control

Bv at the time t.

To simplify our task we consider the linear case of F . We introduce the following

assumptions.

For any given ε > 0 and p(·) ∈ L2(0,T : X), there exists some v(·) ∈ L2(0,T : V)
such that

(P1) ‖Φp−ΦBv‖X < ε,
(P2) ‖Bv(·)‖L2(0,T :X) ≤ q1‖p(·)‖L2(0,T :X),where q1 is a positive constant independent

of p(·),
(P3) the constant q1 satisfies

µ−1q1L2‖K‖∞MT exp
{(
CαL1

β
Tβ+ML2T

)
‖K‖∞µ−1

}
< 1. (2.10)

3. Approximate controllability. First, we show the approximate controllability of

the corresponding system with G ≡ 0.

Lemma 3.1. Under hypotheses (H1), (H2), and (P1), KT(0)=X.

Proof. Since the domain D(A) of the operator A is dense in X (see [7]), it is suf-

ficient to prove that D(A) ⊂ KT(0), that is, for any given ε > 0 and ξ ∈ D(A) there

exists a v(·)∈ L2(0,T : V) such that

∣∣ξ−h(T ,ϕ)−ΦBv∣∣< ε,
(3.1)

h(T ,ϕ)= S(T){ϕ(0)+F(0,ϕ)}−F(T ,xT (Bv))−
∫ T

0
AS(T −s)F(s,xs(Bv))ds.
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Let ξ∈D(A), then ξ−h(T ,ϕ)∈D(A). So there exists some p∈C1(0,T :X) such that

η=
∫ T

0
S(T −s)p(s)ds, (3.2)

where η = ξ−h(T ,ϕ). For instance, if we take p(s) = {1−sA}{ξ−h(T ,ϕ)}/T , then

the first equality of (3.3) holds, and by hypothesis (P1) there exists a function v(·) ∈
L2(0,T : V) such that

η=
∫ T

0
S(T −s)p(s)ds =

∫ T
0
S(T −s)Bv(s)ds. (3.3)

Since η= ξ−h(T ,ϕ), then ξ = h(T ,ϕ)+
∫ T
0 S(T −s)Bv(s)ds.

The denseness of the domain D(A) in X implies the approximate controllability of

the corresponding system with G ≡ 0.

To prove the approximate controllability of system (1.1), we need the following

lemma.

Lemma 3.2. Let v1 and v2 be in L2(0,T : V). Then under hypotheses (H1), (H2), (H3),

and (H5), the solution mapping W(Bv)(t)= xt(Bv)of (1.1) satisfies

∥∥xt(Bv1
)−xt(Bv2

)∥∥∞
≤ µ−1M

√
T exp

{(
CαL1

β
Tβ+ML2T

)
‖K‖∞µ−1

}∥∥Bv1−Bv2

∥∥
L2(0,T :X).

(3.4)

Proof. Let y(·,ϕ); (−∞,T ]→X be the function defined by

y(t,ϕ) :=

ϕ(t), −∞< t < 0,

T (t)ϕ(0), t ≥ 0.
(3.5)

Denote y(t,ϕ) by y(t) with the continuous map t→yt .
Next, for each z ∈ C(0,T : X), z(0) = 0, we denote by z̃ the function defined by

z̃(θ)= 0, for θ ≤ 0, and z̃(t) := z(t), for 0≤ t ≤ T .

So if x(u)(t) satisfies (2.5), we can decompose it as x(u)(t) = z(u)(t)+y(t), for

0 ≤ t ≤ T , which implies that xt(u) = z̃t(u)+yt , for 0 ≤ t ≤ T and for each u ∈
L2(0,T :X) and that the function z(·) satisfies

z(t)= S(t)F(0,φ)−F(t, z̃t(u)+yt)−
∫ t

0
AS(t−s)F(s, z̃s(u)+ys)ds

+
∫ t

0
S(t−s)G(s, z̃s(u)+ys)ds+

∫ t
0
S(t−s)u(s)ds.

(3.6)

Thus for each v1,v2 ∈ L2(0,T : V), it is clear that for 0≤ t ≤ T ,
∥∥xt(Bv1

)−xt(Bv2
)∥∥= ∥∥{z̃t(Bv1

)+yt}−{z̃t(Bv2
)+yt}∥∥
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=
∥∥z̃t(Bv1

)− z̃t(Bv2
)∥∥

≤
∥∥F(t, z̃t(Bv1

)+yt)−F(t, z̃t(Bv2
)+yt)∥∥

+
∥∥∥∥∥
∫ t

0
AS(t−s){F(s, z̃sb(Bv1)+ys

)−F(s, z̃s(Bv2
)+ys)}ds

∥∥∥∥∥
+
∥∥∥∥∥
∫ t

0
S(t−s){G(s, z̃s(Bv1

)+ys)−G(s, z̃s(Bv2
)+ys)}ds

∥∥∥∥∥
+
∥∥∥∥∥
∫ t

0
S(t−s){Bv1(s)−Bv2(s)

}
ds

∥∥∥∥∥
≤
∥∥(−A)−β∥∥·L1 ·‖K‖∞

∥∥z(Bv1
)−zt(Bv2

)∥∥∞
+
{
CαL1Tβ

β
+ML2T

}
‖K‖∞

∥∥z(Bv1
)−z(Bv2

)∥∥∞
+M

√
T
∥∥Bv1−Bv2

∥∥
L2(0,T :X).

(3.7)

By Gronwall’s inequality, we have

∥∥x·(Bv1
)−x·(Bv2

)∥∥∞
≤ µ−1M

√
T exp

{(
CαL1

β
Tβ+ML2T

)
‖K‖∞µ−1

}∥∥Bv1−Bv2

∥∥
L2(0,T :X).

(3.8)

Theorem 3.3. Under hypotheses (H1), (H2), (H3), (H4), (H5), and (P1), (P2), (P3),

KT(G)=X, that is, system (1.1) is approximately controllable.

Proof. Since by Lemma 3.1, KT(0)=X, it is sufficient to show that KT(0)⊂KT(G).
Let ξ ∈KT(0). Then for any given ε > 0, there exists v ∈ L2(0,T : V) such that

∣∣ξ−h(T ,ϕ)−ΦBv∣∣< ε
23
,

h(T ,ϕ)=S(T){ϕ(0)+F(0,ϕ)}−F(T ,xT (Bv))−
∫ T

0
AS(T−s)F(s,xs(Bv))ds.

(3.9)

Assume v1 ∈ L2(0,T : V) is arbitrarily given. By hypothesis (P2), there exists some

v2 ∈ L2(0,T : V) such that

∣∣Φ{Bv−G(s,xs(Bv1
))}−ΦBv2

∣∣< ε
23
. (3.10)

By (3.9) and (3.10), we obtain

∣∣ξ−h(T ,ϕ)−ΦG(s,xs(Bv1
))−ΦBv2

∣∣< ε
22
. (3.11)

For v2 ∈ L2(0,T : V) thus obtained, we determine w2 ∈ L2(0,T : V) by hypotheses (P1)
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and (P2) such that

∣∣Φ{G(s,xs(Bv2
))−G(s,xs(Bv1

))}−ΦBw2

∣∣< ε
23
, (3.12)

and so by (P2) and Lemma 3.2,

∥∥Bw2

∥∥
L2(0,T :X) ≤ q1

∥∥G(·,x·(Bv2
))−G(·,x·(Bv1

))∥∥
L2(0,T :X)

≤ q1L2

√
T‖K‖∞ ·

∥∥x·(Bv2
)−x·(Bv1

)∥∥∞
≤ µ−1q1L2‖K‖∞MT exp

{(
CαL1

β
Tβ+ML2T

)
‖K‖∞µ−1

}

×
∥∥Bv2−Bv1

∥∥
L2(0,T :X).

(3.13)

Thus we may define v3 = v2−w2 in L2(0,T : V), which has the following property:

∣∣ξ−h(T ,ϕ)−ΦG(s,xs(Bv2
))−ΦBv3

∣∣
=
∣∣ξ−h(T ,ϕ)−ΦG(s,xs(Bv1

))−ΦBv2+ΦBw2

−Φ{G(s,xs(Bv2
))−G(s,xs(Bv1

))}∣∣< ( 1
22
+ 1

23

)
ε.

(3.14)

By induction, it is proved that there exists a sequence vn in L2(0,T : V) such that

∣∣ξ−h(T ,ϕ)−ΦG(s,xs(Bvn))−ΦBvn+1

∣∣<( 1
22
+···+ 1

2n+1

)
ε, n=1,2, . . . ,

∥∥Bvn+1−Bvn
∥∥
L2(0,T :X)

≤ µ−1q1L2‖K‖∞MT exp
{(
CαL1

β
Tβ+ML2T

)
‖K‖∞µ−1

}
·
∥∥Bvn−Bvn−1

∥∥.
(3.15)

By hypothesis (P3), the sequence {Bvn :n= 1,2, . . .} is a Cauchy sequence in the Banach

space L2(0,T :X), and there exists some u in L2(0,T :X) such that limn→∞Bvn =u in

L2(0,T :X). Therefore, for any given ε > 0, there exists some integer Nε such that

∣∣ΦBvNε+1−ΦBvNε
∣∣< ε

2
,

∣∣ξ−h(T ,ϕ)−ΦG(s,xs(BvNε))−ΦBvNε∣∣
≤
∣∣ξ−h(T ,ϕ)−ΦG(s,xs(BvNε))−ΦBvNε+1

∣∣+∣∣Φ(BvNε+1
)−ΦBvNε∣∣

<
(

1
22
+···+ 1

2Nε

)
ε+ 1

2
ε≤ ε.

(3.16)

This means that ξ ∈ KT(G). Hence the nonlinear system (1.1) is approximately con-

trollable on [0,T ].
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4. Example. We consider the boundary value problem

d
dt

[
z(t,τ)+

∫ t
−∞

∫ π
0
b(s−t,η,τ)z(s,η)dηds

]

= d2

dτ2
z(t,τ)+

∫ t
−∞
a(s−t)z(s,τ)ds+Bv(t), 0≤ t ≤ T , 0≤ τ ≤π,

z(t,0)= z(t,π)= 0,

z(θ,τ)=ϕ(θ,τ), θ ≤ 0, 0≤ τ ≤π.

(4.1)

To represent this problem as a Cauchy problem, we take X = L2([0,π]) and define

x(t) := z(t,·). Let A :X →X be defined by Af(τ) := f ′′(τ) with the domain

D(A) := {f(·)∈ L2([0,π]) : f ′′(·)∈ L2([0,π]), f (0)= f(π)= 0
}
. (4.2)

It is well known that A generates a strongly continuous semigroup T(·) which is com-

pact, analytic, and selfadjoint. Furthermore, A has discrete spectrum, the eigenvalues

are−n2,n∈N, with corresponding normalized eigenvectors en(τ) :=(2/π)1/2 sin(nτ).
These eigenvectors satisfy the properties stated in [3].

Define an infinite-dimensional space V by

V =
{
v | v =

∞∑
n=2

vnen with
∞∑
n=2

vn2 <+∞
}
. (4.3)

The norm in V is defined by ‖v‖V = (
∑∞
n=2vn2)1/2. Define a mapping B ∈ �(V → X)

as follows:

Bv = 2v2e1+
∞∑
n=2

vnen, for v =
∞∑
n=2

vnen ∈ V. (4.4)

Obviously, ‖B‖�(V→X) ≤
√

5.

Then the operator B is well defined by v(·,·) ∈ L2((0,T )× (0,π)); and by [8], we

know that B satisfies hypotheses (H5), (P1), (P2), and (P3).

Let � denote the space Cr ×L2(g;X) with r = 0, as in [4]. To prove approximate

controllability of the problem (4.1), we assume that conditions (i)–(v) of [4] hold. Con-

sequently, equation (4.1) can be formulated abstractly as

d
dt
{
x(t)+Λ1

(
xt
)}=Ax(t)+Λ2

(
xt
)+Bu(t), 0≤ t ≤ ξ,

x0 =ϕ ∈�,
(4.5)

where Λ1, Λ2 are linear operators in �. Using the assumptions stated in [4, pages

471–473], one can see that the system is approximately controllable.
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