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A REGULARIZATION OF FREDHOLM TYPE
SINGULAR INTEGRAL EQUATIONS
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Abstract. We present a method to regularize first and second kind integral equations of
Fredholm type with singular kernel. By appropriate application of the Poincaré-Bertrand
formula we change such integral equations into a second kind Fredholm’s integral equation
with at most weakly singular kernel.
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1. Introduction. Asmanymathematical models in applied problems in physics and

engineering lead to a first or second kind Fredholm’s integral equation with singular

kernel [1], considering this problem for the following investigation is justified. Ac-

cording to Fubini’s theorem [5, 6] over a bounded region in R2, to calculate a repeated
integral we can integrate in either order. This result clearly holds for any continuous

function f (x,y). Even more important is the fact that the Fubini’s theorem holds for
discontinuous f (x,y), for example, if integrals in either order are weakly singular
or only one of them is singular. If both integrals appearing in the repeated integral

are singular then the Fubini’s theorem no longer holds. So, by the Poincaré-Bertrand

formula [2, 4] we have

∫
S

dt
t−t0

∫
S

φ
(
t,t1

)
t1−t

dt1 =−π2φ
(
t0, t0

)+∫
S

dt1
∫

S

φ
(
t,t1

)(
t−t0

)(
t1−t

)dt, (1.1)

where S, the boundary of a bounded region D in R2, is a closed curve. C(k,h)(Ω) is the
class of all functions defined over a domain Ω that along with its partial derivatives
up to k are continuous of Hölder exponent 0< h < 1. A region Ω ⊂R2 belongs to class
A(k,h) if it satisfies the following four conditions:

(1) ∂Ω, the closed boundary of Ω, can be represented as a finite sum of pieces,

where each piece can be represented as a parametric function xl = xl(µ), l = 1,2, on
a bounded interval I in R.
(2) The functions xl, l= 1,2 define a one-to-one correspondence between Ī and the

corresponding piece of ∂Ω and also xl ∈ C(k,h)(Ī), where Ī is the closure of I and k≥ 1.
(3) J = [(dx2/dµ)2+(dx1/dµ)2]1/2 > 0, for µ ∈ Ī.
(4) According to [4], the fourth condition in our case reduces to the following:

cos�νx1 =
(
dx2/dµ

)
J

, cos�νx2 =
(
dx1/dµ

)
J

, (1.2)

where ν is the outer unit normal to the ∂Ω.
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When ∂Ω, the boundary of theΩ, also belongs to A(1,h) it is called a Lyapunov curve.

To use the Poincaré-Bertrand formula (1.1) we assume that S belongs to A(1,h) and

also φ(t,t1)∈ C(0,h)(S), t0 ∈ S.
Now as it is clear, the integral term on the right-hand side of (1.1) is at most weakly

singular. Using this regularized formula we are going to solve some important first and

second kind Fredholm’s integral equations in which the kernels are singular. Before

starting using (1.1), in the following we show its equivalent formulation on an interval

(a,b).
We parameterize S, where the parameter is taken to be the arc length. So we can

write t =ψ(τ), t1 =ψ(τ1), t0 =ψ(τ0), where t,t1, t0 ∈ S, 0≤ τ ≤ l, l is the total length
of S, ψ is the parameterization function.

On substituting t =ψ(τ), t1 =ψ(τ1), and t0 =ψ(τ0) in (1.1), we obtain

∫ l

0

ψ′(τ)dτ
ψ(τ)−ψ

(
τ0
) ∫ l

0

φ
(
ψ(τ),ψ

(
τ1
))

ψ
(
τ1
)−ψ(τ)

ψ′(τ1)dτ1

=−π2φ
(
ψ
(
τ0
)
,ψ
(
τ0
))+∫ l

0
ψ′(τ1)dτ1

∫ l

0

φ
(
ψ(τ),ψ

(
τ1
))(

ψ(τ)−ψ
(
τ0
))(

ψ
(
τ1
)−ψ(τ)

)ψ′(τ)dτ.

(1.3)

Substitutingψ(τ)−ψ(τ0)=ψ′(θ0)(τ−τ0) andψ(τ1)−ψ(τ)=ψ′(θ1)(τ1−τ) in this
result, where θ0 is between τ and τ0 and θ1 is between τ1 and τ , yields

∫ l

0

ψ′(τ)dτ
ψ′(θ0)(τ−τ0

) ∫ l

0

ψ′(τ1)
ψ′(θ1)(τ1−τ

)φ
(
ψ(τ),ψ

(
τ1
))

dτ1

=−π2φ
(
ψ
(
τ0
)
,ψ
(
τ0
))+∫ l

0
ψ′(τ1)dτ1

∫ l

0

ψ′(τ)
ψ′(θ0)(τ−τ0

)
ψ′(θ1)(τ1−τ

)φ
(
ψ(τ),ψ

(
τ1
))

dτ.

(1.4)

This is, clearly, equivalent to the following result:

∫ l

0

dτ
τ−τ0

∫ l

0

K
(
τ,τ1

)
τ1−τ

dτ1 =−π2K
(
τ0,τ0

)+∫ l

0
dτ1

∫ l

0

K
(
τ,τ1

)(
τ−τ0

)(
τ1−τ

)dτ, (1.5)

where

K
(
τ,τ1

)= ψ′(τ)ψ′(τ1)
ψ′(θ0)ψ′(θ1)φ

(
ψ(τ),ψ

(
τ1
))

. (1.6)

This is simply transformed to an interval (a,b), which is an equivalent formulation
of (1.1).

Problem 1 (singular Fredholm’s integral equation of the first kind). We consider

∫ b

a

K(x,ξ)
x−ξ

y(ξ)dξ = f (x), x ∈ (a,b), (1.7)

where f (x) is continuous in [a,b] ⊂ R, a, b finite, K(x,ξ) is at least Hölder contin-
uous in D ⊂ R2. To see an example of (1.7) we recall that whenever we obtain the
solution of Dirichlet problem as potential of simple layer, we have actually obtained a

Fredholm’s integral equation of the first kind whose kernel is logarithmic and hence
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by differentiating this equation we get to a similar equation as (1.7). For example,

consider

∆u(x)= 0, x ∈D, (1.8)

u(x)=φ(x), x ∈ S. (1.9)

Thus, its solution as potential of simple layer is as follows:

u(x)=
∫

S
σ(ξ)

1
2π

Ln|x−ξ|dξ, x ∈D, (1.10)

where the density σ(ξ) is unknown function. Applying the boundary condition (1.9)
on (1.10), we get ∫

S
σ(ξ)

1
2π

Ln|η−ξ|dξ =φ(η), η∈ S. (1.11)

Clearly, equation (1.11) is a Fredholm’s integral equation of the first kind for σ and

its kernel has a weak singularity. Differentiating (1.11) gives∫
S

σ(ξ)
1
2π

K(η,ξ)
|η−ξ| dξ =φ′(η), (1.12)

where K(η,ξ) is a continuous and bounded function in the domain. Obviously, equa-
tion (1.12) is similar to (1.7).

2. Solution for Problem 1. Multiplying both sides of (1.7) by 1/(t−x), integrating
over [a,b] with respect to x, we get

∫ b

a

dx
t−x

∫ b

a

K(x,ξ)
x−ξ

y(ξ)dξ =
∫ b

a

f (x)
t−x

dx. (2.1)

Application of the Poincaré-Bertrand formula (1.1) to the left-hand side of (2.1) yields

the following:

−π2K(t,t)y(t)+
∫ b

a
y(ξ)dξ

∫ b

a

K(x,ξ)
(t−x)(x−ξ)

dx =
∫ b

a

f (x)
t−x

dx. (2.2)

Assuming K(t,t)≠ 0, dividing the above equation by −π2K(t,t) gives

y(t)=
∫ b

a
y(ξ)dξ

1
π2K(t,t)

∫ b

a

K(x,ξ)
(t−x)(x−ξ)

dx− 1
π2K(t,t)

∫ b

a

f (x)
t−x

dx. (2.3)

This is just a second kind Fredholm’s integral equation. Now, as K(x,ξ) is Hölder
continuous, substituting

1
(t−x)(x−ξ)

=
(
1

t−x
+ 1

x−ξ

)
1

t−ξ
(2.4)

in (2.3) we obtain its kernel with a weak singularity and on the other hand, the integral

term
∫ b
a (f (x)/(t−x))dx exists as it is a Cauchy type integral [3]. So, using this tech-

nique we have been able to change a first kind Fredholm’s integral equation with a

singular kernel into a second kind Fredholm’s integral equation with a weak singular

kernel. Thus, the Fredholm’s alternative remains valid [4].
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Problem 2 (singular Fredholm’s integral equation of the second kind). We consider

y(x)=
∫ b

a

K(x,ξ)
x−ξ

y(ξ)dξ+f (x), x ∈ (a,b). (2.5)

To solve Problem 2, we multiply both sides of (2.5) by K(t,x)/(t−x), integrating
over [a,b] with respect to x, we get
∫ b

a

K(t,x)
t−x

y(x)dx =
∫ b

a

K(t,x)
t−x

dx
∫ b

a

K(x,ξ)
x−ξ

y(ξ)dξ+
∫ b

a

K(t,x)
t−x

f (x)dx. (2.6)

Using again the Poincaré-Bertrand formula for the first term on the right-hand side

yields

∫ b

a

K(t,x)
t−x

y(x)dx =−π2K2(t,t)y(t)+
∫ b

a
y(ξ)dξ

∫ b

a

K(t,x)
t−x

K(x,ξ)
x−ξ

dx

+
∫ b

a

K(t,x)
t−x

f (x)dx.
(2.7)

On the other hand, if in (2.5) we replace x by t and ξ by x, we then get

∫ b

a

K(t,x)
t−x

y(x)dx =y(t)−f (t). (2.8)

Substituting this result in (2.7) we obtain

y(t)−f (t)=−π2K2(t,t)y(t)+
∫ b

a
y(ξ)dξ

∫ b

a

K(t,x)K(x,ξ)
(t−x)(x−ξ)

dx+
∫ b

a

K(t,x)
t−x

f (x)dx.

(2.9)

Therefore, since 1+π2K2(t,t)≠ 0, we get the following result:

y(t)=
∫ b

a
y(ξ)dξ

1
1+π2K2(t,t)

∫ b

a

K(t,x)K(x,ξ)
(t−x)(x−ξ)

dx

+ f (t)+∫ b
a
(
K(t,x)/(t−x)

)
f (x)dx

1+π2K2(t,t)
.

(2.10)

Clearly, this result given in (2.10) is a regular second kind Fredholm’s integral equa-

tion, as its kernel is just weakly singular.

Remark 2.1. If one likes, for some reason, to transform this problem to a problem

in the form of Problem 1 and using the regularization discussed in Section 2, then one

should do the following.

Multiplying both sides of (2.5) by 1/(t−x), integrating over [a,b] with respect to
x, we get ∫ b

a

y(x)
t−x

dx =
∫ b

a

dx
t−x

∫ b

a

K(x,ξ)
x−ξ

y(ξ)dξ+
∫ b

a

f (x)
t−x

dx. (2.11)

Using the Poincaré-Bertrand formula (1.1) for the first term on the right-hand side

gives

∫ b

a

y(x)
t−x

dx =−π2K(t,t)y(t)+
∫ b

a
y(ξ)dξ

∫ b

a

K(x,ξ)
(t−x)(x−ξ)

dx+
∫ b

a

f (x)
t−x

dx, (2.12)
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where the term
∫ b
a (f (x)/(t−x))dx is a Cauchy type integral (i.e., its Cauchy principal

value (CPV) exists). Assuming K(t,t) ≠ 0, dividing both sides of (2.12) by −π2K(t,t)
yields

y(t)=− 1
π2

∫ b

a

1
K(t,t)

y(t)
t−x

dx+ 1
π2K(t,t)

∫ b

a
y(ξ)dξ

∫ b

a

K(x,ξ)
(t−x)(x−ξ)

dx

+ 1
π2K(t,t)

∫ b

a

f (x)
t−x

dx.
(2.13)

Now, by comparing (2.5), (2.13) and equating their right-hand sides we obtain the

following first kind Fredholm’s integral equation in which the kernel is singular:

∫ b

a

K(x,ξ)
x−ξ

y(ξ)dξ+f (x)=− 1
π2

∫ b

a

1
K(x,x)

y(η)
x−η

dη+ 1
π2K(x,x)

∫ b

a
y(ξ)dξ

×
∫ b

a

K(η,ξ)
(x−η)(η−ξ)

dη
1

π2K(x,x)

∫ b

a

f (η)
x−η

dη.
(2.14)

Therefore, we have

∫ b

a

[
K(x,ξ)+ 1

π2K(x,x)

]
y(ξ)
x−ξ

dξ

= 1
π2K(x,x)

∫ b

a
y(η)dη

∫ b

a

K(ξ,η)
(x−ξ)(ξ−η)

dξ+ 1
π2K(x,x)

∫ b

a

f (η)
x−η

dη,
(2.15)

∫ b

a

K̃(x,ξ)
x−ξ

y(ξ)dξ = F(x), x ∈ (a,b), (2.16)

where F(x)= (1/π2K(x,x))
∫ b
a (f (η)/(x−η))dη,

K̃(x,ξ)=K(x,ξ)+ 1
π2K(x,x)

+ x−ξ
π2K(x,x)

∫ b

a

K(η,ξ)
(x−η)(η−ξ)

dη. (2.17)

Hence, comparing (2.16) with (1.7) it is clear that Problem 2 has changed to Problem 1,

for which we have given regularization.

Remark 2.2. We believe that regularizing a singular integral equation can be pos-

sible whenever its operator is not unbounded for a constant kernel. In the following

equation: ∫ x

0
K(x,ξ)

y(ξ)
x−ξ

dξ = f (x), K(x,x)≠ 0, (2.18)

even ifK andy are constant, its operator is unbounded. As a particular case, we would
like to know how to regularize it for K ≡ 1, f (0)= 0, or f (0)≠ 0.
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